ITP 2025

Eric Wang

Arohee Bhoja

Cayden Codel

Noah Singer

Eric Wang

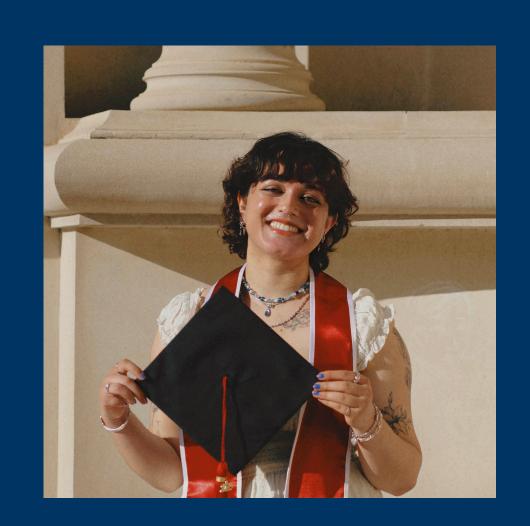
Arohee Bhoja

Cayden Codel

Noah Singer



Eric Wang

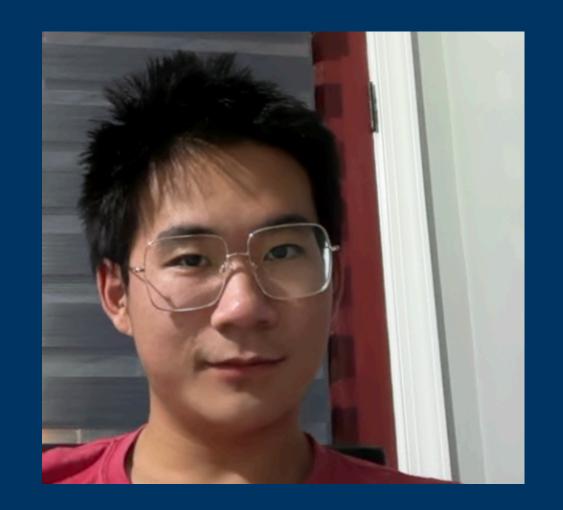


Arohee Bhoja

Cayden Codel

Noah Singer

Undergraduates (Wrote the proofs)



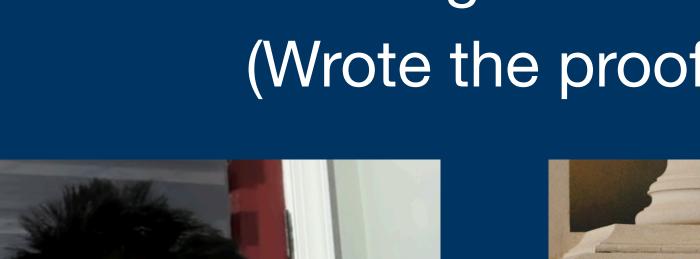
Eric Wang

Arohee Bhoja

Cayden Codel

Noah Singer

Undergraduates (Wrote the proofs)



Eric Wang

Arohee Bhoja

Cayden Codel

PhD student (Knew the maths)

Noah Singer

Undergraduates
(Wrote the proofs)

PhD student (Automation)

PhD student
(Knew the maths)



Eric Wang

Arohee Bhoja

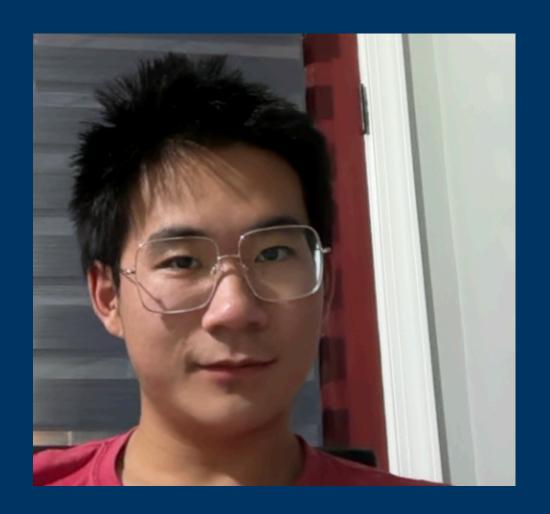
Cayden Codel

Noah Singer

Undergraduates (Wrote the proofs)

PhD student (Automation)

PhD student
(Knew the maths)



Eric Wang

Arohee Bhoja

Cayden Codel

Noah Singer

Visit for the world's best cinnamon roll [citation needed?]

(Not sponsored)

Undergraduates (Wrote the proofs)

PhD student (Automation)

PhD student (Knew the maths)

Eric Wang

Arohee Bhoja

Cayden Codel

Noah Singer

Alternative titles include:

Alternative titles include:

Some type isomorphisms are better than others

$$\alpha \mid \beta \mid \alpha + \beta$$

Alternative titles include:

Some type isomorphisms are better than others

$$\alpha \mid \beta \mid \alpha + \beta$$

Surely there's a macro for that

theorem lin_of_
$$\alpha$$

Alternative titles include:

Some type isomorphisms are better than others

$$\alpha \mid \beta \mid \alpha + \beta$$

Surely there's a macro for that

Carciy there a a made of that

• Parentheses, begone!

theorem lin_of_
$$\alpha$$

$$a*(b*c) = (a*b)*c$$

Alternative titles include:

• Some type isomorphisms are better than others

$$\alpha \mid \beta \mid \alpha + \beta$$

- Surely there's a macro for that
- Parentheses, begone!
- Automation in need of automation

theorem lin_of_
$$\alpha$$

$$a*(b*c) = (a*b)*c$$

Warning!

I know about the math we formalized, but not much about the surrounding research context

We proved in Lean that three specific groups can be defined using a canonically smaller set of equations than previously known.

We proved in Lean that three specific groups can be defined using a canonically smaller set of equations than previously known.

More specifically, we showed that the A_3 , B_3 -small, and B_3 -large graded unipotent Chevalley groups presented by the "weak" Steinberg relations are isomorphic to the groups presented by the "full" Steinberg relations.

We proved in Lean that three specific groups can be defined using a canonically smaller set of equations than previously known.

More specifically, we showed that the A_3 , B_3 -small, and B_3 -large graded unipotent Chevalley groups presented by the "weak" Steinberg relations are isomorphic to the groups presented by the "full" Steinberg relations.

Our proof strategy was to show that each full relation could be derived from the weak relations. We derived each relation by solving one or more group rewriting problems.

We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors.

Donate

Search... All fields

Help | Advanced Search

Mathematics > Group Theory

[Submitted on 8 Nov 2024]

Coboundary expansion inside Chevalley coset complex HDXs

Ryan O'Donnell, Noah G. Singer

Recent major results in property testing~\cite{BLM24,DDL24} and PCPs~\cite{BMV24} were unlocked by moving to high-dimensional expanders (HDXs) constructed from \widetilde{C}_d -type buildings, rather than the long-known \widetilde{A}_d -type ones. At the same time, these building quotient HDXs are not as easy to understand as the more elementary (and more symmetric/explicit) \emph{\coset complex} HDXs constructed by Kaufman--Oppenheim~\cite{KO18} (of A_d -type) and O'Donnell--Pratt~\cite{OP22} (of B_d -, C_d -, D_d -type). Motivated by these considerations, we study the B_3 -type generalization of a recent work of Kaufman--Oppenheim~\cite{KO21}, which showed that the A_3 -type coset complex HDXs have good 1-coboundary expansion in their links, and thus yield 2-dimensional topological expanders.

The crux of Kaufman--Oppenheim's proof of 1-coboundary expansion was: (1)~identifying a group-theoretic result by Biss and Dasgupta~\cite{BD01} or small presentations for the A_3 -unipotent group over~ \mathbb{F}_q ; (2)~``lifting" it to an analogous result for an A_3 -unipotent group over polynomial extensions~ $\mathbb{F}_a[x]$.

For our B_3 -type generalization, the analogue of~(1) appears to not hold. We manage to circumvent this with a significantly more involved strategy: (1)~getting a computer-assisted proof of vanishing 1-cohomology of B_3 -type unipotent groups over~ \mathbb{F}_5 ; (2)~developing significant new ``lifting" technology to deduce the required quantitative 1-cohomology results in B_3 -type unipotent groups over $\mathbb{F}_{5^k}[x]$.

Comments: 130 pages

Subjects: Group Theory (math.GR); Discrete Mathematics (cs.DM)

Cite as: arXiv:2411.05916 [math.GR]

(or arXiv:2411.05916v1 [math.GR] for this version) https://doi.org/10.48550/arXiv.2411.05916

Submission history

From: Noah Singer [view email]

[v1] Fri, 8 Nov 2024 19:00:29 UTC (134 KB)

Access Paper:

View PDF TeX Source Other Formats

view license

Current browse context: math.GR

< prev | next >
new | recent | 2024-11

Change to browse by:

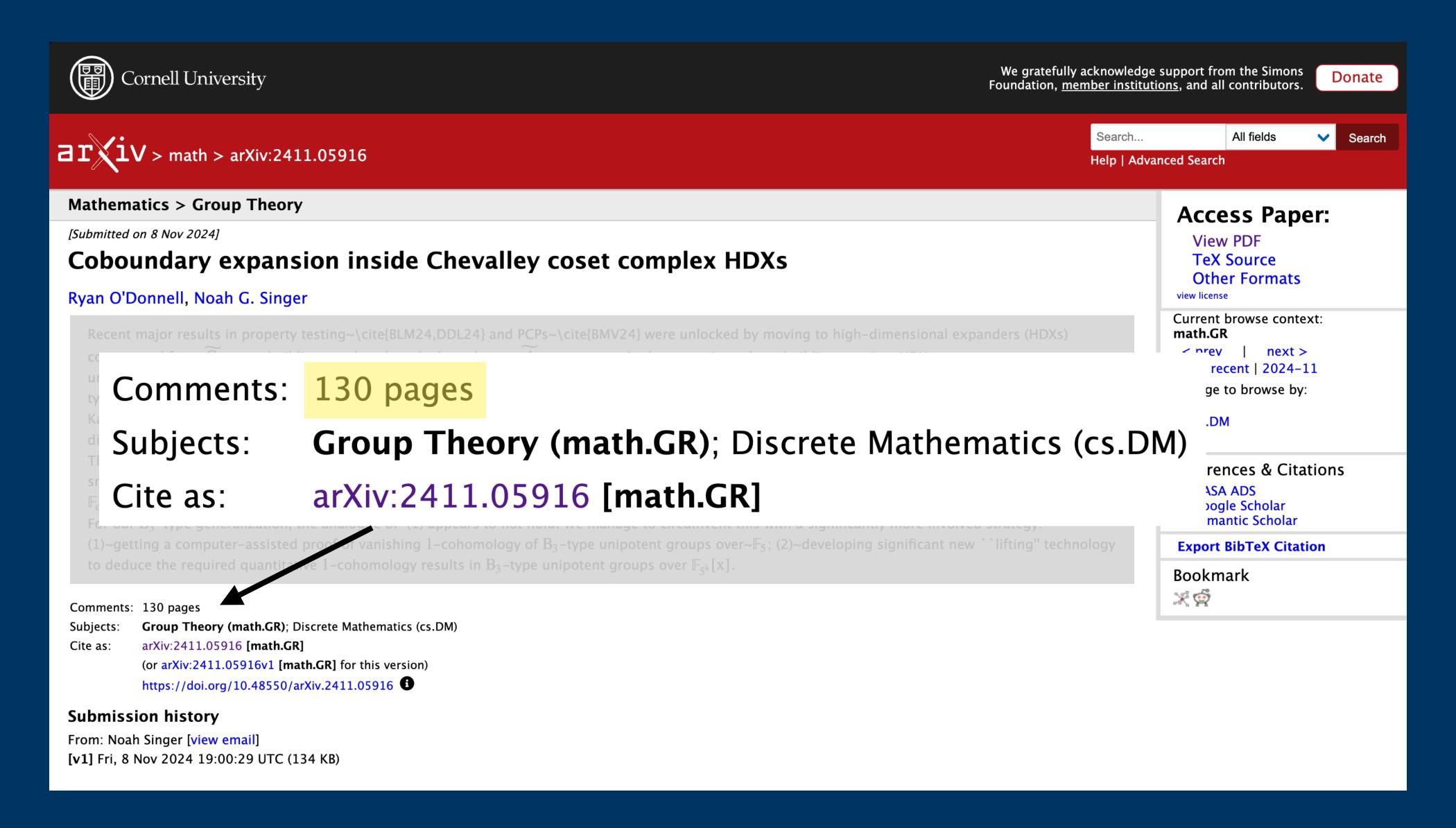
cs.DM math

References & Citations

NASA ADS Google Scholar Semantic Scholar

Export BibTeX Citation

Bookmark



To verify a result involving hundreds of calculations

- To verify a result involving hundreds of calculations
 - Constants, negative signs, delicate computations

- To verify a result involving hundreds of calculations
 - Constants, negative signs, delicate computations
 - Noah: "What if I made a mistake somewhere?"

- To verify a result involving hundreds of calculations
 - Constants, negative signs, delicate computations
 - Noah: "What if I made a mistake somewhere?"
- To lay the groundwork for similar verifications

- To verify a result involving hundreds of calculations
 - Constants, negative signs, delicate computations
 - Noah: "What if I made a mistake somewhere?"
- To lay the groundwork for similar verifications
 - Lots of future work left!

To construct higher-dimensional expanders

To construct higher-dimensional expanders

Higher-dimensional expanders

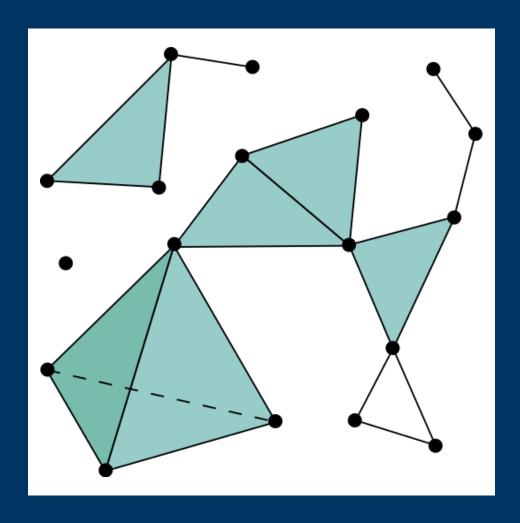
(Specifically, topological expanders)

To construct higher-dimensional expanders

Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes



To construct higher-dimensional expanders

Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes

Quotients of Bruhat-Tits buildings

To construct higher-dimensional expanders

Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes

Quotients of Bruhat-Tits buildings Coset complexes

To construct higher-dimensional expanders

Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes

Quotients of Bruhat-Tits buildings Coset complexes

†
Chevalley groups
defined by a good set
of Steinberg relations

To construct higher-dimensional expanders

Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes

Quotients of Bruhat-Tits buildings

We formalized this part

Coset complexes

†
Chevalley groups
defined by a good set
of Steinberg relations

To construct higher-dimensional expanders

- To construct higher-dimensional expanders
 - Useful for (quantum) error correction, local property testing, and higherdimensional geometry

- To construct higher-dimensional expanders
 - Useful for (quantum) error correction, local property testing, and higherdimensional geometry
- To do basic research in group theory

Similar to Lie groups

- Similar to Lie groups
- Defined on square matrices containing field elements

- Similar to Lie groups
- Defined on square matrices containing field elements
- Express nice symmetries and geometric properties

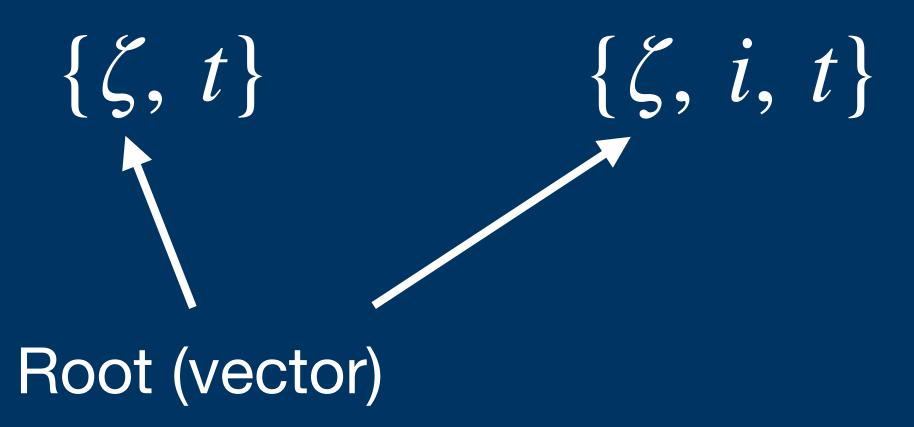
 Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.

- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.

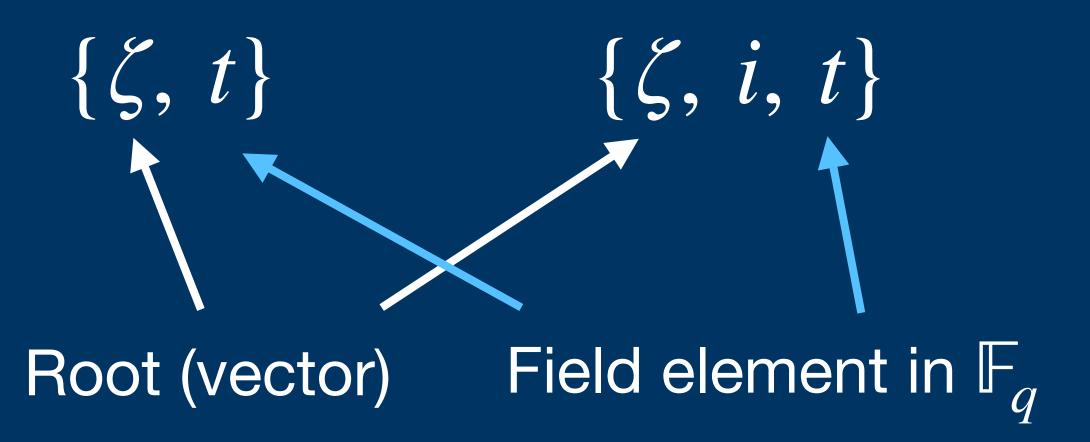
- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.
- In our paper, these generators are either pairs or triples:

$$\{\zeta, t\}$$
 $\{\zeta, i, t\}$

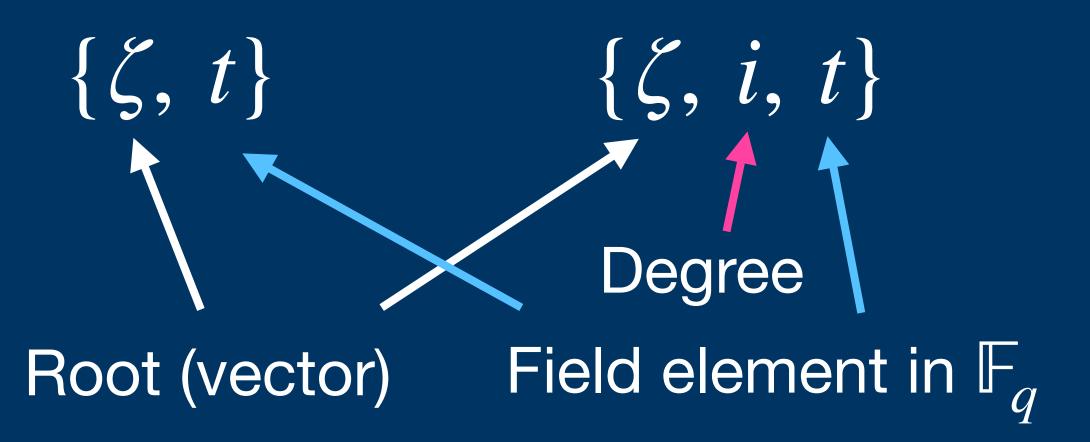
- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.
- In our paper, these generators are either pairs or triples:



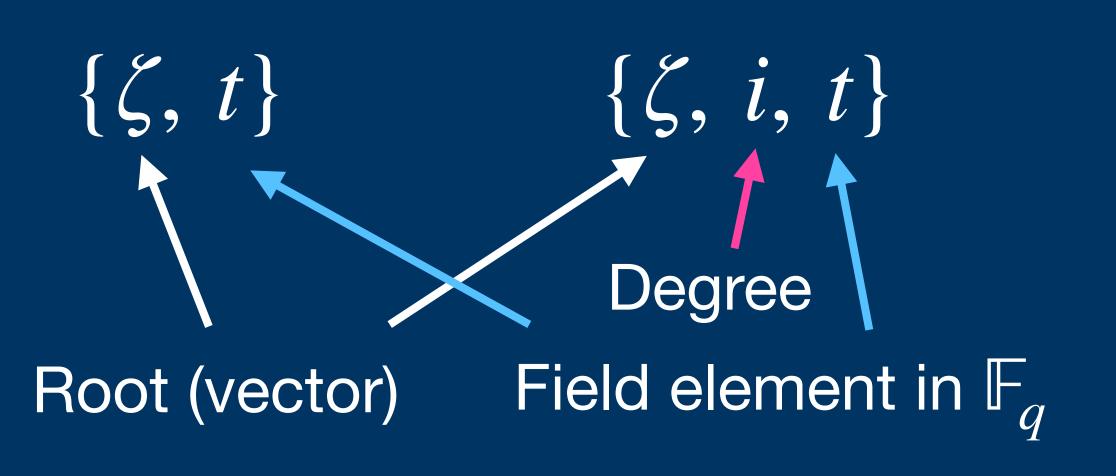
- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.
- In our paper, these generators are either pairs or triples:



- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.
- In our paper, these generators are either pairs or triples:



- Fact: every Chevalley (and Lie) group can be generated from a set of generators comprising vectors and field elements.
- Group multiplication on the generators corresponds closely to geometric properties of the vectors.
- In our paper, these generators are either pairs or triples:



• These generators have nice properties:

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$
 - Identity: $\{\zeta, i, 0\} = 1$

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$
 - Identity: $\{\zeta, i, 0\} = 1$
 - Inverse: $\{\zeta, i, t\}^{-1} = \{\zeta, i, -t\}$

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$
 - Identity: $\{\zeta, i, 0\} = 1$
 - Inverse: $\{\zeta, i, t\}^{-1} = \{\zeta, i, -t\}$
 - Commutator: For any pair of roots ζ and η , the commutator is a product of generators of the following form, for Chevalley constants a,b, and $C^{a,b}_{\zeta,\eta}\in[-3,3]$:

$$[\{\zeta, i, t\}, \{\eta, j, u\}] = \prod \{a\zeta + b\eta, ai + bj, C_{\zeta, \eta}^{a,b} t^a u^b\}$$

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$
 - Identity: $\{\zeta, i, 0\} = 1$
 - Inverse: $\{\zeta, i, t\}^{-1} = \{\zeta, i, -t\}$
 - Commutator: For any pair of roots ζ and η , the commutator is a product of generators of the following form, for Chevalley constants a,b, and $C^{a,b}_{\zeta,\eta}\in[-3,3]$:

$$[\{\zeta, i, t\}, \{\eta, j, u\}] = \prod \{a\zeta + b\eta, ai + bj, C_{\zeta, \eta}^{a,b} t^a u^b\}$$

As far as I know, these constants don't follow any pattern, and are hard-coded in our formalization

- These generators have nice properties:
 - Linearity: $\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$
 - Identity: $\{\zeta, i, 0\} = 1$
 - Inverse: $\{\zeta, i, t\}^{-1} = \{\zeta, i, -t\}$

• Commutator: For any pair of roots ζ and η , the commutator is a product of generators of the following form, for Chevalley constants a, b, and $C_{\zeta,n}^{a,b} \in [-3,3]$:

$$[\{\zeta, i, t\}, \{\eta, j, u\}] = \prod \{a\zeta + b\eta, ai + bj, C_{\zeta, \eta}^{a,b} t^a u^b\}$$

As far as I know, these constants don't follow any pattern, and are hard-coded in our formalization

We specify these Chevalley groups with a presentation:

 Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ
- Examples:

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ
- Examples:
 - $\langle \{x\} \mid \{x^n\} \rangle \cong (\mathbb{Z}, +)$

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ
- Examples:
 - $\langle \{x\} \mid \{x^n\} \rangle \cong (\mathbb{Z}, +)$
 - $\langle \{x,y\} \mid \{xyx^{-1}y^{-1}\} \rangle \cong (\mathbb{Z} \times \mathbb{Z}, +)$

We specify these Chevalley groups with a presentation:

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ
- Examples:
 - $\langle \{x\} \mid \{x^n\} \rangle \cong (\mathbb{Z}, +)$
 - $\langle \{x,y\} \mid \{xyx^{-1}y^{-1}\} \rangle \cong (\mathbb{Z} \times \mathbb{Z}, +)$

Presentations give a succinct way of specifying groups

We specify these Chevalley groups with a presentation:

- Roughly, a presentation is a string rewriting system on a set of generator symbols S, modulo a set of relations R
- The identity element is the empty string ϵ
- Examples:
 - $\langle \{x\} \mid \{x^n\} \rangle \cong (\mathbb{Z}, +)$
 - $\langle \{x,y\} \mid \{xyx^{-1}y^{-1}\} \rangle \cong (\mathbb{Z} \times \mathbb{Z}, +)$

Equivalently, G is the free group on S modulo the normal closure of R in S

Presentations give a succinct way of specifying groups

An example calculation

An example calculation

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

An example calculation

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

Proof. Decompose i arbitrarily into $i = i_1 + i_2$. Then

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\frac{\{\beta + \psi + \omega, i, t\}}{\{\beta + \psi + \omega, i, u\}} = \{\beta, i_1, t\}\{\psi + \omega, i_2, 1\}\{\beta, i_1, -t\}\{\psi + \omega, i_2, -1\}\{\beta + \omega + \psi, i, u\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t\} \{\beta, i_1, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, -1\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t\} \{\beta, i_1, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, -1\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, 0\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t\} \{\beta, i_1, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, -1\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, 0\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, -1\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t\} \{\beta, i_1, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, -1\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, 0\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, t + u\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

$$\{\beta + \psi + \omega, i, t\} \{\beta + \psi + \omega, i, u\}$$

$$= \{\beta, i_1, t\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\} \{\beta + \omega + \psi, i, u\}$$

$$= \{\beta, i_1, t\} \{\beta + \omega + \psi, i, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t\} \{\beta, i_1, u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, -1\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -u\} \{\psi + \omega, i_2, 0\} \{\beta, i_1, -t\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta, i_1, t + u\} \{\psi + \omega, i_2, 1\} \{\beta, i_1, -(t + u)\} \{\psi + \omega, i_2, -1\}$$

$$= \{\beta + \psi + \omega, i_1 + i_2, t + u\}$$

$$= \{\beta + \psi + \omega, i_1, t + u\} \{\psi + \omega, i_2, t + u\}$$

Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

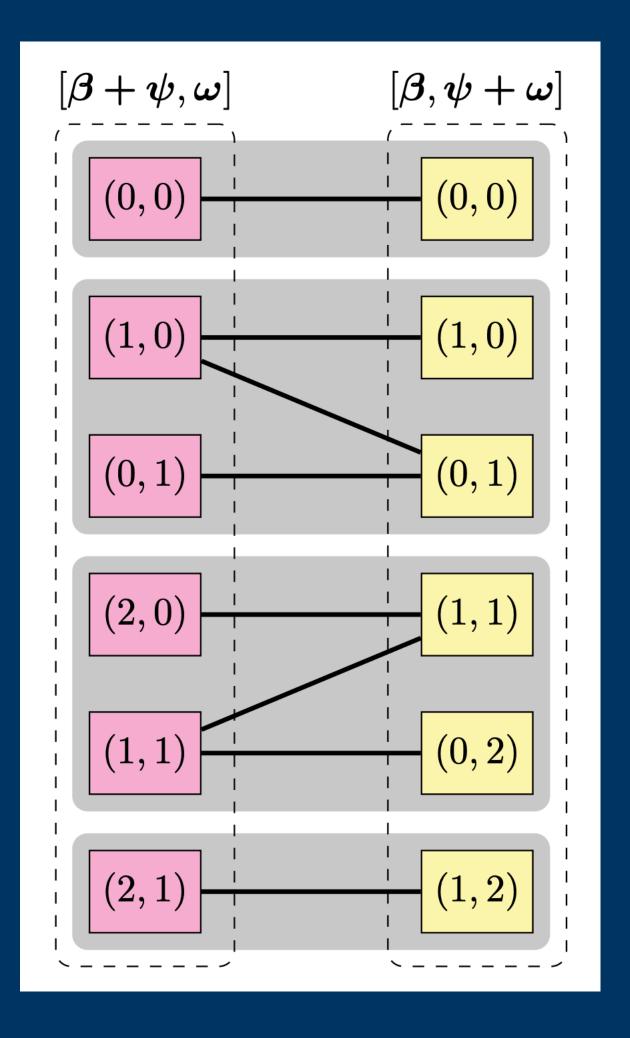
Assume the weak Steinberg relations. Then we want to show the full relation

$$\{\beta + \psi + \omega, i, t\}\{\beta + \psi + \omega, i, u\} = \{\beta + \psi + \omega, i, t + u\}$$

```
@[simp, chev_simps]
theorem lin_of_βψω : lin_of_root((weakB3SmallGraded F).project, βψω) :=
by
  intro i hi t u
  rcases decompose 1 2 i hi with (i1, i2, rfl, hi1, hi2)
  rw [←mul_one t, expr_βψω_as_β_ψω_β_ψω Fchar hi₁ hi₂]
  grw [←expr_βψω_ψω_as_ψω_βψω Fchar, ←expr_βψω_β_as_β_βψω Fchar,
  ←expr_βψω_ψω_as_ψω_βψω Fchar]
  rw [←mul_one u]
  grw [expr_βψω_as_β_ψω_β_ψω Fchar hi¹ hi²]
  rw [←mul_one (t + u)]
  grw [expr_βψω_as_β_ψω_β_ψω Fchar hiı hi2]
  ring_nf
```

Almost all of the proofs in our formalization look like that calculation.

Almost all of the proofs in our formalization look like that calculation.



Almost all of the proofs in our formalization look like that calculation.

Almost all of the proofs in our formalization look like that calculation.

Sometimes it's worse:

```
theorem expand_βψω_as_commutator_of_βψ_ω :
    forall_ij_tu 2 1, ((βψω, i + j, 2 * t * u)) = [((βψ, i, t)), ((ω, j, u))] := by
    intro i j hi hj t u
    match i, j with
    | 0, 0 => rw [expr_βψω_as_comm_of_βψ_ω_00 Fchar]
    | 0, 1 => rw [expr_βψω_as_comm_of_βψ_ω_01 Fchar]
    | 1, 0 => rw [expr_βψω_as_comm_of_βψ_ω_10 Fchar]
    | 1, 1 => rw [expr_βψω_as_comm_of_βψ_ω_11 Fchar]
    | 2, 0 => rw [expr_βψω_as_comm_of_βψ_ω_20 Fchar]
    | 2, 1 => rw [expr_βψω_as_comm_of_βψ_ω_21 Fchar]
```

Almost all of the proofs in our formalization look like that calculation.

Sometimes it's worse:

Sometimes it's better (i.e. we get proofs for free):

```
-- height 2 (reflection of height 1)
declare_B3Small_reflected_thm F b3small_valid βψω β ψω const 1 heights 2 1 1 to 1 0 1
declare_B3Small_reflected_thm F b3small_valid βψω β ψω const 1 heights 2 0 2 to 1 1 0
declare_B3Small_reflected_thm F b3small_valid βψω βψ ω const 2 heights 2 2 0 to 1 0 1
declare_B3Small_reflected_thm F b3small_valid βψω βψ ω const 2 heights 2 1 1 to 1 1 0
declare_B3Small_reflected_thm F b3small_valid βψω β ψω const 1 heights 3 1 2 to 0 0 0
declare_B3Small_reflected_thm F b3small_valid βψω βψ ω const 2 heights 3 2 1 to 0 0 0
```

In this paper, we work with root systems

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

In this paper, we work with root systems

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

$$B_3$$
small := $\{\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi\}$

In this paper, we work with root systems

In Lean, we manually defined the roots

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

$$B_3$$
small := $\{\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi\}$

In this paper, we work with root systems

In Lean, we manually defined the roots

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

$$B_3$$
small := $\{\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi\}$
inductive B3SmallPosRoot
 $\mid \beta \mid \psi \mid \omega \mid \beta\psi \mid \psi\omega \mid \beta 2\psi \mid \beta\psi\omega$

In this paper, we work with root systems

In Lean, we manually defined the roots

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

```
B_3small := {\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi}

inductive B3SmallPosRoot

| β | ψ | ω | βΨ | ψω | β2ψ | βψω

def height : B3SmallPosRoot → Nat
| β | ψ | ω => 1
| βψ | ψω => 2
| βψω | β2ψ => 3
```

In this paper, we work with root systems

In Lean, we manually defined the roots

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

Advantage: never wrong; disadvantage: loses the "vector" properties

```
B_{3} \text{small} := \{\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi\}
\text{inductive B3SmallPosRoot}
\mid \beta \mid \psi \mid \omega \mid \beta \psi \mid \psi \omega \mid \beta 2\psi \mid \beta \psi \omega
\text{def height : B3SmallPosRoot} \rightarrow \text{Nat}
\mid \beta \mid \psi \mid \omega \Rightarrow 1
\mid \beta \psi \mid \psi \omega \Rightarrow 2
\mid \beta \psi \omega \mid \beta 2\psi \Rightarrow 3
```

In this paper, we work with root systems

In Lean, we manually defined the roots

$$\alpha := e_2 - e_3 \qquad \psi := e_3$$

Advantage: never wrong; disadvantage: loses the "vector" properties

$$B_{3} \text{small} := \{\beta, \psi, \omega, \beta + \omega, \omega + \psi, \beta + \omega + \psi, \beta + 2\psi\}$$

$$| | \beta | \psi | \omega | \beta \psi | \psi \omega | \beta 2\psi | \beta \psi \omega$$

$$| \beta | \psi | \omega \Rightarrow 1$$

$$| \beta | \psi | \omega \Rightarrow 1$$

$$| \beta \psi | \psi \Rightarrow 2$$

$$| \beta \psi | \beta 2\psi \Rightarrow 3$$

$$| \beta \psi | \beta 2\psi \Rightarrow 3$$

$$| \beta \psi | \beta 2\psi \Rightarrow 3$$

$$| \beta \psi | \beta \psi \Rightarrow 3$$

$$| \beta \psi | \beta \psi \Rightarrow 3$$

Many proofs were the exact same, differing only by the root.

Many proofs were the exact same, differing only by the root.

$$\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$$

Many proofs were the exact same, differing only by the root.

$$\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$$
$$[\{\beta, i, t\}, \{\beta + \psi, j, t\}] = 1$$

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

$$\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$$
$$[\{\beta, i, t\}, \{\beta + \psi, j, t\}] = 1$$

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

```
\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}[\{\beta, i, t\}, \{\beta + \psi, j, t\}] = 1
```

```
declare_B3Small_lin_id_inv_thms F β
declare_B3Small_lin_id_inv_thms F ψ
declare_B3Small_lin_id_inv_thms F ω
declare_B3Small_lin_id_inv_thms F βψ
declare_B3Small_lin_id_inv_thms F ψω
declare_B3Small_lin_id_inv_thms F β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β βψ
declare_B3Small_trivial_span_of_root_pair_thms F β β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F ψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F βψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β ω
declare_B3Small_trivial_span_of_root_pair_thms F ψ ψω
declare_B3Small_trivial_span_of_root_pair_thms F ω ψω
declare_B3Small_single_span_of_root_pair_thms F ψ ω ψω 2
declare_B3Small_single_span_of_root_pair_thms F ψ βψ β2ψ 2
/-! ### Mixed-degree theorem for specific roots -/
declare_B3Small_mixed_degree_thms F βψ
```

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

$$\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$$
$$[\{\beta, i, t\}, \{\beta + \psi, j, t\}] = 1$$

Problem: need to declare the macros for each root system

```
declare_B3Small_lin_id_inv_thms F β
declare_B3Small_lin_id_inv_thms F ψ
declare_B3Small_lin_id_inv_thms F ω
declare_B3Small_lin_id_inv_thms F βψ
declare_B3Small_lin_id_inv_thms F ψω
declare_B3Small_lin_id_inv_thms F β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β βψ
declare_B3Small_trivial_span_of_root_pair_thms F β β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F ψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F βψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β ω
declare_B3Small_trivial_span_of_root_pair_thms F ψ ψω
declare_B3Small_trivial_span_of_root_pair_thms F ω ψω
declare_B3Small_single_span_of_root_pair_thms F ψ ω ψω 2
declare_B3Small_single_span_of_root_pair_thms F ψ βψ β2ψ 2
/-! ### Mixed-degree theorem for specific roots -/
declare_B3Small_mixed_degree_thms F βψ
```

Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

$$\{\zeta, i, t\} \cdot \{\zeta, i, u\} = \{\zeta, i, t + u\}$$
$$[\{\beta, i, t\}, \{\beta + \psi, j, t\}] = 1$$

Problem: need to declare the macros for each root system

Solution: a macro to declare macros?

```
declare_B3Small_lin_id_inv_thms F β
declare_B3Small_lin_id_inv_thms F ψ
declare_B3Small_lin_id_inv_thms F ω
declare_B3Small_lin_id_inv_thms F βψ
declare_B3Small_lin_id_inv_thms F ψω
declare_B3Small_lin_id_inv_thms F β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β βψ
declare_B3Small_trivial_span_of_root_pair_thms F β β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F ψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F βψ β2ψ
declare_B3Small_trivial_span_of_root_pair_thms F β ω
declare_B3Small_trivial_span_of_root_pair_thms F ψ ψω
declare_B3Small_trivial_span_of_root_pair_thms F ω ψω
declare_B3Small_single_span_of_root_pair_thms F ψ ω ψω 2
declare_B3Small_single_span_of_root_pair_thms F ψ βψ β2ψ 2
/-! ### Mixed-degree theorem for specific roots -/
declare_B3Small_mixed_degree_thms F βψ
```

Problem: commute two terms not in the same set of parentheses

Problem: commute two terms not in the same set of parentheses

$$a*(b*c) = b*(a*c)$$

Problem: commute two terms not in the same set of parentheses

Solution: the grw tactic and greassoc of% (borrowed from category theory)

$$a * (b * c) = b * (a * c)$$

Problem: commute two terms not in the same set of parentheses

Solution: the grw tactic and g_reassoc_of% (borrowed from category theory)

Benefit: combine with chev_simps for automatic simplification

$$a * (b * c) = b * (a * c)$$

Problem: commute two terms not in the same set of parentheses

Solution: the grw tactic and g_reassoc_of% (borrowed from category theory)

Benefit: combine with chev_simps for automatic simplification

$$a * (b * c) = b * (a * c)$$

$$\{\beta, i, t\} \cdot \{\beta, i, -t\} \implies \{\beta, i, 0\} \implies 1$$

Presentation relations vs. equations

Presentation relations vs. equations

$$[\{\beta, i, t\}, \{\beta + \psi, j, u\}] = 1$$

$$\Leftrightarrow$$

$$\{\beta, i, t\} \cdot \{\beta + \psi, j, u\} \cdot \{\beta, i, -t\} \cdot \{\beta + \psi, j, -u\} = 1$$

$$\Leftrightarrow$$

$$\{\beta, i, t\} \cdot \{\beta + \psi, j, u\} = \{\beta + \psi, j, u\} \cdot \{\beta, i, t\}$$

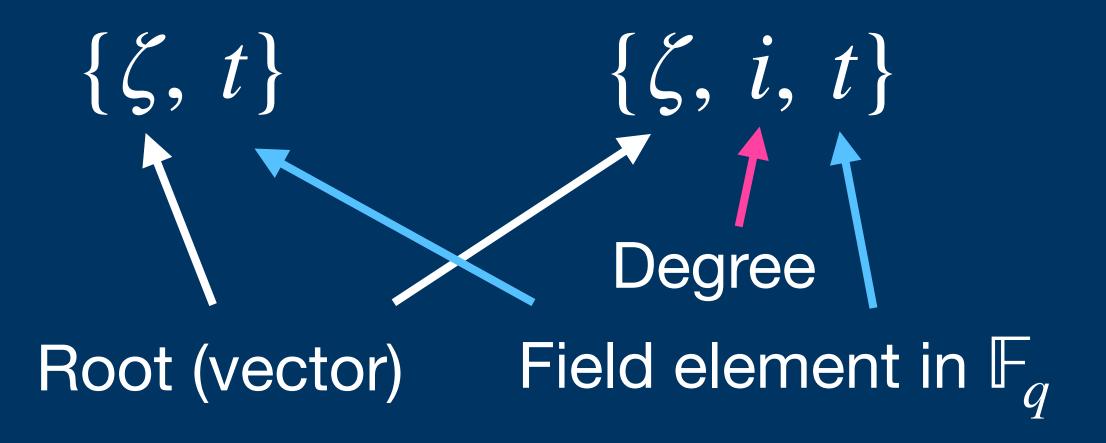
Group/field arithmetic often needed massaging to discharge with automation

Group/field arithmetic often needed massaging to discharge with automation

```
have aux1 : 2 * (u / (2 * t)) = u / t := by ring_nf; field_simp; group
have aux2 : u / (2 * t) * (u / (2 * t)) = (u * u) / (4 * (t * t)) := by
ring_nf; simp only [inv_pow, mul_eq_mul_left_iff, inv_inj, mul_eq_zero, ne_eq,
OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, inv_eq_zero];
left
rw [pow_two, mul_two, two_add_two_eq_four]
```

Thank you for your attention

https://github.com/singerng/steinberg-formalization



theorem lin_of_
$$\alpha$$

$$a*(b*c) = (a*b)*c$$
lin_id_inv_thms

What we proved

Nonnegative span of a set of basis vectors

Polynomials with degrees at most d

Graded unipotent Chevalley groups:

 $\overline{A_3}$, $\overline{B_3}$ -small, and $\overline{B_3}$ -large

We showed through calculation that three specific groups can be defined by a canonically smaller set of equations than previously known.

Defined by the presentation on

Steinberg relations