Mechanizing the Splitting Framework

Ghilain Bergeron, Florent Krasnopol, Sophie Tourret

ITP
September 2025, Rekjavick, Iceland

LO”Q 2 MAX PLANCK INSTITUTE

FOR INFORMATICS

Motivation

Is AVATAR refutational complete?

Motivation

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire

Motivation

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire
very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire
very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Yes!*

Motivation

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire
very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Yes!*

* under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.

Splitting Framework

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

%< P(a), P(b), =P(x)V Q(x), Q(a)V Q(c)

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

x< P(a), P(b), -P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), =P(x) v Q(x), Q(a)V Q(c), Q(a), Q(b)

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

< P(a), =P(x) vV P(f(x)), ~P(f(a))

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

< P(a), =P(x) vV P(f(x)), ~P(f(a))
P(a), ~P(x) v P(f(x)), P(f(a)), ~P(f(a))

Saturation

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

< P(a), =P(x) vV P(f(x)), ~P(f(a))
P(a), ~P(x) v P(f(x)), P(f(a)), ~P(f(a)), L

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

< P(a), =P(x) V P(F(x)), ~P(F(a))
ey PO PG PLE P, L

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

saturate (verb): apply a given calculus and given redundancy deletion techniques to a
set of formulas up to the limit.

With resolution and subsumption

< P(a), P(b), =P(x) V Q(x), Q(a) V Q(c)
P(a), P(b), ~P(x) vV Q(x), @ter+&te), Q(a), Q(b)

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

(P
inferences: implies {P1,...,Pn} E{C}

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness

Ny

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness

- - o

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness

- - o

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness

- - o

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 (P
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness Completeness

- - o

: Ny . N saturated and N |= {_L} implies L € N.

Desired Properties for a Saturation-based Calculus [B. & G. 2001, W. et al. 2020]

P1 By
inferences: c implies {P1,...,Pn} E{C}
P1 P
simplifications: implies {Cy,...,Cn} E {P;} for all i
G Cnm

Completeness Completeness

- - o

' Ny ! < N saturated and N |= {_L} implies L € N.

Splitting

Partition the search space by splitting a formula into independent subformulas.

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—P(a) P(x)VR(y,b) —Q(z2)
|

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—P(a) POV R(y,b) —Q(z2)
~P(a) P(x) -Q(z,2) \

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—P(a) POV R(y,b) —Q(z2)
~P(a) P(x) -Q(z,2) \
4

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—-P(a) P(x) VvV Q(y, b) -Q(z,2)
-P(a) P(X) -Q(z,z2) | PG Qb 2Q(z2)
L

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—-P(a) P(x) VvV Q(y, b) -Q(z,2)
-P(a) P(X) -Q(z,z2) | PG Qb 2Q(z2)
L L

Splitting

Partition the search space by splitting a formula into independent subformulas.

With resolution

—-P(a) P(x) VvV Q(y, b) -Q(z,2)
-P(a) P(X) -Q(z,z2) | PG Qb 2Q(z2)
L L

Works for any saturation-based calculus!

Properties Specific to Splitting

Static Completeness Dynamic Completeness

Ifo base calculus statically complete Ifo base calculus dynamically complete
e N saturated e derivation (N;); fair
e NE{L1} o No = {Ll}

then L € N. then L € N; for some .

Properties Specific to Splitting

Static Completeness Dynamic Completeness

Ifo base calculus statically complete Ifo base calculus dynamically complete
e N locally saturated e derivation (N;); locally fair
e NE{L1} o No={L}

then L € N. then L € N; for some i.

Saturation and fairness are too strong.

Saturation and fairness are too strong.

Saturation and fairness are too strong.

Mechanizing Splitting

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory)

Rules, Soundness and Completeness

Rules: BASE, UnsAT (mandatory)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)
Simplifications: SrriT, TRiM, COLLECT (optional)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)

Simplifications: SrriT, TRiM, COLLECT (optional)
Soundness:
& & Sk
BASE /7 STRONGUNSAT V V
UNSAT 7/ SPLIT X v
TAUTO /7 TRIM X v
APPROX V V COLLECT X v

Table 1: Inferences (premises = conclusions)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)

Simplifications: SrriT, TRiM, COLLECT (optional)
Soundness:
Sk

BASE /7 STRONGUNSAT V V
UNSAT /7 SPLIT X v SPLIT X v
TAUTO /7 TRIM X v TRIM X v
APPROX V V COLLECT X v CoLLECT V V
Table 1: Inferences (premises = conclusions) Table 2: Simplifications

(conclusions |= premises)

Rules, Soundness and Completeness

Rules: BASE, UNSAT (mandatory) TAUTO, APPROX, STRONGUNSAT (optional)

Simplifications: SrriT, TRiM, COLLECT (optional)
Soundness:
Sk

BASE /7 STRONGUNSAT V V
UNSAT /7 SPLIT X v SPLIT X v
TAUTO /7 TRIM X v TRIM X v
APPROX V V COLLECT X v CoLLECT V V
Table 1: Inferences (premises = conclusions) Table 2: Simplifications

(conclusions |= premises)
Completeness:

static v dynamic v/ strong static v/ strong dynamic v/

Modularity

Locale Structure (excerpt):

k 20w _ cal e Qs "Lﬂm\g - ﬂl'wEL -amp ,W\BQ collonn

collealis uith _ ol - omond)

\ww\a\@\ —colenlin Srone A;{m_ merL Mo\l@oﬂ» colobe,

(AR clolie] m

A caleadins ey (<)
‘ AF . colenuan_uih_binoplih

Aﬁxm,m%abfoﬂ

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.
The model

e uses binary-only splitting BINSPLIT (sound) instead of SPLIT;

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.
The model

e uses binary-only splitting BINSPLIT (sound) instead of SPLIT;

e plugs resolution in the framework;

Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.
The model

e uses binary-only splitting BINSPLIT (sound) instead of SPLIT;
e plugs resolution in the framework;

e discharges assumptions.

Resolution in Isabelle/HOL

Three entries in the Archive of Formal Proofs:

e The Resolution Calculus for First-Order Logic
Anders Schlichtkrull, 2016.

e Formalization of Bachmair and Ganzinger’s Ordered Resolution Prover
Anders Schlichtkrull, Jasmin Blanchette, Dmitriy Traytel, Uwe Waldmann, 2018

e Extensions to the Comprehensive Framework for Saturation Theorem
Proving

Jasmin Blanchette, Sophie Tourret, 2020.

10

Plug and Play

Locale Structure (excerpt):

k 20w _ cal e Qs "Lﬂm\g - ﬂl'wEL -amp ,W\BQ collonn

collealis uith _ ol - omond)

\ww\a\@\ —colenlin Srone A;{m_ merL Mo\l@oﬂ» colobe,

(AR clolie] m

A caleadins ey (<)
‘ AF . colenuan_uih_binoplih

Aﬁxm,m%abfoﬂ

I caloba ok o 1

Plug and Play

Locale Structure (excerpt) + Resolution:

e e n

calnlion W _wwoedsd - oonad \

[omoikid _coiois | [shrong- dyn- comp- ammolaled- colladl, LA caleules

AR alea] A, oo :
(&)
e =
AF,<MM,M%JYOJ

[AF. aalledis _ ooy}

I caloba ok o 1

Conjunctive vs Disjunctive Entailment

If M = N means...

12

Conjunctive vs Disjunctive Entailment

If M = N means...

.. ANM — AN (as usual) then

12

Conjunctive vs Disjunctive Entailment

If M = N means...
.. ANM — AN (as usual) then

e {IL}EN
e subsets entailed (non-strict)
] (VCENQ. Ny): {C}) = N): N>

e transitivity

12

Conjunctive vs Disjunctive Entailment

If M = N means...
.. ANM — AN (as usual) then .. AM —\/ N (needed for splitting) then

e {L}EN
e subsets entailed (non-strict)
] (VCGNQ. Ny): {C}) = N): N>

e transitivity

12

Conjunctive vs Disjunctive Entailment

If M = N means...
.. ANM — AN (as usual) then .. AM —\/ N (needed for splitting) then
A « (L ED

e subsets entailed (non-strict)
] (VCGNQ. Ny): {C}) = N): N>

e transitivity

reflexivity
e supersets entailment (both sides)

cut rule

compactness (a form of)

12

Conjunctive vs Disjunctive Entailment

If M = N means...
.. ANM — AN (as usual) then .. AM —\/ N (needed for splitting) then
e - (L
e subsets entailed (non-strict) S el
o (VCEMN. My =1{C)) = M= N e supersets entailment (both sides)

e transitivity cut rule

compactness (a form of)
= can be defined easily from =, and agree on atomic sets.

12

Defining a Suitable Disjunctive Entailment from a Conjunctive One

X {1} E{}

o reflexivity
X supersets entailment (both sides)
X cut elimination

X compactness (a form of)

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

Mgy N = Mi=rh
— ICeN.ME,{C}

>

{1} E{

o reflexivity
e supersets entailment (both sides)
e cut elimination

X compactness (a form of)

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

Mgy N = Mi=rh
JE-eN-—M=r €}
M {1} V3C e N. M =, {C}

{1} E{

reflexivity

supersets entailment (both sides)

cut elimination

>

compactness (a form of)

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

Mgy N = Mi=rh
JE-eN-—M=r €}
M {1} V3C e N. M =, {C}

{1} E{

reflexivity

supersets entailment (both sides)

cut elimination

>

compactness (a form of) unless =, is already compact

13

Defining a Suitable Disjunctive Entailment from a Conjunctive One

My N = MEN

|

M =n {1}V Ifinite M' C M. 3C € N. M’ =5 {C}

{1} E{

o reflexivity
e supersets entailment (both sides)
e cut elimination

e compactness (a form of)

13

Work Done and Perspectives

Isabelle/HOL mechanization

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization _ X
e Done (~ 8600 lines) '1
v preliminary notions (~ 3500 lines) |

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization ‘ X
e Done (~ 8600 lines) ‘7';4'\-'};?::1
v preliminary notions (~ 3500 lines) i

v/ splitting calculus (~ 3400 lines)

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

;)
e Done (~ 8600 lines) @M&@}l
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

)
e Done (~ 8600 lines) ﬂ@'ﬁ
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

)) @l\:
e Done (~ 8600 lines) &'1
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

)) @l\:
e Done (~ 8600 lines) &'1
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

model-guidance + labeled splitting

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

: OO
e Done (~ 8600 lines) S
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

model-guidance + labeled splitting
locking + SMT with complete enumerative instantiation

Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

: OO
e Done (~ 8600 lines) S
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

model-guidance + labeled splitting
locking + SMT with complete enumerative instantiation
timestamps + AVATAR
Splitting Framework

14

Work Done and Perspectives

Isabelle/HOL mechanization

: OO
e Done (~ 8600 lines) S
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

model-guidance + labeled splitting
locking + SMT with complete enumerative instantiation
timestamps + AVATAR
Splitting Framework

Thank you!

14

Splitting Rules

Spuit if C splittable into Cq,...,C,

L {naiting (G« {ai})ima

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

G o
7(! =1 BASE

D

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

1=

(G« A,

= BASE

D « UA,-
i=1

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

(G« A, (L« Ay
—— BASE f UNSAT

D <+ LnJA,'
i=1

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

C,'<—A,'?_ _L%A,'?: n
Q BASE Q UnsaT if U 1+ AEL
L i=1

D <+ LnJA,'
i=1

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

C,'<—A,'?_ _L%A,'?: n
Q BASE Q UnsaT if U 1+ AEL
L i=1

D <+ LnJA,'
i=1

-+ more optional rules

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

C,'<—A,';7: —L%Ai?: "
BASE Q UnsaT if U 1+ AEL
D« | JA =1
i=1

1

-+ more optional rules

e approximate formula with constraint

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

C,'<—A,';7: _L%A,'?: n
Q BASE (J_)l UnsaT if U 1+ AEL
i=1

D <+ LnJA,'
i=1

-+ more optional rules

e approximate formula with constraint
e remove formula with unsat constrainst

15

Splitting Rules

C+—A
L {a}l.iUA (G <+ {a})

Spuit if C splittable into Cq,...,C,

C,'<—A,';7: _L%A,'?: n
Q BASE (J_)l UnsaT if U 1+ AEL
i=1

D <+ LnJA,'
i=1

-+ more optional rules

e approximate formula with constraint e trim constraints
e remove formula with unsat constrainst ° ...

15

Finding a Suitable Redundancy Criterion

Saturation Framework's Core:

ST e
&

- [el |
i et 7
<

hla Aaﬂw‘wu W tedo L\VIEAQMM T% —k’%nd\ot

K

16

Finding a Suitable Redundancy Criterion

Saturation Framework's Core 4+ Ordered Resolution:

16

	Splitting Framework
	Mechanizing Splitting

