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Is AVATAR refutational complete?

AVATAR = splitting technique implemented in Vampire
very successful (+421 rank 1 TPTP problems when introduced [V. 2014])

Yes!*

* under some fairness conditions, as described in our framework [E. et. al. 2021] that is kind of tricky so we

decided to verify it with the proof assistant Isabelle/HOL but there is a lot of work to do so for now we are only done with a simple version of

splitting and this is what this talk is about.
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Partition the search space by splitting a formula into independent subformulas.
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Works for any saturation-based calculus!
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Modeling Lightweight AVATAR with Resolution

Lightweight AVATAR is

e based on Splitting without Backtracking [R. & V. 2001];

e implemented in Zipperposition.
The model

e uses binary-only splitting BINSPLIT (sound ) instead of SPLIT;
e plugs resolution in the framework;

e discharges assumptions.



Resolution in Isabelle/HOL

Three entries in the Archive of Formal Proofs:

e The Resolution Calculus for First-Order Logic
Anders Schlichtkrull, 2016.

e Formalization of Bachmair and Ganzinger’s Ordered Resolution Prover
Anders Schlichtkrull, Jasmin Blanchette, Dmitriy Traytel, Uwe Waldmann, 2018

e Extensions to the Comprehensive Framework for Saturation Theorem
Proving

Jasmin Blanchette, Sophie Tourret, 2020.
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Plug and Play

Locale Structure (excerpt) + Resolution:
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Conjunctive vs Disjunctive Entailment

If M = N means...
.. ANM — AN (as usual) then .. AM —\/ N (needed for splitting) then
e - (L
e subsets entailed (non-strict) S el
o (VCEMN. My =1{C)) = M= N e supersets entailment (both sides)

e transitivity cut rule

compactness (a form of)
= can be defined easily from =, and agree on atomic sets.
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Work Done and Perspectives

Isabelle/HOL mechanization

: OO
e Done (~ 8600 lines) S
v preliminary notions (~ 3500 lines) |
v/ splitting calculus (~ 3400 lines)
v Lightweight AVATAR (~ 1700 lines)
e TODO

model-guidance + labeled splitting
locking + SMT with complete enumerative instantiation
timestamps + AVATAR
Splitting Framework

Thank you!
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e remove formula with unsat constrainst ° ...
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Finding a Suitable Redundancy Criterion

Saturation Framework's Core:
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Finding a Suitable Redundancy Criterion

Saturation Framework's Core 4+ Ordered Resolution:
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