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Why still use symbolic artificial intelligence techniques today?

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, Markus Krötzsch TU Chemnitz, Knowledge-Based Systems Group, TU Dresden

Verifying Datalog Reasoning with Lean



2/17

Symbolic AI - In Theory
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Symbolic techniques explain their results and allow to see that results are really correct.
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Symbolic AI - In Practice
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In practice results are computed by optimized engines.
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Symbolic AI - In Practice
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These engines may have bugs, but verifying them is not feasible yet.
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Verifiers to the rescue
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Certificates are often available and allow verifiers with a formal correctness proof.
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Datalog

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).
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Semantic: Least model⋂
M is model M

In Lean :
{a | ∀m, isModel m→ a ∈ m}
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Computation of datalog results

Current model:

edge(1, 2).

edge(2, 3).

edge(2, 4).

T (2, 3).

T (2, 3).

T (1, 3).

T (2, 3)← edge(2, 3).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

T (?x , ?y)←edge(?x , ?y).

T (?x , ?z)←edge(?x , ?y),

T (?y , ?z).

Proof trees are short certificates
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Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)
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Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

T (1, 3)← edge(1, 2),T (2, 3).

T (?x , ?z)← edge(?x , ?y),T (?y , ?z).

Implemented and verified with partial functions like
Benzaken et. al. 2017

Theorem

match r r’ = true ↔ ∃ substitution s, r .apply s = r ′ ↔ ∃ grounding g, r .apply g = r ′
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Validating a correct fact

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

check if edge(1, 2) is in the database

class Database (τ : Signature) where

contains: GroundAtom τ → Bool

instance univDatabase (τ : Signature) : Database τ where

contains := fun _ => true
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Proof graphs

T (?x , ?y)← edge(?x , ?y).

U(?x , ?y)← T (?x , ?y)

T (?x , ?z)← edge(?x , ?y),T (?y , ?z),U(?y , ?z).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3) T (2, 3) edge(2, 3)
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Proof graphs

T (?x , ?y)← edge(?x , ?y).

U(?x , ?y)← T (?x , ?y)

T (?x , ?z)← edge(?x , ?y),T (?y , ?z),U(?y , ?z).

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)
Next steps

1 Define a practicable graph model

2 Implement and verify depth-first search
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Implementing a graph - Mathlib

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)

Problems

1 Which rule is represented?

2 Uses an adjacency matrix
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Implementing a directed graph

structure Graph (A) where

vertices : List A

predecessors : A → List A

complete : ∀ a, (predecessors a).all

fun x => x ∈ vertices

Good

Easy to use in proof and implement

Bad

Slow in practice
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Implementing a directed graph

abbrev PreGraph (A) := Std.HashMap A (List A)

def vertices (pg : PreGraph) := pg.keys

def predecessors (pg : PreGraph) (a : A) := pg.getD a []

def complete : ∀ a, (predecessors a).all

fun x => x ∈ vertices

Good

Fast in practice

Bad

Required proving the correctness of multiple Hashmap operations
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Depth-first search

1

2 3

4

5

6

dfs: for each vertex v , if !visited then dfs step(v)

1

2

3

4

Theorem

dfs G f = true ↔
∀p,¬G .isCycle p ∧ ∀v , f v G

Theorem?

dfs step G f v visited = true ↔
. . .
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Correctness for depth first search

ABCD
D is not in a cycle. A,B,C are all in a cycle.
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Correctness for depth first search

ABCD
D is not in a cycle.

D can be reached from a cycle.
A,B,C are all in a cycle.

A,B,C all can be reached from a cycle.
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Ordered proof graphs

T (1, 3)

T (2, 3)edge(1, 2)

edge(2, 3)

U(2, 3)

Ordered Proof

1 edge(2, 3); []

2 T (2, 3); [1]

3 edge(1, 2); []

4 U(2, 3); [2]

5 T (1, 3); [3, 2, 4]
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Evaluation

1a 1b 3
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Ordered Graph

Scenario Nemo time

1a 59s
1b 0.1s
3 7.8s

1a : transitive closure of chain of
length 1000

1b : all facts from smaller
transitive closure

3 : 1000 facts from real-world
medical ontology
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Further results & Open problems

What to find more in the paper:

1 Proofs and more details on the implementation

2 How to validate completeness?

Open questions:

1 Direct integration in a datalog engine

2 Expanding to more features like negation
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