Minimal Translations
 from Synchronous Communication to Synchronizing Locks

Manfred Schmidt-Schauß

Goethe-University Frankfurt
David Sabel
LMU Munich

EXPRESS/SOS 2021
August 23, 2021

General Motivation

- We are interested in the correctness of translations between programming languages

- In particular we consider concurrent programming languages
- Questions:
- expressivity: can language B express language A ?
- correctness of implementations: is the implementation of concurrency primitives of A in language B correct?

Previous Work

Previous work (EXPRESS/SOS 2020):

- Correct translations from the synchronous π-calculus into Concurrent Haskell

synchronous communication via message passing named channels, messages, mobility, replication
shared memory concurrency with synchronising variables (MVars) concurrent λ-calculus with recursive let, data \& case-expressions, monadic I/O
- Correctness w.r.t. observational semantics
- Both models are quite specific, in particular MVars

In this Work

- Analyse translations from synchronous communication to (synchronous) shared memory
- In a minimal setting: source and target are really simple languages

synchronous communication one global channel
no names, no messages, no replication, all reductions are finite
synchronous locks
(similar to binary semaphores)
no λ-calculus, no recursion, no data, all reductions are finite
- Main question:

What is the minimal number of locks that is required for a correct translation?

Source Calculus: SYNCSIMPLE

Operational semantics: ! $\mathcal{U}_{1}\left|? \mathcal{U}_{2}\right| \mathcal{P} \xrightarrow{S Y S} \mathcal{U}_{1}\left|\mathcal{U}_{2}\right| \mathcal{P}$

Source Calculus: SYNCSIMPLE

Operational semantics: ! $\mathcal{U}_{1}\left|? \mathcal{U}_{2}\right| \mathcal{P} \xrightarrow{S Y S} \mathcal{U}_{1}\left|\mathcal{U}_{2}\right| \mathcal{P}$

Source Calculus: SYNCSIMPLE

Subprocesses:
Processes:
$\mathcal{U}::=\underset{\text { (success) }}{\checkmark}|\underset{\text { (silence) }}{\mathbf{0}}| \underset{\text { (send) }}{ }|\underset{\text { (receive) }}{ }!\mathcal{U}| \mathcal{U} \quad \mathcal{P}::=\underset{\text { (subprocess) }}{\mathcal{U}} \mid \underset{\text { (parallel composition) }}{\mathcal{U}}$

Operational semantics: $!\mathcal{U}_{1}\left|? \mathcal{U}_{2}\right| \mathcal{P} \xrightarrow{S Y S} \mathcal{U}_{1}\left|\mathcal{U}_{2}\right| \mathcal{P}$

- \mathcal{P} is successful if $\mathcal{P}=\checkmark \mid \mathcal{P}^{\prime}$
- \mathcal{P} is may-convergent if there is some successful process \mathcal{P}^{\prime} with $\mathcal{P} \xrightarrow{\text { SYS,* }} \mathcal{P}^{\prime}$.
- \mathcal{P} is must-convergent if for all \mathcal{P}^{\prime} with $\mathcal{P} \xrightarrow{\text { SYS,* }} \mathcal{P}^{\prime}$, the process \mathcal{P}^{\prime} is may-convergent.

Target Calculus: LOCKSIMPLE ${ }_{k, I S}$

Storage: locks C_{1}, \ldots, C_{k} which are either \square (empty) or \square (full), $I S$ is the initial storage
Operational semantics:

$$
\begin{aligned}
\left(P_{i} \mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i}=\square\right]\right) \xrightarrow{L S}\left(\mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i} \mapsto \square\right]\right) & \left(T_{i} \mathcal{U} \mid \mathcal{P}, \mathcal{C}\right) \xrightarrow{L S}\left(\mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i} \mapsto \square\right]\right) \\
\text { (put fills an empty lock / blocks on a filled) } & \text { (take empties the lock, non-blocking) }
\end{aligned}
$$

Target Calculus: LOCKSIMPLE ${ }_{k, I S}$

Subprocesses:

Processes:

Storage: locks C_{1}, \ldots, C_{k} which are either \square (empty) or \square (full), $I S$ is the initial storage Operational semantics:

$$
\left(P_{i} \mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i}=\square\right]\right) \xrightarrow{L S}\left(\mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i} \mapsto \square\right]\right) \quad\left(T_{i} \mathcal{U} \mid \mathcal{P}, \mathcal{C}\right) \xrightarrow{L S}\left(\mathcal{U} \mid \mathcal{P}, \mathcal{C}\left[C_{i} \mapsto \square\right]\right)
$$

(put fills an empty lock / blocks on a filled) (take empties the lock, non-blocking)

Example

$$
\begin{array}{lll}
& \left(P_{2} P_{1} \checkmark\left|T_{1} \mathbf{0}\right| T_{2} \mathbf{0},\right. & (\square, \square)) \\
\xrightarrow{L S} & \left(P_{2} P_{1} \checkmark\left|T_{1} \mathbf{0}\right| \mathbf{0},\right. & (\square, \square)) \\
\xrightarrow[L S]{L S} & \left(P_{1} \checkmark\left|T_{1} \mathbf{0}\right| \mathbf{0},\right. & (\square, \square)) \\
\xrightarrow{L S} & \left(P_{1} \checkmark|\mathbf{0}| \mathbf{0},\right. & (\square, \square)) \\
\xrightarrow{L S} & (\checkmark|\mathbf{0}| \mathbf{0}, & (\square, \square))
\end{array}
$$

- success, may- and must-convergence: analogous, but starting with initial storage $I S$

Translations

Compositional translations τ

- map $\tau(!)$ and $\tau(?)$ to sequences consisting of $P_{i^{-}}$and $T_{i^{-}}$-operations
- for all other constructs: translation is the identity

$$
\left(\tau(\mathbf{0})=\mathbf{0}, \tau(\checkmark)=\checkmark, \tau\left(\mathcal{P}_{1} \mid \mathcal{P}_{2}\right)=\tau\left(\mathcal{P}_{1}\right) \mid \tau\left(\mathcal{P}_{2}\right) \ldots\right)
$$

Translation τ is correct iff for all SYNCSIMPLE-processes \mathcal{P} :
\mathcal{P} is may-convergent iff $\tau(\mathcal{P})$ is may-convergent, and
\mathcal{P} is must-convergent iff $\tau(\mathcal{P})$ is must-convergent

Results: 3 Locks Suffice

Theorem (correct translation with 3 locks)

For $k=3$, the translation τ with

$$
\tau(!)=P_{1} T_{3} P_{2} T_{1} \quad \text { and } \quad \tau(?)=P_{3} T_{2}
$$

is correct for initial store $(\square, \square, \square)$.

- $P_{1} \ldots T_{1}$ ensures that only one sender (atomically) communicates
- T_{3} signals that sender is available
- P_{3} waits that a sender is available
- P_{2} waits that receiver is available
- T_{2} signals that receiver is available

We also found other correct translations:

$$
\tau(!)=P_{2} P_{1} T_{3} P_{1} T_{1} T_{2} \text { and } \tau(?)=P_{3} T_{1} \text { is correct for initial store }(\square, \square, \square) .
$$

Results: Minimality

Theorem (1 lock is insufficient)
There is no correct compositional translation SYNCSIMPLE \rightarrow LOCKSIMPLE $_{1, I S}$.

Main Theorem (2 locks are insufficient)

There is no correct compositional translation SYNCSIMPLE \rightarrow LOCKSIMPLE $_{2, I S}$.

Both theorems hold for any initial storage!

Results: Variations and Open Questions

Variants

- No difference, if we change the blocking behavior (i.e. fix for each $i: P_{i}$ blocks or T_{i} blocks but not both)
- Reason: we can adapt the initial storage

Results: Variations and Open Questions

Variants

- No difference, if we change the blocking behavior (i.e. fix for each $i: P_{i}$ blocks or T_{i} blocks but not both)
- Reason: we can adapt the initial storage

Open cases:

- Blocking put and blocking take: Are 3 locks required?
- Correct translations with 3 locks for each combination of blocking behavior and initial storage

Proof Structure of the Main Theorem

Remember: Main Theorem says that there is no correct compositional translation for 2 locks. Main idea of the proof: classify the translations by their blocking type:

The blocking type of a correct translation τ is $\left(W_{1}, W_{2}\right)$ where

- W_{1} is the blocking type of $\tau(!\checkmark)$
- W_{2} is the blocking type of $\tau(? \checkmark)$

The blocking type of a sequence/subprocess \mathcal{S} is

- P_{i} if $\mathcal{S}=\mathcal{R}_{1} P_{i} \mathcal{R}_{2}$, where R_{1} does not contain P_{i} or T_{i} and a deadlock occurs after executing \mathcal{R}_{1} on the initial storage $I S$
- $P_{i} P_{i}$ iff $\mathcal{S}=\mathcal{R}_{1} P_{i} \mathcal{R}_{2} P_{i} \mathcal{R}_{3}$, where \mathcal{R}_{2} does not contain P_{i} or T_{i}, and a deadlock occurs after executing $\mathcal{R}_{1} P_{i} \mathcal{R}_{2}$ on the initial storage $I S$

Proof shows impossibility for the blocking types $\left(P_{1} P_{1}, P_{1} P_{1}\right),\left(P_{1} P_{1}, P_{2} P_{2}\right),\left(P_{1} P_{1}, P_{1}\right)$, $\left(P_{1} P_{1}, P_{2}\right),\left(P_{1}, P_{1}\right)$, and $\left(P_{1}, P_{2}\right)$ (other cases are symmetric)

Exemplary Proof

Claim

For a correct translation, the blocking type $\left(P_{1} P_{1}, P_{1}\right)$ is impossible
Proof: While $!\checkmark \mid ? \checkmark$ is must-convergent, we show that $\tau(!\checkmark \mid ? \checkmark)$ can deadlock:

- since $W_{1}=P_{1} P_{1}, \tau(!)$ must be of the form $\mathcal{R}_{1} P_{1}\left\{P_{2}, T_{2}\right\}^{*} P_{1} \mathcal{R}_{2}$
- since $W_{2}=P_{1}, \tau(?)$ must be of the form $\left\{P_{2}, T_{2}\right\}^{*} P_{1} \mathcal{R}_{3}$ and $I S_{1}=\square$
- on storage $\left(I S_{1}, I S_{2}\right)=\left(\boldsymbol{\square}, I S_{2}\right)$ first execute $\mathcal{R}_{1} P_{1}\left\{P_{2}, T_{2}\right\}^{*} P_{1} \mathcal{R}_{2}$ until it blocks with remainder $P_{1} \mathcal{R}_{2}$. Then still $C_{1}=\square$ holds.
- Now execute $\left\{P_{2}, T_{2}\right\}^{*} P_{1} \mathcal{R}_{3}$: It either blocks at some P_{2} or at P_{1} with remainder $P_{1} \mathcal{R}_{3}$.
- In all cases we have a deadlock.

Note: The proofs for some cases are more complex and require further case distinctions.

Conclusion \& Future Work

Conclusion

- we proved that a correct compositional translation from SYNCSIMPLE into LOCKSIMPLE requires at least three locks (independently of the initial storage!)
- we showed that there is a correct translation with three locks

Future work

- correct translations with three locks for any initial storage values
- locks where take and put are blocking
- transfer of the result to full languages

