

# Minimal Translations from Synchronous Communication to Synchronizing Locks

Manfred Schmidt-Schauß

David Sabel

Goethe-University Frankfurt

LMU Munich

EXPRESS/SOS 2021 August 23, 2021



• We are interested in the correctness of translations between programming languages



- In particular we consider **concurrent** programming languages
- Questions:
  - expressivity: can language B express language A?
  - correctness of implementations:

is the implementation of concurrency primitives of A in language B correct?

## **Previous Work**

Previous work (EXPRESS/SOS 2020):

• Correct translations from the synchronous  $\pi$ -calculus into Concurrent Haskell



synchronous communication via message passing named channels, messages, mobility, replication shared memory concurrency with synchronising variables (MVars) concurrent  $\lambda$ -calculus with recursive let, data & case-expressions, monadic I/O

- Correctness w.r.t. observational semantics
- Both models are quite specific, in particular MVars

D. Sabel | Minimal Translations | EXPRESS/SOS 2021

## In this Work

- Analyse translations from synchronous communication to (synchronous) shared memory
- In a minimal setting: source and target are really simple languages



• Main question:

What is the minimal number of locks that is required for a correct translation?

## Source Calculus: SYNCSIMPLE

| Subprocesses:                                                           | Processes:                                                      |         |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|---------|
| $\mathcal{U} ::= \checkmark \mid 0 \mid !\mathcal{U} \mid ?\mathcal{U}$ | $\mathcal{P} ::= \mathcal{U} \mid \mathcal{U} \mid \mathcal{P}$ |         |
| (success) (silence) (send) (receive)                                    | (subprocess) (parallel compo                                    | sition) |

 $\text{Operational semantics: } {!}\mathcal{U}_1 \mid {?}\mathcal{U}_2 \mid \mathcal{P} \xrightarrow{SYS} \mathcal{U}_1 \mid \mathcal{U}_2 \mid \mathcal{P} \\$ 

# Source Calculus: SYNCSIMPLE



# Source Calculus: SYNCSIMPLE



•  $\mathcal{P}$  is successful if  $\mathcal{P} = \checkmark \mid \mathcal{P}'$ 

•  $\mathcal{P}$  is may-convergent if there is some successful process  $\mathcal{P}'$  with  $\mathcal{P} \xrightarrow{SYS,*} \mathcal{P}'$ .

•  $\mathcal{P}$  is must-convergent if for all  $\mathcal{P}'$  with  $\mathcal{P} \xrightarrow{SYS,*} \mathcal{P}'$ , the process  $\mathcal{P}'$  is may-convergent.

Subprocesses:Processes: $\mathcal{U} ::=$  $\checkmark$  $\mathbf{0}$  $P_i\mathcal{U}$  $T_i\mathcal{U}$  $\mathcal{P} ::=$  $\mathcal{U}$  $\mathcal{U} \mid \mathcal{P}$ (success) (silence) (put on lock i) (take on lock i)(subprocess) (parallel composition)Storage: locks  $C_1, \ldots, C_k$  which are either  $\Box$  (empty) or  $\blacksquare$  (full), IS is the initial storageOperational semantics: $(P_i\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i = \Box]) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \blacksquare])$  $(T_i\mathcal{U} \mid \mathcal{P}, \mathcal{C}) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_i \mapsto \Box])$ (put fills an empty lock / blocks on a filled)(take empties the lock, non-blocking)

### Subprocesses: Processes: $\mathcal{U} ::= \checkmark \mid \mathbf{0} \mid P_i \mathcal{U} \mid T_i \mathcal{U} \qquad \mathcal{P} ::= \mathcal{U} \mid \mathcal{U} \mid \mathcal{P}$ (success) (silence) (put on lock i) (take on lock i) (subprocess) (parallel composition) **Storage:** locks $C_1, \ldots, C_k$ which are either $\Box$ (empty) or $\blacksquare$ (full), IS is the initial storage **Operational semantics:** $(P_{i}\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_{i} = \Box]) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_{i} \mapsto \Box]) \qquad (T_{i}\mathcal{U} \mid \mathcal{P}, \mathcal{C}) \xrightarrow{LS} (\mathcal{U} \mid \mathcal{P}, \mathcal{C}[C_{i} \mapsto \Box])$ (put fills an empty lock / blocks on a filled) (take empties the lock, non-blocking) Example: $(P_2P_1\checkmark \mid T_1\mathbf{0} \mid T_2\mathbf{0}, (\blacksquare, \blacksquare))$ $\xrightarrow{LS} (P_2 P_1 \checkmark \mid T_1 \mathbf{0} \mid \mathbf{0}, \qquad (\blacksquare, \Box))$ $\xrightarrow{LS} (P_1 \checkmark \mid T_1 \mathbf{0} \mid \mathbf{0}, \qquad (\blacksquare, \blacksquare))$ $\xrightarrow{LS} (P_1 \checkmark \mid \mathbf{0} \mid \mathbf{0}, \qquad (\Box, \blacksquare))$ $\xrightarrow{LS} (\checkmark \mid \mathbf{0} \mid \mathbf{0}, \qquad (\blacksquare, \blacksquare))$ • success, may- and must-convergence: analogous, but starting with initial storage IS

## Translations



Compositional translations  $\tau$ 

- map  $\tau(!)$  and  $\tau(?)$  to sequences consisting of  $P_i$  and  $T_i$ -operations
- for all other constructs: translation is the identity  $(\tau(\mathbf{0}) = \mathbf{0}, \tau(\checkmark) = \checkmark, \tau(\mathcal{P}_1 \mid \mathcal{P}_2) = \tau(\mathcal{P}_1) \mid \tau(\mathcal{P}_2) \dots)$

Translation  $\tau$  is correct iff for all SYNCSIMPLE-processes  $\mathcal{P}$ :

$$\begin{array}{l} \mathcal{P} \text{ is may-convergent iff } \tau(\mathcal{P}) \text{ is may-convergent,} \\ & \text{and} \\ \mathcal{P} \text{ is must-convergent iff } \tau(\mathcal{P}) \text{ is must-convergent} \end{array}$$

### Theorem (correct translation with 3 locks)

For k = 3, the translation au with

 $au(!)=P_1T_3P_2T_1$  and

 $\tau(?) = P_3 T_2$ 

is correct for initial store  $(\Box, \blacksquare, \blacksquare)$ .

- $P_1 \dots T_1$  ensures that only one sender (atomically) communicates
- $T_3$  signals that sender is available
- $\bullet$   $P_2$  waits that receiver is available

- $P_3$  waits that a sender is available
- ${\ensuremath{\, \bullet }}\xspace T_2$  signals that receiver is available

We also found other correct translations:

 $\tau(!) = P_2 P_1 T_3 P_1 T_1 T_2$  and  $\tau(?) = P_3 T_1$  is correct for initial store  $(\Box, \Box, \blacksquare)$ .

### Theorem (1 lock is insufficient)

There is no correct compositional translation SYNCSIMPLE  $\rightarrow$  LOCKSIMPLE<sub>1,IS</sub>.

#### Main Theorem (2 locks are insufficient)

There is no correct compositional translation SYNCSIMPLE  $\rightarrow$  LOCKSIMPLE<sub>2,IS</sub>.

Both theorems hold for any initial storage!

#### Variants

- No difference, if we change the blocking behavior
  - (i.e. fix for each  $i: P_i$  blocks or  $T_i$  blocks but not both)
- Reason: we can adapt the initial storage

#### Variants

- No difference, if we change the blocking behavior
  - (i.e. fix for each i:  $P_i$  blocks or  $T_i$  blocks but not both)
- Reason: we can adapt the initial storage

### Open cases:

- Blocking put and blocking take: Are 3 locks required?
- Correct translations with 3 locks for each combination of blocking behavior and initial storage

Remember: Main Theorem says that there is no correct compositional translation for 2 locks. Main idea of the proof: classify the translations by their blocking type:

The blocking type of a correct translation au is  $(W_1, W_2)$  where

- $W_1$  is the blocking type of  $\tau(!\checkmark)$
- $W_2$  is the blocking type of  $\tau(?\checkmark)$

The blocking type of a sequence/subprocess  $\mathcal S$  is

- $P_i$  if  $S = \mathcal{R}_1 P_i \mathcal{R}_2$ , where  $R_1$  does not contain  $P_i$  or  $T_i$  and a deadlock occurs after executing  $\mathcal{R}_1$  on the initial storage IS
- $P_i P_i$  iff  $S = \mathcal{R}_1 P_i \mathcal{R}_2 P_i \mathcal{R}_3$ , where  $\mathcal{R}_2$  does not contain  $P_i$  or  $T_i$ , and a deadlock occurs after executing  $\mathcal{R}_1 P_i \mathcal{R}_2$  on the initial storage IS

Proof shows impossibility for the blocking types  $(P_1P_1, P_1P_1)$ ,  $(P_1P_1, P_2P_2)$ ,  $(P_1P_1, P_1)$ ,  $(P_1P_1, P_2)$ ,  $(P_1P_1, P_1)$ , and  $(P_1, P_2)$  (other cases are symmetric)

#### Claim

For a correct translation, the blocking type  $(P_1P_1, P_1)$  is impossible

Proof: While  $!\checkmark \mid ?\checkmark$  is must-convergent, we show that  $\tau(!\checkmark \mid ?\checkmark)$  can deadlock:

- since  $W_1 = P_1 P_1$ ,  $\tau(!)$  must be of the form  $\mathcal{R}_1 P_1 \{P_2, T_2\}^* P_1 \mathcal{R}_2$
- since  $W_2 = P_1$ ,  $\tau(?)$  must be of the form  $\{P_2, T_2\}^* P_1 \mathcal{R}_3$  and  $IS_1 = \blacksquare$
- on storage  $(IS_1, IS_2) = (\blacksquare, IS_2)$  first execute  $\mathcal{R}_1 P_1 \{P_2, T_2\}^* P_1 \mathcal{R}_2$  until it blocks with remainder  $P_1 \mathcal{R}_2$ . Then still  $C_1 = \blacksquare$  holds.
- Now execute  $\{P_2, T_2\}^* P_1 \mathcal{R}_3$ : It either blocks at some  $P_2$  or at  $P_1$  with remainder  $P_1 \mathcal{R}_3$ .
- In all cases we have a deadlock.

Note: The proofs for some cases are more complex and require further case distinctions.

#### Conclusion

- we proved that a correct compositional translation from SYNCSIMPLE into LOCKSIMPLE requires at least three locks (independently of the initial storage!)
- we showed that there is a correct translation with three locks

#### Future work

- correct translations with three locks for any initial storage values
- locks where take and put are blocking
- transfer of the result to full languages