
Mechanizing the Splitting Framework

Ghilain Bergeron, Florent Krasnopol, Sophie Tourret

ITP

September 2025, Rekjavick, Iceland

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Motivation

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!∗

∗ under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

1

Splitting Framework

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))

◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a))

, ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a)), ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a)), ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a)), ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)),

2

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a

set of formulas up to the limit.

With resolution and subsumption

× P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c)

◦ P(a), P(b), ¬P(x) ∨ Q(x), Q(a) ∨ Q(c), Q(a), Q(b)

× P(a), ¬P(x) ∨ P(f (x)), ¬P(f (a))
◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), ¬P(f (a)), ⊥

× P(a), ¬P(x) ∨ P(f (x))

◦ P(a), ¬P(x) ∨ P(f (x)), P(f (a)), P(f (f (a))), . . .

2

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni

⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Dynamic Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni

⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Dynamic Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni

⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

Soundness

inferences:
P1 . . . Pn

C
implies {P1, . . . ,Pn} |= {C}

simplifications:
P1 . . . Pn

C1 . . . Cm

implies {C1, . . . ,Cm} |= {Pi} for all i

Dynamic Completeness

. .
.

N1

N0 |= {⊥}

⊥ ∈ Ni
⇐⇒

Static Completeness

N saturated and N |= {⊥} implies ⊥ ∈ N.

3

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥

−−−−−−−−−−−−−−
¬Q(z , z)

|

¬P(a) Q(y , b) ¬Q(z , z)

⊥

−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥

−−−−−−−−−−−−−−
¬Q(z , z)

|

¬P(a) Q(y , b) ¬Q(z , z)

⊥

−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥

−−−−−−−−−−−−−−
¬Q(z , z) |

¬P(a) Q(y , b) ¬Q(z , z)

⊥

−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥
−−−−−−−−−−−−−−

¬Q(z , z) |

¬P(a) Q(y , b) ¬Q(z , z)

⊥

−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥
−−−−−−−−−−−−−−

¬Q(z , z) | ¬P(a) Q(y , b) ¬Q(z , z)

⊥

−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥
−−−−−−−−−−−−−−

¬Q(z , z) | ¬P(a) Q(y , b) ¬Q(z , z)

⊥
−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Splitting

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

¬P(a) P(x) ∨ Q(y , b) ¬Q(z , z)

¬P(a) P(x)

⊥
−−−−−−−−−−−−−−

¬Q(z , z) | ¬P(a) Q(y , b) ¬Q(z , z)

⊥
−−−−−−−−−−−−−−−−−−−

Works for any saturation-based calculus!

4

Properties Specific to Splitting

Static Completeness

If
• base calculus statically complete

• N saturated

• N |= {⊥}

then ⊥ ∈ N.

Dynamic Completeness

If
• base calculus dynamically complete

• derivation (Ni)i fair

• N0 |= {⊥}

then ⊥ ∈ Ni for some i .

5

Properties Specific to Splitting

Strong Static Completeness

If
• base calculus statically complete

• N locally saturated

• N |= {⊥}

then ⊥ ∈ N.

Strong Dynamic Completeness

If
• base calculus dynamically complete

• derivation (Ni)i locally fair

• N0 |= {⊥}

then ⊥ ∈ Ni for some i .

5

Locality

Saturation and fairness are too strong.

...
...

...
...

...
...

...

6

Locality

Saturation and fairness are too strong.

...
...

...
...

...
...

...

6

Locality

Saturation and fairness are too strong.

...
...

...
...

...
...

...

6

Mechanizing Splitting

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory)

Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory)

Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)
Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)

Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓

7

Rules, Soundness and Completeness

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Base ✓ ✓

Unsat ✓ ✓

Tauto ✓ ✓

Approx ✓ ✓

StrongUnsat ✓ ✓

Split ✗ ✓

Trim ✗ ✓

Collect ✗ ✓

Table 1: Inferences (premises |= conclusions)

Split ✗ ✓

Trim ✗ ✓

Collect ✓ ✓

Table 2: Simplifications

(conclusions |= premises)
Completeness:

static ✓ dynamic ✓ strong static ✓ strong dynamic ✓
7

Modularity

Locale Structure (excerpt):

8

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

• implemented in Zipperposition.

The model

• uses binary-only splitting BinSplit (sound ✓) instead of Split;

• plugs resolution in the framework;

• discharges assumptions.

9

Resolution in Isabelle/HOL

Three entries in the Archive of Formal Proofs:

• The Resolution Calculus for First-Order Logic

Anders Schlichtkrull, 2016.

• Formalization of Bachmair and Ganzinger’s Ordered Resolution Prover

Anders Schlichtkrull, Jasmin Blanchette, Dmitriy Traytel, Uwe Waldmann, 2018

• Extensions to the Comprehensive Framework for Saturation Theorem

Proving

Jasmin Blanchette, Sophie Tourret, 2020.

10

Plug and Play

Locale Structure (excerpt):

11

Plug and Play

Locale Structure (excerpt) + Resolution:

11

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧

M →
∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧

M →
∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧

M →
∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧
M →

∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧
M →

∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Conjunctive vs Disjunctive Entailment

If M |= N means...

...
∧
M →

∧
N (as usual) then

• {⊥} |= N

• subsets entailed (non-strict)

• (∀C ∈ N2. N1 |= {C}) =■⇒ N1 |= N2

• transitivity

...
∧
M →

∨
N (needed for splitting) then

• {⊥} |= {}
• reflexivity

• supersets entailment (both sides)

• cut rule

• compactness (a form of)

|=∧ can be defined easily from |=∨ and agree on atomic sets.

12

Defining a Suitable Disjunctive Entailment from a Conjunctive One

M |=∨ N = M |=∧ N

= ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃ finiteM ′ ⊆ M. ∃C ∈ N. M ′ |=∧ {C}

✗ {⊥} |= {}

• reflexivity

✗ supersets entailment (both sides)

✗ cut elimination

✗ compactness (a form of)

unless |=∧ is already compact

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

M |=∨ N = M |=∧ N

= ∃C ∈ N. M |=∧ {C}

= M |=∧ {⊥} ∨ ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃ finiteM ′ ⊆ M. ∃C ∈ N. M ′ |=∧ {C}

✗ {⊥} |= {}

• reflexivity

• supersets entailment (both sides)

• cut elimination

✗ compactness (a form of)

unless |=∧ is already compact

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

M |=∨ N = M |=∧ N

= ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃C ∈ N. M |=∧ {C}

= M |=∧ {⊥} ∨ ∃ finiteM ′ ⊆ M. ∃C ∈ N. M ′ |=∧ {C}

• {⊥} |= {}

• reflexivity

• supersets entailment (both sides)

• cut elimination

✗ compactness (a form of)

unless |=∧ is already compact

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

M |=∨ N = M |=∧ N

= ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃C ∈ N. M |=∧ {C}

= M |=∧ {⊥} ∨ ∃ finiteM ′ ⊆ M. ∃C ∈ N. M ′ |=∧ {C}

• {⊥} |= {}

• reflexivity

• supersets entailment (both sides)

• cut elimination

✗ compactness (a form of) unless |=∧ is already compact

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

M |=∨ N = M |=∧ N

= ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃C ∈ N. M |=∧ {C}
= M |=∧ {⊥} ∨ ∃ finiteM ′ ⊆ M. ∃C ∈ N. M ′ |=∧ {C}

• {⊥} |= {}

• reflexivity

• supersets entailment (both sides)

• cut elimination

• compactness (a form of)

unless |=∧ is already compact

13

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Work Done and Perspectives

Isabelle/HOL mechanization

• Done (∼ 8600 lines)

✓ preliminary notions (∼ 3500 lines)

✓ splitting calculus (∼ 3400 lines)

✓ Lightweight AVATAR (∼ 1700 lines)

• TODO

★ model-guidance + labeled splitting

★ locking + SMT with complete enumerative instantiation

★ timestamps + AVATAR

Splitting Framework

Thank you!

14

Splitting Rules

C

← A

⊥ ← {¬ai}ni=1

∪ A

(Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci

← Ai

)ni=1

D

←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci

← Ai

)ni=1

D

←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci

← Ai

)ni=1

D

←
n⋃

i=1

Ai

Base

(⊥ ← Ai)
n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base

(⊥ ← Ai)
n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat

if
n⋃

i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Splitting Rules

C ← A

⊥ ← {¬ai}ni=1 ∪ A (Ci ← {ai})ni=1

Split if C splittable into C1, . . . ,Cn

(Ci ← Ai)
n
i=1

D ←
n⋃

i=1

Ai

Base
(⊥ ← Ai)

n
i=1

⊥
Unsat if

n⋃
i=1

⊥ ← Ai |= ⊥

+ more optional rules

• approximate formula with constraint

• remove formula with unsat constrainst

• trim constraints

• ...

15

Finding a Suitable Redundancy Criterion

Saturation Framework’s Core:

16

Finding a Suitable Redundancy Criterion

Saturation Framework’s Core + Ordered Resolution:

16

	Splitting Framework
	Mechanizing Splitting

