Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL

Hanna Lachnitt,® Mathias Fleury,* Haniel Barbosa,? Jibiana Jakpor,!
Bruno Andreotti,2 Andrew Reynolds,® Hans-Jorg Schurr3 Clark Barrett,! Cesare Tinelli3

1 Stanford University, 2 Universidade Federal de Minas Gerais, 2 The University of lowa, * University of Freiburg

® cNVR

Stanford | center for Automated Reasoning

UF7 G THE UNIVERSITY
— | OF lowa

’



Motivation: Formal Verification

Isabelle/HOL:

- Interactive theorem prover: Human and machine work together
- Expressive language (HOL) and large knowledge base of lemmas
- Offers a very high level of assurance

- Example: Verified Sel4 Microkernel



Motivation: Formal Verification

Isabelle/HOL:

- Interactive theorem prover: Human and machine work together
- Expressive language (HOL) and large knowledge base of lemmas
- Offers a very high level of assurance

- Example: Verified Sel4 Microkernel

Proving lemmas can be tedious though...

lemma unimportant detail with long tedious proof:
fixes n::int
assumes "boring n"
shows "inconsequential n"



Proof Automation to the Rescue

Isabelle’s Sledgehammer tool can help:

lemma unimportant detail with long tedious proof:
fixes n::int
assumes "boring n"
shows "inconsequential n"
sledgehammer



Proof Automation to the Rescue

Isabelle’s Sledgehammer tool can help:

lemma unimportant detail with long tedious proof:
fixes n::int
assumes "boring n"
shows "inconsequential n"

sledgehammer
Sledgehammering. ..
Sledgehammer can call apass found a proof...
verit found a proof...
extemal ATPS ——> verit: Try this: using gauss neq 0 apply blast (1 ms)
. . zipperposition found a proof...
|nClUd|ng SMT solvers zipperposition: Try this: apply (simp add: gauss eq 0 less le) (9 ms)

vampire found a proof...

zipperposition found a proof...

zipperposition: Duplicate proof

spass: Duplicate proof

vampire: Try this: apply (metis add diff cancel left' diff minus eq add dual order.strict trans

Done T

It learns which facts the solver used and finds an internal proof

2



Proof Reconstruction

Finding an internal proof is not always possible even if the facts are known:

Sledgehammering. ..
Proof found...
"cvc4": Try this: by (metis Collect cong Sup lexord def) (> 1.0 s, timed out)

N

Q If the solver explains its reasoning in the form of a proof certificate Isabelle can check
each step. This increases the rate of success.



Proof Automation Circle

I
 Isabelle
3 lemma
3 ProV Qal
| recon- d
‘ structor UL
Proof Certificate SMT-LIB problem
T
' SMT solver
! solver




Currently Supported Solvers

Isabelle !
lemma :
ProcV \G?al 3
recon-
‘ encoder \
structor
777777777777777777777777777777777 SMT-LIB problem
CooveriT



Our goal: facilitate adding new
proof-producing solvers to Isabelle



Goal: add a new proof-producing solver to Isabelle
Running case study: integrating cvch
1. required modifications on the solver-side

2. required modifications on the Isabelle-side
3. new debugging tools



Adding a New Solver

Adding reconstruction for a new format is very expensive!

- Isabelle already supports veriT's and z3's proof certificates

'Y” Reconstruction should be gratis if the new solver outputs proofs in an existing format.



Adding a New Solver

Adding reconstruction for a new format is very expensive!

- Isabelle already supports veriT's and z3's proof certificates

'Y” Reconstruction should be gratis if the new solver outputs proofs in an existing format.

- z3 format is too coarse, not well documented, and has known bugs
- veriT's output is now called the Alethe format, is generic and has detailed specification



Adding cvc5 using Alethe Proofs

Isabelle
lemma
ProV \Goal
recon-
encoder
structor ‘ ‘
Alethe Proof Certificate/ SMT-LIB problem
& |
©ocveh ‘
veriT



Adding a New Solver

Adding reconstruction for a new format is very expensive!

- Isabelle already supports veriT's and z3's proof certificates

'Y” Reconstruction should be gratis if the new solver outputs proofs in an existing format.

- z3 format is too coarse, not well documented, and has known bugs
- veriT's output is now called the Alethe format, is generic and has detailed specification



Adding a New Solver

Adding reconstruction for a new format is very expensive!

- Isabelle already supports veriT's and z3's proof certificates

A

'Y” Reconstruction should be gratis if the new solver outputs proofs in an existing format.

- z3 format is too coarse, not well documented, and has known bugs
- veriT's output is now called the Alethe format, is generic and has detailed specification

What if solver does not natively output Alethe proofs?



Proof Replay with Translation into Alethe

|

" Isabelle

] lemma

} ProcV wal

3 recon-

| encoder
structor

Alethe proof SMT-LIB problem

 SMT solver

; ) internal

i translation solver

; proof

"



Translation Approach

We want to support cvc5 as a proof producing solver in Isabelle

- cvC5's internal proof format is called CPC

- Each proof rule in the original calculus needs to be translated into a Alethe rules
- This adds some overhead in time and proof size

- Most rules are easy to translate!

—(F1— Fp) | — ,:> (1 = ¥2)
F1 Qol
CPC rule Alethe rule

NOT_IMPLIES_ELIM1 not_implies]



Automated Translation

- CvC5 uses hundreds of rewrite rules that might be added or deleted.
Translating them would be tedious!

- We use IsaRARE to automatically add them to the Isabelle Alethe reconstruction

Rewrite Rule
Database

pro% 3 % ’4
N

13



Making cvcs Alethe Proof-Producing :
Evaluation



- SMT-LIB problems and those generated from Isabelle goals have a very different structure
- We test on Sledgehammer generated benchmarks from the seventeen provers paper [1]
- Each set contains the same 5000 problems with different amount of facts included

- We compare cvc5's CPC with cvc5’'s and veriT's Alethe proofs

15



Solved Instances

Number of benchmarks for which the solver could find a proof (5min timeout)

30007 mm cves cpe
mmm cvc5 Alethe
mmm veriT Alethe
25004
(1]
g~
E 2000+
=
v
£ 1500
[}
m
g
1000 4
o
=
500

‘e
&
O

D o
¥ » L
Nr of Facts

16



Solving Time and Proof Size (on Benchmarks Solved by All Solvers)

Time to Produce Proofs per Number of Facts Average Proof Size per Number of Facts

Conclusion:

- CVC5 is faster even with the translation overhead to Alethe

- cvC5 Alethe proofs are larger than veriT’s proofs.



I'll just plug it into Isabelle and we are done.
Thanks for your attention!
Any questions?



I'll just plug it into Isabelle and we are done.
Thanks for your attention! P Maybe you should ¥

— Iry it out first? ™

Any questions?




Problems with the Alethe Reconstruction

Not the whole standard was supported by Isabelle

- veriT produces only a subset of allowed Alethe proofs
- the structure of the problems restricted the fragment even more

Proofs outside of the standard were supported
- it was not clear what was expected by Isabelle

Even updating to a newer version of veriT was not possible without changes!

19



Problem Analysis

Insights:

- Parts of the Isabelle code were too coupled.

- E.g, encoding and reconstruction
- Developers needed to become experts in every part of the code to fix any bug
- Efficient testing was not possible. E.g, only one instance of the onepoint rule

20



Problem Analysis

Insights:

- Parts of the Isabelle code were too coupled.

- E.g, encoding and reconstruction
- Developers needed to become experts in every part of the code to fix any bug
- Efficient testing was not possible. E.g, only one instance of the onepoint rule

- The Alethe specification was sometimes unclear or wrong

20



Problem Analysis

Insights:

- Parts of the Isabelle code were too coupled.

- E.g, encoding and reconstruction
- Developers needed to become experts in every part of the code to fix any bug
- Efficient testing was not possible. E.g, only one instance of the onepoint rule

- The Alethe specification was sometimes unclear or wrong
- New rules were not supported

20



Problem Analysis

Insights:

- Parts of the Isabelle code were too coupled.

- E.g, encoding and reconstruction
- Developers needed to become experts in every part of the code to fix any bug
- Efficient testing was not possible. E.g, only one instance of the onepoint rule

- The Alethe specification was sometimes unclear or wrong
- New rules were not supported

We extensively re-factored and extended the Isabelle code as well as the Alethe standard.
This was a huge team effort!

20



The smt Method: An Example Lemma

Isabelle/Pure -

File Edit Search Markers Folding View Utilities Macros Plugins Help
OEd3E & 9¢ X000 @ THEE B & @ €9

o CENTAUR_Demo_Bool.thy ($ISABELLE_HOME/src/HOL/SMT_Examples/CENTAURY/)
ui* Booleans *)

. Lemma

4 assumes "(p V. q) A —p"

4 shows "q"

4 using assms

« by (smt (cvch))

[}

File Browser Documentation| «

21




Testing Infrastructure

Great now cvc5 works on the examples we have but how do we know that we actually support
Alethe proofs?

Previous experiments only included an extremely small set of benchmarks ...

In this talk am going to focus on the biggest problem:

For any given Alethe proof rule, can all instances of it can be reconstructed?

22



Testing Infrastructure
Enabling large-scale testing



Decoupling Encoding and Replay

Isabelle

check_smt

woal

problem
parser

Proof

recon-
structor

Alethe proof

SMT solver

translation Internal solver ‘ | SMT-LIB
(PO ! problem

Our tool check_smt can parse external SMT-LIB problems and check them

against an Alethe proof certificate!
24



Demo: check_smt

* Jtheory Demo :
imports "HOL.SMT"
begin
¢ Jend
i
25
{7 m— et bl TF-& bt 175U . w——e 2




Table 1: Reconstruction Success. The average (reconstruction) time in ms only takes benchmarks into
account that were solved both by veriT and cvc5 and does not take the solving time into account.

cvcs Alethe veriT Alethe
Benchmark Set . . . .
solved rec. unique rec. Av. time | solved rec. unique rec.  Av. time
max facts 16 1327 1326 45 386 1305 1295 14 131
max facts 32 1732 1730 100 349 1658 1644 14 133
max facts 64 2130 2123 168 423 2003 1980 25 161
max facts 128 2523 2512 235 528 2335 2309 32 203
max facts 256 2788 2777 276 702 2565 2537 36 215
max facts 512 2881 2869 317 904 2637 2600 48 251
max facts 1024 | 2927 2916 411 1328 2607 2560 55 343

26



Carcara Slice Feature

It is still necessary to check the whole proof... This makes debugging painful.

27



Carcara Slice Feature

It is still necessary to check the whole proof... This makes debugging painful.

Original Problem

(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (=cb))

(assert (and (=ab) (=>ac)))
(assert (not (=ac)))

Original Proof

(assume a0 (cl (=cb)))
(assume al (cl (and (=ab) (=>ac))))
(assume a2 (cl (not (=ac))))
(step t1 (cl (=ab))
:rule and :prems al :args 0)
(step t2 (cl (=bc))
:rule symm :prems a0)
(stept3 (cl(=ac))
:rule trans :prems t1 t2)
(step t4 (cl)

27
:rule resolution :prems t3 a2)




Original Problem

(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (=cb))

(assert (and (=ab) (=>ac)))
(assert (not (=ac)))

—

Sliced Problem

(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (not (=ac)))
(assert (=ab))
(assert (=bc))

Original Proof

(assume a0 (cl (=cbh)))
(assume a1 (cl (and (= ab) (=>ac))))
(assume a2 (cl (not (=ac))))
(step t1 (cl (=ab))

:rule and :prems al :args 0)
(step t2 (cl (=bc))

:rule symm :prems a@)
(step t3 (cl (=ac))

:rule trans :prems tl t2)
(step t4 (cl)

:rule resolution :prems t3 a2)

Carcara Slice Feature

It is still necessary to check the whole proof... This makes debugging painful.

28



Original Problem

(set-logic QF_UF)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c () Bool)
(assert (=cb))

(assert (and (=ab) (=>ac)))
(assert (not (=ac)))

Sliced Problem

(set-logic QF_UF)
(declare-fun a () Bool)
—j (declare-fun b () Bool)
(declare-fun c () Bool)
(assert (not (=ac)))
(assert (=ab))
(assert (=bc))

Original Proof

(assume a0 (cl (=cbh)))
(assume a1 (cl (and (= ab) (=>ac))))
(assume a2 (cl (not (=ac))))
(step t1 (cl (=ab))

:rule and :prems al :args 0)
(step t2 (cl (=bc))

:rule symm :prems a@)
(step t3 (cl (=ac))

:rule trans :prems tl t2)
(step t4 (cl)

:rule resolution :prems t3 a2)

Sliced Proof

(assume a0 (cl (=ab)))
(assume al (cl (=bc)))
I (assume a2 (cl (not (=ac))))
(step t3 (cl (=ac))

:rule trans :prems a0 al)
(step t4 (cl)

:rule resolution :prems a2 t3)

Carcara Slice Feature

It is still necessary to check the whole proof... This makes debugging painful.

29



Contributions Summary

SMT solver and Alethe standard:

- Show that translation from industry-strength solver to Alethe is possible with little overhead
- Small number of holes remaining
- Correct, refine and extend Alethe standard

Isabelle:

- Refactor smt tactic implementation
- Support automatic lemma based reconstruction for simple rules
- Support new solver: cvch

Testing:

- Isabelle mode for Carcara
- Slice tool for Carcara
- Isabelle internal tools and regression test library

30



Thank you for your attention

Want to learn more about the cvc5 proof reconstruction project? Check out my blog post on the
cvcs website (https://cve5.github.io/)

Please feel free to contact me with any questions (lachnitt@stanford.edu):

31


https://cvc5.github.io/

