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* Automation in need of automation lin id inv thms



Warning!

| know about the math we
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What we proved

We proved in Lean that three specific groups can be defined using
a canonically smaller set of equations than previously known.

More specifically, we showed that the A3, B3—small, and B3—Iarge

graded unipotent Chevalley groups presented by the “weak”
Steinberg relations are isomorphic to the groups presented by the
“full” Steinberg relations.

Our proof strategy was to show that each full relation could
be derived from the weak relations. We derived each relation
by solving one or more group rewriting problems.
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Why we proved it

* TJo verify a result involving hundreds of calculations
 (Constants, negative signs, delicate computations

e Noah: “What if | made a mistake somewhere?”

* Jo lay the groundwork for similar verifications

e | ots of future work left!
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Why work on this problem?

* Jo construct higher-dimensional expanders

 Useful for (quantum) error correction, local property testing, and higher-
dimensional geometry

 Jo do basic research in group theory
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Chevalley groups

* Fact: every Chevalley (and Lie) group can be generated from a set of

generators comprising vectors and field elements.

* Group multiplication on the generators corresponds closely to

geometric properties of the vectors.

* |n our paper, these generators are either pairs or triples:

structure GradedChevalleyGenerator

(¢, t} (¢, i, t} .

where
Degree G0
1 : N

Root (vector) Field element in I R

Type T®) [PositiveRootSystem @]
Type TR) [Ring R]

11
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Chevalley groups

* [hese generators have nice properties:

+ Linearity: {C, 4,1} - 16, L, Up = 16, 1,1+ uf — Thesg are (some .of the)
. Identity: {Z,i,0) = 1 7 Steinberg relations
e Inverse: {C, it} = {0, —t)

» Commutator: For any pair of roots  and 7, the commutator is a
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PresentatiOnS (not the academic kind)

We specify these Chevalley groups with a presentation:

 Roughly, a presentation is a string rewriting system on a set of generator
symbols S, modulo a set of relations R

e The identity element is the empty string €

« Examples: Equivalently, G is the free
group on S modulo the
e ({x} | {X"H)=(Z,+) normal closure of Rin S

o ({ey} | ox™y Yy 2@ x2Z,+)

Presentations give a succinct way of specifying groups

13
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Assume the weak Steinberg relations. Then we want to show the full relation
fty+oitH{f+v+toiut={f+y+o,irt+u}

Proof. Decompose I arbitrarily into i = i; + I,. Then ...

@[simp, chev_simps]
theorem 1in_of PByw : V (i : N) (t u : F),
{Byw, i, t} *x {Byw, i, u} = {Byw, i, t + u} := by
intro 1 hi t u

rcases decompose i with (i1, i2) — i = 11 + 1>

grw [ expr_Byw_as_B_yw_B_yw, —— Line 1
expr_Byw_yw_as_yw_Ryw, expr_Pyw_p_as_p_Pyw, —— Line 2
expr_Pyw_yw_as_yuw_Lyw, — Line 3
mul_one u, expr_PByw_as_ B vw B _yw, —— Line 5
mul_one (t + u), expr_Byw_as_B_vw_B_yw I —— Line 6




An example calculation

Assume the weak Steinberg relations. Then we want to show the full relation
fty+oitH{f+v+toiut={f+y+o,irt+u}

Proof. Decompose I arbitrarily into i = i; + I,. Then ...

@[simp, chev_simps]
theorem lin_of_PByw : lin_of_root((weakB3SmallGraded F).project, Byw) :=
by
intro 1 hi t u
rcases decompose 1 2 1 hi with (11, 12, rfl, hii, hiz)
rw [«mul_one t, expr_Byw_as_B_yw_B_yw Fchar hii hi:]
grw [«expr_Byw_yw_as_ww PByw Fchar, <expr_Byw _B_as B _PBww Fchar,
~expr_Byw_yw_as_yw_PByw Fcharl
rw [«mul_one ul
grw [expr_Byw_as_B_ww_B_yw Fchar hii hiz]
rw [emul _one (t + u)]
grw [expr_Byw_as_B_ww_B_wyw Fchar hii hiz]
ring_nf
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Almost all of the proofs in our formalization look like that calculation.

Our proof strategy

Sometimes it’s worse:

theorem expand_Pyw_as_commutator_of_fy_w :

forall_ij_tu 2 1, (Byw, i + j, 2 *x t x u) = [(By, i, t), (w, j, u)i :

intro 1 jJ hi hy t u
match 1, j with

0,

’

-

-

N VN P RO

-

) O P O =L O

=

'w
'w
'w
'w
'w
'w

[expr_Byw_as_comm_of_ Py w_00
[expr_Byw_as_comm_of By _w_01
[expr_Byw_as_comm_of By w_10
[expr_Byw_as_comm_of By _w_11
[expr_Byw_as_comm_of By _w_20
[expr_Byw_as_comm_of By _w_21

Fcharl
Fchar]
Fchar]
Fchar]
Fchar]
Fchar]

by

17



Our proof strategy

Almost all of the proofs in our formalization look like that calculation.
Sometimes it’s worse;:

Sometimes it’s better (i.e. we get proofs for free):

—— height 2 (reflection of height 1)

declare_B3Small_reflected_thm F b3small_valid Byw B yw const 1 heights 2
declare_B3Small_reflected_thm F b3small_valid Byw B yw const 1 heights 2
declare_B3Small_reflected_thm F b3small_valid Byw By w const 2 heights 2
declare_B3Small_reflected_thm F b3small_valid Byw By w const 2 heights 2
declare_B3Small_reflected _thm F b3small_valid Byw B ww const 1 heights 3
declare_B3Small_reflected_thm F b3small_valid Byw By w const 2 heights 3

N P P NO B
P N P O N -

to
to
to
to
to
to

[ J <~ JR = W = o gy

S O PR O L O
S O O R, & =
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Design decision: defining roots

In this paper, we work with root systems
a:=€2_€3 l//:=€3
In Lean, we manually defined the roots

Advantage: never wrong; disadvantage: loses the “vector” properties

Bsmall .= {fy, 0, +w, 0+ vy, + o+ vy, f+ 2y}

1nductive B3SmallPosRoot

| Bl v ]| w/| By [ vyn | B2y | Byw
def height : B3SmallPosRoot - Nat

[ BTy ]lw=1 Some type isomorphisms
| By | yw => 2 are better than others

| Byw | B2y => 3

18



Design decision: macros

19



Design decision: macros

Many proofs were the exact same, differing only by the root.

19



Design decision: macros

Many proofs were the exact same, differing only by the root.

{Caiat} ' {C,Z,M} — {Caiat_l_u}

19



Design decision: macros

Many proofs were the exact same, differing only by the root.

{Caiat} ) {C,Z,M} — {Caiat_l_u}
[{ﬁa iat}a {ﬁ_l_l//ajvt}] =1

19



Design decision: macros

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

{Caiat} ) {C,Z,M} — {Caiat_l_u}
[{ﬁa iat}a {ﬁ_l_l//ajvt}] =1

19



Design decision: macros

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

{Caiat} ) {Calau} — {Caiat_l_u}
[{ﬁa iat}a {ﬁ_l_l//ajat}] =1

declare_B3Small_lin_id_inv_thms F B
declare_B3Small_lin_id_inv_thms F y
declare_B3Small _lin_id_inv_thms F w
declare_B3Small_lin_id_inv_thms F By
declare_B3Small_lin_id_inv_thms F yw
declare_B3Small_lin_id_inv_thms F B2y

declare_B3Small_trivial_span_of_root_pair_thms F B By
declare_B3Small_trivial_span_of_root_pair_thms F B B2y
declare_B3Small_trivial_span_of_root_pair_thms F y B2y
declare_B3Small_trivial_span_of_root_pair_thms F By B2y
declare_B3Small_trivial_span_of_root_pair_thms F B w
declare_B3Small_trivial_span_of_root_pair_thms F y yw
declare_B3Small_trivial_span_of_root_pair_thms F w yw

declare_B3Small_single_span_of_root_pair_thms F ¢y w yw 2
declare_B3Small_single_span_of_root_pair_thms F y By B2y 2

/- ### Mixed-degree theorem for specific roots -/

declare_B3Small_mixed_degree_thms F By 19
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Solution: use macros to write the theorems for us!

{Caiat} ) {Calau} — {Caiat_l_u}
[{ﬁa iat}a {ﬁ_l_l//ajat}] =1
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macros for each root system

declare_B3Small_lin_id_inv_thms F B
declare_B3Small_lin_id_inv_thms F y
declare_B3Small _lin_id_inv_thms F w
declare_B3Small_lin_id_inv_thms F By
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declare_B3Small_trivial_span_of_root_pair_thms F B w
declare_B3Small_trivial_span_of_root_pair_thms F y yw
declare_B3Small_trivial_span_of_root_pair_thms F w yw
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/- ### Mixed-degree theorem for specific roots -/
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Design decision: macros

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

{Caiat} ) {Calau} — {Caiat_l_u}
[{ﬁa iat}a {ﬁ_l_l//vjat}] =1

Problem: need to declare the
macros for each root system

Solution: a macro to
declare macros?

declare_B3Small_lin_id_inv_thms F B
declare_B3Small_lin_id_inv_thms F y
declare_B3Small _lin_id_inv_thms F w
declare_B3Small_lin_id_inv_thms F By
declare_B3Small_lin_id_inv_thms F yw
declare_B3Small_lin_id_inv_thms F B2y

declare_B3Small_trivial_span_of_root_pair_thms F B By
declare_B3Small_trivial_span_of_root_pair_thms F B B2y
declare_B3Small_trivial_span_of_root_pair_thms F y B2y
declare_B3Small_trivial_span_of_root_pair_thms F By B2y
declare_B3Small_trivial_span_of_root_pair_thms F B w
declare_B3Small_trivial_span_of_root_pair_thms F y yw
declare_B3Small_trivial_span_of_root_pair_thms F w yw

declare_B3Small_single_span_of_root_pair_thms F y & yw 2
declare_B3Small_single_span_of_root_pair_thms F y By B2y 2

/- ### Mixed-degree theorem for specific roots -/

declare_B3Small_mixed_degree_thms F By 19
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Paint point: parentheses

Problem: commute two terms not in the same set of parentheses

Solution: the grw tactic and g reassoc of% (borrowed from category theory)

Benefit: combine with chev simps for automatic simplification

a*b*c)=>b*(a*c)

{ﬁaiat} ' {ﬁaia_t} — {ﬁ,l,()} — 1

20
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Other pain points

Presentation relations vs. equations

[{ﬁa iat}a {ﬁ_l_ l//,],bt}] =3

<
{ﬁaiat} ' {,B+l//,j,l/t} ' {ﬁaia_t} ' {ﬁ+1//,j,—1/l} = 1
<

it - {\p+wy,jul =p+y,ju}-{p,i,t}
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Other pain points

Group/field arithmetic often needed massaging to discharge with automation

have auxi : 2 *x (u/ (2 x t)) =u / t := by ring_nf; field_simp; group
have auxz2 : u / (2 xt) « (u/ (2 %xt)) = (usxu) / (4% (t xt)) := by
ring_nf; simp only [inv_pow, mul_eq_mul_left_iff, inv_inj, mul_eq_zero, ne_eq,
OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, inv_eq_zero];

left
rw [pow_two, mul_two, two_add_two_eq_fourl
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Thank you for your attention

https://github.com/singerng/steinberg-formalization

1G> 1}

1G> Iy 1]

\ 5 e

Root (vector)

Field element in [

o

al|pla+p

theorem lin_o f_a

a*b*c)=(a*b)*c
lin i1d inv thms
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Nonnegative span of a set of

What we proved tive spa

Polynomials with \
degrees at most d < _ _
Graded unipotent Chevalley groups:

Az, Bs-small, and B;-large

\ /

We showed through calculation that three specific groups
can be defined by a canonically smaller set of equations

/ than previously known. \

Defined by the presentation on Steinberg relations



