## **Sledgehammering Without ATPs**

Martin Desharnais-Schäfer with Jasmin Blanchette



16th International Conference on Interactive Theorem Proving (ITP 2025)

# **Proof Automation**Tools in Isabelle/HOL

### **Proof method**

Try to automatically solve a proof goal using different algorithm or heuristics.

 $\textbf{Examples} \text{ simp, auto, blast, metis,} \dots$ 

## **Proof Automation Tools in Isabelle/HOL**

### **Proof method**

Try to automatically solve a proof goal using different algorithm or heuristics.

Examples simp, auto, blast, metis, ...

## try0

Push-button automation using internal proof methods.

# **Proof Automation Tools in Isabelle/HOL**

#### **Proof method**

Try to automatically solve a proof goal using different algorithm or heuristics.

**Examples** simp, auto, blast, metis, ...

## try0

Push-button automation using **internal proof methods**.

### Sledgehammer

Push-button automation using external automatic theorem provers (ATPs).

**Components** Relevance filter, translation module, external ATPs, proof minimization, proof reconstruction

## Proof Automation User Perspective

## **Automation-driven development**

- 1. State the proof goal.
- 2. Try automation (e.g., try0 or Sledgehammer).
- 3. Stop if proof found; otherwise, find an intermediate lemma to help automation and go to step 1.

## Proof Automation User Perspective

### **Automation-driven development**

- 1. State the proof goal.
- 2. Try automation (e.g., try0 or Sledgehammer).
- 3. Stop if proof found; otherwise, find an intermediate lemma to help automation and go to step 1.

#### Caveats:

- try0 and Sledgehammer have different strengths: Manually call both.
- try0 has no fact filter: Manually provide facts.

### **ATP-Free Hammer**

## We propose an alternative, ATP-free hammer:

- 1. Relevance filter: as before
- 2. Translation module: not necessary
- 3. External ATPs: replaced by internal proof methods
- 4. Proof minimization: as before
- 5. Proof reconstruction: not necessary

## **Motivating Example**

```
\begin{array}{l} \textbf{have}\ \mathsf{map2}\ (+)\ (\mathsf{map2}\ (+)\ \mathit{xs}\ \mathit{ys})\ \mathit{zs} = \mathsf{map2}\ (+)\ \mathit{xs}\ (\mathsf{map2}\ (+)\ \mathit{ys}\ \mathit{zs}) \\ \textbf{for}\ \mathit{xs}\ \mathit{ys}\ \mathit{zs} :: \ (\text{`a}\ ::\ \mathsf{ab\_semigroup\_add})\ \mathsf{list} \end{array}
```

## **Motivating Example**

```
\begin{array}{l} \textbf{have} \ \mathsf{map2}\ (+)\ (\mathsf{map2}\ (+)\ \mathit{xs}\ \mathit{ys})\ \mathit{zs} = \mathsf{map2}\ (+)\ \mathit{xs}\ (\mathsf{map2}\ (+)\ \mathit{ys}\ \mathit{zs}) \\ \textbf{for}\ \mathit{xs}\ \mathit{ys}\ \mathit{zs} :: \ (\text{`a}\ ::\ \mathsf{ab\_semigroup\_add})\ \mathsf{list} \end{array}
```

Automation-driven development:

- 1. try0: Timeout, no proof found.
- 2. ATP hammer: Timeout, no proof found.

## **Motivating Example**

```
\begin{array}{l} \textbf{have} \ \mathsf{map2}\ (+)\ (\mathsf{map2}\ (+)\ \mathit{xs}\ \mathit{ys})\ \mathit{zs} = \mathsf{map2}\ (+)\ \mathit{xs}\ (\mathsf{map2}\ (+)\ \mathit{ys}\ \mathit{zs}) \\ \textbf{for}\ \mathit{xs}\ \mathit{ys}\ \mathit{zs} :: ('a :: ab\_semigroup\_add)\ list \end{array}
```

Automation-driven development:

- 1. try0: Timeout, no proof found.
- 2. ATP hammer: Timeout, no proof found.
- 3. ATP-free hammer: Proof found!

by (simp add: case\_prodI2 prod.case\_distrib zip\_assoc case\_prod\_app map\_zip\_map map\_zip\_map2 ab\_semigroup\_add\_class.add\_ac(1))

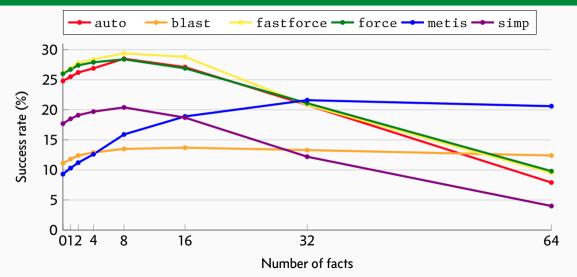
# **Experiment** Methodology

## **Benchmark**

We randomly selected 20 formalizations and, in each, 250 goals: a total of 5000 tests cases.

## **Experiment Methodology**

#### **Benchmark**


We randomly selected 20 formalizations and, in each, 250 goals: a total of 5000 tests cases.

### **Configurations**

We tested 13 proof methods with a 2-second timeout and between 0 and 64 facts.

The 13 proof methods with 0 facts correspond to try0.

# **Experiment**Detailed Results (Selected Proof Methods)



## **Experiment**Overall Results

| Configurations                    | Success rate (%) |
|-----------------------------------|------------------|
| try0                              | 28.5             |
| ATP hammer                        | 72.1             |
| ATP-free hammer                   | 46.8             |
| ATP hammer $\cup$ try $0$         | 74.1             |
| ATP hammer $\cup$ ATP-free hammer | 74.6             |

Remainder:  $try0 \subseteq ATP$ -free hammer

Conclusion: try0 and ATP-free hammer both improve the ATP hammer!

## **Discussion and Conclusion**

We implemented and evaluated an **ATP-free hammer** in Isabelle/HOL. It can find **new proofs** that the ATP hammer cannot.

We extended Sledgehammer with try0 and ATP-free portfolio.

### **Discussion and Conclusion**

We implemented and evaluated an **ATP-free hammer** in Isabelle/HOL. It can find **new proofs** that the ATP hammer cannot.

We **extended Sledgehammer** with try0 and ATP-free portfolio.

## Take-home message

Isabelle/HOL users can now use only Sledgehammer:

- No need to manually call try0
- Expect better results

### **Discussion and Conclusion**

We implemented and evaluated an **ATP-free hammer** in Isabelle/HOL. It can find **new proofs** that the ATP hammer cannot.

We **extended Sledgehammer** with try0 and ATP-free portfolio.

## Take-home message

Isabelle/HOL users can now use only Sledgehammer:

- No need to manually call try0
- Expect better results

Thank you!