Mechanizing the Splitting Framework

Ghilain Bergeron, Florent Krasnopol, Sophie Tourret

ITP

September 2025, Rekjavick, Iceland

The question

Is AVATAR refutational complete?

The question

Is AVATAR refutational complete?

 $\mathsf{AVATAR} \quad = \quad \mathsf{splitting} \ \mathsf{technique} \ \mathsf{implemented} \ \mathsf{in} \ \mathsf{Vampire}$

The question

Is AVATAR refutational complete?

 $\begin{tabular}{lll} AVATAR & = & splitting technique implemented in Vampire \\ & very successful (+421 rank 1 TPTP problems when introduced [V. 2014]) \\ \end{tabular}$

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!*

The question

Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Spoiler

Yes!*

^{*} under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of splitting and this is what this talk is about.

Splitting Framework

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

$$\times$$
 $P(a)$, $P(b)$, $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- \times P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$
 - $P(a), P(b), \neg P(x) \lor Q(x), Q(a) \lor Q(c), Q(a), Q(b)$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- \times P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$
 - $P(a), P(b), \neg P(x) \lor Q(x), \frac{Q(a) \lor Q(c)}{Q(c)}, Q(a), Q(b)$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ • P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$, Q(a), Q(b)
- \times P(a), $\neg P(x) \lor P(f(x))$, $\neg P(f(a))$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ ◦ P(a), P(b), $\neg P(x) \lor Q(x)$, $\frac{Q(a) \lor Q(c)}{Q(c)}$, Q(a), Q(b)
- × P(a), $\neg P(x) \lor P(f(x))$, $\neg P(f(a))$ ∘ P(a), $\neg P(x) \lor P(f(x))$, P(f(a)), $\neg P(f(a))$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ ◦ P(a), P(b), $\neg P(x) \lor Q(x)$, $\frac{Q(a) \lor Q(c)}{Q(c)}$, Q(a), Q(b)
- $\times P(a), \neg P(x) \lor P(f(x)), \neg P(f(a))$ $P(a), \neg P(x) \lor P(f(x)), P(f(a)), \neg P(f(a)), \bot$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ ◦ P(a), P(b), $\neg P(x) \lor Q(x)$, $\frac{Q(a) \lor Q(c)}{Q(c)}$, Q(a), Q(b)
- \times P(a), $\neg P(x) \lor P(f(x))$, $\neg P(f(a))$ $\stackrel{}{\sim} P(a)$, $\neg P(x) \lor P(f(x))$, P(f(a)), $\neg P(f(a))$, \bot

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ ◦ P(a), P(b), $\neg P(x) \lor Q(x)$, $\frac{Q(a) \lor Q(c)}{Q(c)}$, Q(a), Q(b)
- \times P(a), $\neg P(x) \lor P(f(x))$, $\neg P(f(a))$ $\stackrel{P(a)}{\longrightarrow} P(x) \lor P(f(x))$, P(f(a)), $\neg P(f(a))$, \bot
- \times P(a), $\neg P(x) \lor P(f(x))$

saturate (verb): apply a given calculus and given redundancy deletion techniques to a set of formulas up to the limit.

- × P(a), P(b), $\neg P(x) \lor Q(x)$, $Q(a) \lor Q(c)$ ◦ P(a), P(b), $\neg P(x) \lor Q(x)$, $\frac{Q(a) \lor Q(c)}{Q(c)}$, Q(a), Q(b)
- × P(a), $\neg P(x) \lor P(f(x))$, $\neg P(f(a))$ • P(a), $\neg P(x) \lor P(f(x))$, P(f(a)), $\neg P(f(a))$, \bot
- × P(a), $\neg P(x) \lor P(f(x))$ ◦ P(a), $\neg P(x) \lor P(f(x))$, P(f(a)), P(f(f(a))), ...

Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

Soundness

inferences:
$$\frac{P_1}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \cdots P_n \subset C_m$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

Soundness

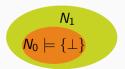
inferences:
$$\frac{P_1}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

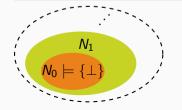
simplifications:
$$\frac{P_1}{C_1} \cdots \frac{P_n}{C_m}$$
 implies $\{C_1, \ldots, C_m\} \models \{P_i\}$ for all i



Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

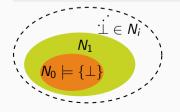
simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i



Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

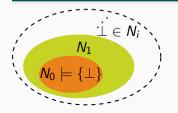


Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

Dynamic Completeness

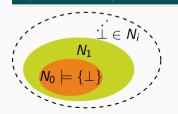


Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

Dynamic Completeness



Static Completeness

N saturated and $N \models \{\bot\}$ implies $\bot \in N$.

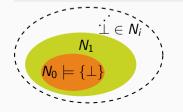
Soundness

inferences:
$$\frac{P_1 \quad \dots \quad P_n}{C}$$
 implies $\{P_1, \dots, P_n\} \models \{C\}$

simplifications:
$$\frac{P_1}{C_1} \dots P_n$$
 implies $\{C_1, \dots, C_m\} \models \{P_i\}$ for all i

Dynamic Completeness

Static Completeness



 \iff N saturated and $N \models \{\bot\}$ implies $\bot \in N$.

Intuition

Partition the search space by splitting a formula into independent subformulas.

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\neg P(a) \qquad P(x) \lor Q(y,b) \qquad \neg Q(z,z)$$

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\frac{\neg P(a) \qquad P(x) \lor Q(y,b) \qquad \neg Q(z,z)}{\neg P(a) \qquad P(x)} \qquad \neg Q(z,z)$$

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\frac{\neg P(a) \qquad P(x) \lor Q(y,b) \qquad \neg Q(z,z)}{\neg P(a) \qquad P(x)} \qquad \neg Q(z,z)$$

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\frac{\neg P(a) \quad P(x) \lor Q(y,b) \quad \neg Q(z,z)}{\neg P(a) \quad P(x)} \quad \neg Q(z,z) \quad | \quad \neg P(a) \quad \frac{Q(y,b) \quad \neg Q(z,z)}{\bot}$$

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\frac{\neg P(a) \qquad P(x) \lor Q(y,b) \qquad \neg Q(z,z)}{\neg P(a) \qquad P(x)} \qquad \frac{\neg Q(z,z) \qquad | \qquad \neg P(a) \qquad Q(y,b) \qquad \neg Q(z,z)}{\bot}$$

Intuition

Partition the search space by splitting a formula into independent subformulas.

With resolution

$$\frac{\neg P(a) \qquad P(x) \lor Q(y,b) \qquad \neg Q(z,z)}{\neg P(a) \qquad P(x)} \qquad \frac{\neg Q(z,z) \qquad | \qquad \neg P(a) \qquad Q(y,b) \qquad \neg Q(z,z)}{\bot}$$

Works for any saturation-based calculus!

Properties Specific to Splitting

Static Completeness

lf

- base calculus statically complete
- N saturated
- $N \models \{\bot\}$

then $\perp \in N$.

Dynamic Completeness

lf

- base calculus dynamically complete
- derivation $(N_i)_i$ fair
- $N_0 \models \{\bot\}$

then $\perp \in N_i$ for some i.

Properties Specific to Splitting

Strong Static Completeness

lf

- base calculus statically complete
- N locally saturated
- N ⊨ {⊥}

then $\perp \in N$.

Strong Dynamic Completeness

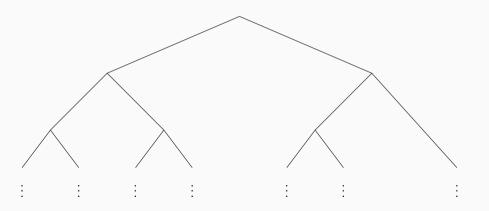
lf

- base calculus dynamically complete
- derivation $(N_i)_i$ locally fair
- $N_0 \models \{\bot\}$

then $\perp \in N_i$ for some i.

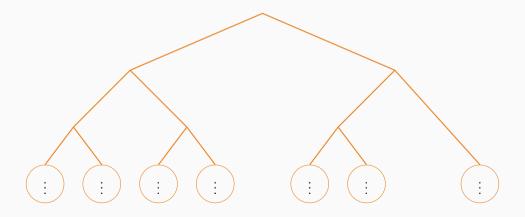
Locality

Saturation and fairness are too strong.



Locality

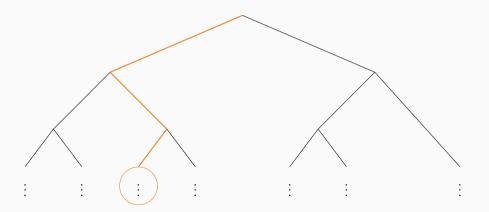
Saturation and fairness are too strong.



6

Locality

Saturation and fairness are too strong.



Mechanizing Splitting

Rules: BASE, UNSAT (mandatory)

Rules: BASE, UNSAT (mandatory)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: SPLIT, TRIM, COLLECT (optional)

Soundness:

Base	/ /	STRONGUNSAT	11
Unsat	/ /	Split	X
Tauto	/ /	T_{RIM}	X
Approx	✓ ✓	Collect	× ✓

Table 1: Inferences (premises \models conclusions)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: Split, Trim, Collect (optional)

Soundness:

Table 1: Inferences (premises ⊨ conclusions)



Table 2: Simplifications (conclusions \models premises)

Rules: Base, Unsat (mandatory) Tauto, Approx, StrongUnsat (optional)

Simplifications: SPLIT, TRIM, COLLECT (optional)

Soundness:

Table 1: Inferences (premises \models conclusions)



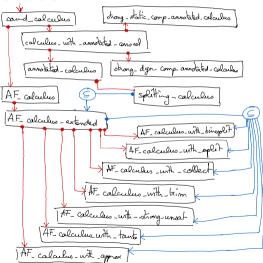
Table 2: Simplifications (conclusions \models premises)

Completeness:

static \checkmark dynamic \checkmark strong static \checkmark strong dynamic \checkmark

Modularity

Locale Structure (excerpt):



Lightweight AVATAR is

Lightweight AVATAR is

• based on Splitting without Backtracking [R. & V. 2001];

Lightweight AVATAR is

- based on Splitting without Backtracking [R. & V. 2001];
- implemented in Zipperposition.

Lightweight AVATAR is

- based on Splitting without Backtracking [R. & V. 2001];
- implemented in Zipperposition.

Lightweight AVATAR is

- based on Splitting without Backtracking [R. & V. 2001];
- implemented in Zipperposition.

The model

uses binary-only splitting BINSPLIT (sound ✓) instead of SPLIT;

Lightweight AVATAR is

- based on Splitting without Backtracking [R. & V. 2001];
- implemented in Zipperposition.

The model

- uses binary-only splitting BINSPLIT (sound ✓) instead of SPLIT;
- plugs resolution in the framework;

Lightweight AVATAR is

- based on Splitting without Backtracking [R. & V. 2001];
- implemented in Zipperposition.

The model

- uses binary-only splitting BINSPLIT (sound ✓) instead of SPLIT;
- plugs resolution in the framework;
- discharges assumptions.

Resolution in Isabelle/HOL

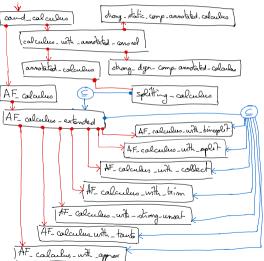
Three entries in the Archive of Formal Proofs:

- The Resolution Calculus for First-Order Logic Anders Schlichtkrull, 2016.
- Formalization of Bachmair and Ganzinger's Ordered Resolution Prover
 Anders Schlichtkrull, Jasmin Blanchette, Dmitriy Traytel, Uwe Waldmann, 2018
- Extensions to the Comprehensive Framework for Saturation Theorem Proving

Jasmin Blanchette, Sophie Tourret, 2020.

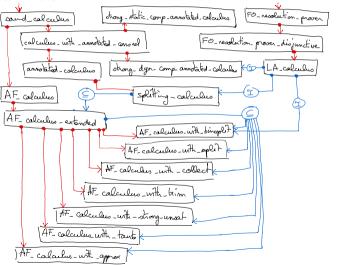
Plug and Play

Locale Structure (excerpt):



Plug and Play

Locale Structure (excerpt) + Resolution:



If $M \models N$ means...

If $M \models N$ means...

... $\bigwedge M \to \bigwedge N$ (as usual) then

If $M \models N$ means...

... $\bigwedge M \to \bigwedge N$ (as usual) then

- $\{\bot\} \models N$
- subsets entailed (non-strict)
- $(\forall C \in N_2. N_1 \models \{C\}) \implies N_1 \models N_2$
- transitivity

If $M \models N$ means...

...
$$\bigwedge M \to \bigwedge N$$
 (as usual) then

- {⊥} ⊨ *N*
- subsets entailed (non-strict)
- $(\forall C \in N_2. N_1 \models \{C\}) \implies N_1 \models N_2$
- transitivity

... $\bigwedge M \rightarrow \bigvee N$ (needed for splitting) then

If $M \models N$ means...

...
$$\bigwedge M \to \bigwedge N$$
 (as usual) then

- {⊥} ⊨ *N*
- subsets entailed (non-strict)
- $(\forall C \in N_2. N_1 \models \{C\}) \implies N_1 \models N_2$
- transitivity

... $\bigwedge M \rightarrow \bigvee N$ (needed for splitting) then

- $\{\bot\} \models \{\}$
- reflexivity
- supersets entailment (both sides)
- cut rule
- compactness (a form of)

If $M \models N$ means...

...
$$\bigwedge M \to \bigwedge N$$
 (as usual) then

- {⊥} |= N
- subsets entailed (non-strict)
- $(\forall C \in N_2. N_1 \models \{C\}) \implies N_1 \models N_2$
- transitivity

... $\bigwedge M \rightarrow \bigvee N$ (needed for splitting) then

- $\{\bot\} \models \{\}$
- reflexivity
- supersets entailment (both sides)
- cut rule
- compactness (a form of)

 \models_{\wedge} can be defined easily from \models_{\vee} and agree on atomic sets.

$$M \models_{\vee} N = M \models_{\wedge} N$$

- \times { \bot } \models {}
- reflexivity
- supersets entailment (both sides)
- cut elimination
- X compactness (a form of)

$$M \models_{\vee} N = M \models_{\wedge} N$$

= $\exists C \in N. M \models_{\wedge} \{C\}$

- \times { \bot } \models {}
- reflexivity
- supersets entailment (both sides)
- cut elimination
- X compactness (a form of)

$$M \models_{\vee} N = M \models_{\wedge} N$$

$$= \exists C \in N. M \models_{\wedge} \{C\}$$

$$= M \models_{\wedge} \{\bot\} \lor \exists C \in N. M \models_{\wedge} \{C\}$$

- $\{\bot\} \models \{\}$
- reflexivity
- supersets entailment (both sides)
- cut elimination
- X compactness (a form of)

$$M \models_{\vee} N = M \models_{\wedge} N$$

$$= \exists C \in N. M \models_{\wedge} \{C\}$$

$$= M \models_{\wedge} \{\bot\} \lor \exists C \in N. M \models_{\wedge} \{C\}$$

- $\{\bot\} \models \{\}$
- reflexivity
- supersets entailment (both sides)
- cut elimination
- X compactness (a form of) unless \models_{\wedge} is already compact

$$M \models_{\vee} N = M \models_{\wedge} N$$

$$= \exists C \in N. M \models_{\wedge} \{C\}$$

$$= M \models_{\wedge} \{\bot\} \lor \exists C \in N. M \models_{\wedge} \{C\}$$

$$= M \models_{\wedge} \{\bot\} \lor \exists \text{ finite } M' \subseteq M. \exists C \in N. M' \models_{\wedge} \{C\}$$

- $\{\bot\} \models \{\}$
- reflexivity
- supersets entailment (both sides)
- cut elimination
- compactness (a form of)

Work Done and Perspectives

Isabelle/HOL mechanization

 ${\sf Splitting} \,\, {\sf Framework}$

Work Done and Perspectives

Isabelle/HOL mechanization

Done (~ 8600 lines)
 ✓ preliminary notions

(\sim 3500 lines)

Splitting Framework

Isabelle/HOL mechanization

- Done (\sim 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus

Splitting Framework

Isabelle/HOL mechanization

- Done (∼ 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

(\sim 3400 lines)

(\sim 1700 lines)

Splitting Framework

Isabelle/HOL mechanization

- Done (\sim 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

(\sim 3400 lines)

(\sim 1700 lines)

Splitting Framework

Isabelle/HOL mechanization

- Done (\sim 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

TODO

Splitting Framework

Isabelle/HOL mechanization

- Done (\sim 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR
- TODO
 - ★ model-guidance + labeled splitting

 $(\sim 3500 \text{ lines})$

 $(\sim 3400 \text{ lines})$

 $(\sim 1700 \; \mathsf{lines})$

Splitting Framework

Isabelle/HOL mechanization

- Done (∼ 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

- $(\sim 3500 \text{ lines})$
- $(\sim 3400 \text{ lines})$
- $(\sim 1700 \; \mathsf{lines})$

TODO

- ★ model-guidance + labeled splitting
- ★ locking + SMT with complete enumerative instantiation

Splitting Framework

Isabelle/HOL mechanization

- Done (∼ 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

- $(\sim 3500 \text{ lines})$
- $(\sim 3400 \text{ lines})$
- $(\sim 1700 \; \mathsf{lines})$

TODO

- ★ model-guidance + labeled splitting
- \star locking + SMT with complete enumerative instantiation
- ★ timestamps + AVATAR

Splitting Framework

Isabelle/HOL mechanization

- Done (∼ 8600 lines)
 - ✓ preliminary notions
 - ✓ splitting calculus
 - ✓ Lightweight AVATAR

- $(\sim 3500 \text{ lines})$
- $(\sim 3400 \text{ lines})$
- $(\sim 1700 \; \mathsf{lines})$

TODO

- ★ model-guidance + labeled splitting
- \star locking + SMT with complete enumerative instantiation
- \star timestamps + AVATAR

Splitting Framework

Thank you!

$$\frac{C}{\bot \leftarrow \{\neg a_i\}_{i=1}^n} \text{ Split} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \qquad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT } \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{(C_i)_{i=1}^n}{D} \text{ BASE}$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE}$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ Split} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n \\
\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE } \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ Unsat}$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE} \qquad \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ UNSAT} \quad \text{if } \bigcup_{i=1}^n \bot \leftarrow A_i \models \bot$$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT } \text{ if } C \text{ splittable into } C_1, \dots, C_n \\
\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE } \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ UNSAT } \text{ if } \bigcup_{i=1}^n \bot \leftarrow A_i \models \bot$$

 $+\ \mathsf{more}\ \mathsf{optional}\ \mathsf{rules}$

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT } \quad \text{if } C \text{ splittable into } C_1, \dots, C_n \\
\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE } \qquad \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ UNSAT } \quad \text{if } \bigcup_{i=1}^n \bot \leftarrow A_i \models \bot$$

- + more optional rules
 - approximate formula with constraint

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

$$\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE} \qquad \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ UNSAT} \quad \text{if } \bigcup_{i=1}^n \bot \leftarrow A_i \models \bot$$

- + more optional rules
 - approximate formula with constraint
 - remove formula with unsat constrainst

$$\frac{C \leftarrow A}{\bot \leftarrow \{\neg a_i\}_{i=1}^n \cup A \quad (C_i \leftarrow \{a_i\})_{i=1}^n} \text{ SPLIT} \quad \text{if } C \text{ splittable into } C_1, \dots, C_n$$

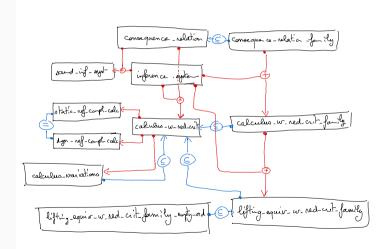
$$\frac{(C_i \leftarrow A_i)_{i=1}^n}{D \leftarrow \bigcup_{i=1}^n A_i} \text{ BASE} \qquad \frac{(\bot \leftarrow A_i)_{i=1}^n}{\bot} \text{ UNSAT} \quad \text{if } \bigcup_{i=1}^n \bot \leftarrow A_i \models \bot$$

- + more optional rules
 - approximate formula with constraint
 - remove formula with unsat constrainst

- trim constraints
- ...

Finding a Suitable Redundancy Criterion

Saturation Framework's Core:



Finding a Suitable Redundancy Criterion

Saturation Framework's Core + Ordered Resolution:

