
1/17

Why still use symbolic artificial intelligence techniques today?

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

2/17

Symbolic AI - In Theory

● r1
● r2
● r3

Rules

Parallelogram

Kite

Rhombus

r2

r1
r3

Symbolic techniques explain their results and allow to see that results are really correct.
Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

3/17

Symbolic AI - In Practice

Results

● …
● …
● ...

Rules

Engine

Database

In practice results are computed by optimized engines.
Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

3/17

Symbolic AI - In Practice

Results

● …
● …
● ...

Rules

Engine

Database

These engines may have bugs, but verifying them is not feasible yet.
Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

4/17

Verifiers to the rescue

Results

● …
● …
● ...

Rules

Engine

Database

VerifyerCertificates

Certificates are often available and allow verifiers with a formal correctness proof.
Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

5/17

Verifying Datalog Reasoning with Lean

Johannes Tantow1 Lukas Gerlach2 Stephan Mennicke2 Markus Krötzsch2

1TU Chemnitz

2Knowledge-Based Systems Group, TU Dresden

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

6/17

Datalog

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

1

2

3

4

1

2

3

4

Semantic: Least model⋂
M is model M

In Lean :
{a | ∀m, isModel m→ a ∈ m}

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

6/17

Datalog

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

1

2

3

4

1

2

3

4

Semantic: Least model⋂
M is model M

In Lean :
{a | ∀m, isModel m→ a ∈ m}

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

6/17

Datalog

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

1

2

3

4

1

2

3

4

Semantic: Least model⋂
M is model M

In Lean :
{a | ∀m, isModel m→ a ∈ m}

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

6/17

Datalog

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

1

2

3

4

1

2

3

4

Semantic: Least model⋂
M is model M

In Lean :
{a | ∀m, isModel m→ a ∈ m}

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

7/17

Computation of datalog results

Current model:

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (2, 3).

T (2, 3).

T (1, 3).

T (2, 3)← edge(2, 3).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

Proof trees are short certificates

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

7/17

Computation of datalog results

Current model:

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (2, 3).

T (2, 3).

T (1, 3).

T (1, 3)←
edge(1, 2),T (2, 3).

T (1, 3)

T (2, 3)

edge(1, 2)

edge(2, 3)

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

Proof trees are short certificates

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

7/17

Computation of datalog results

Current model:

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (2, 3).

T (2, 3).

T (1, 3).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

Proof trees are short certificates

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

8/17

Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

8/17

Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

T (1, 3)← edge(1, 2),T (2, 3).

T (?x , ?z)← edge(?x , ?y),T (?y , ?z).

Implemented and verified with partial functions like
Benzaken et. al. 2017

Theorem

match r r’ = true ↔ ∃ substitution s, r .apply s = r ′ ↔ ∃ grounding g, r .apply g = r ′

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

8/17

Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

check if edge(1, 2) is in the database

class Database (τ : Signature) where

contains: GroundAtom τ → Bool

instance univDatabase (τ : Signature) : Database τ where

contains := fun _ => true

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

9/17

Proof graphs

T (?x , ?y)← edge(?x , ?y).

U(?x , ?y)← T (?x , ?y)

T (?x , ?z)← edge(?x , ?y),T (?y , ?z),U(?y , ?z).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3) T (2, 3) edge(2, 3)

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

9/17

Proof graphs

T (?x , ?y)← edge(?x , ?y).

U(?x , ?y)← T (?x , ?y)

T (?x , ?z)← edge(?x , ?y),T (?y , ?z),U(?y , ?z).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

9/17

Proof graphs

T (?x , ?y)← edge(?x , ?y).

U(?x , ?y)← T (?x , ?y)

T (?x , ?z)← edge(?x , ?y),T (?y , ?z),U(?y , ?z).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)
Next steps

1 Define a practicable graph model

2 Implement and verify depth-first search

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

10/17

Implementing a graph - Mathlib

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)

Problems

1 Which rule is represented?

2 Uses an adjacency matrix

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

11/17

Implementing a directed graph

structure Graph (A) where

vertices : List A

predecessors : A → List A

complete : ∀ a, (predecessors a).all

fun x => x ∈ vertices

Good

Easy to use in proof and implement

Bad

Slow in practice

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

12/17

Implementing a directed graph

abbrev PreGraph (A) := Std.HashMap A (List A)

def vertices (pg : PreGraph) := pg.keys

def predecessors (pg : PreGraph) (a : A) := pg.getD a []

def complete : ∀ a, (predecessors a).all

fun x => x ∈ vertices

Good

Fast in practice

Bad

Required proving the correctness of multiple Hashmap operations

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

13/17

Depth-first search

1

2 3

4

5

6

dfs: for each vertex v , if !visited then dfs step(v)

1

2

3

4

Theorem

dfs G f = true ↔
∀p,¬G .isCycle p ∧ ∀v , f v G

Theorem?

dfs step G f v visited = true ↔
. . .

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

14/17

Correctness for depth first search

ABCD
D is not in a cycle. A,B,C are all in a cycle.

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

14/17

Correctness for depth first search

ABCD
D is not in a cycle.

D can be reached from a cycle.
A,B,C are all in a cycle.

A,B,C all can be reached from a cycle.

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

15/17

Ordered proof graphs

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)

Ordered Proof

1 edge(2, 3); []

2 T (2, 3); [1]

3 edge(1, 2); []

4 U(2, 3); [2]

5 T (1, 3); [3, 2, 4]

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

16/17

Evaluation

1a 1b 3

0

1

2

V
al
id
at
io
n
T
im

e
(s
ec
)

Trees
Graph

Ordered Graph

Scenario Nemo time

1a 59s
1b 0.1s
3 7.8s

1a : transitive closure of chain of
length 1000

1b : all facts from smaller
transitive closure

3 : 1000 facts from real-world
medical ontology

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

17/17

Further results & Open problems

What to find more in the paper:

1 Proofs and more details on the implementation

2 How to validate completeness?

Open questions:

1 Direct integration in a datalog engine

2 Expanding to more features like negation

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

17/17

Further results & Open problems

What to find more in the paper:

1 Proofs and more details on the implementation

2 How to validate completeness?

Open questions:

1 Direct integration in a datalog engine

2 Expanding to more features like negation

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean

