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Algebra is Half the Battle: 
Verifying Presentations for Graded 
Unipotent Chevalley Groups

Alternative titles include:

• Some type isomorphisms are better than others

• Surely there’s a macro for that

• Parentheses, begone!

• Automation in need of automation

α ∣ β ∣ α + β

theorem lin_of_α
a * (b * c) = (a * b) * c

lin_id_inv_thms

4
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We proved in Lean that three specific groups can be defined using 
a canonically smaller set of equations than previously known.

More specifically, we showed that the , -small, and -large 
graded unipotent Chevalley groups presented by the “weak” 

Steinberg relations are isomorphic to the groups presented by the 
“full” Steinberg relations.

A3 B3 B3

Our proof strategy was to show that each full relation could 
be derived from the weak relations. We derived each relation 

by solving one or more group rewriting problems.
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• To verify a result involving hundreds of calculations
• Constants, negative signs, delicate computations

• Noah: “What if I made a mistake somewhere?”

• To lay the groundwork for similar verifications
• Lots of future work left!
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Higher-dimensional expanders

(Specifically, topological expanders)

Simplicial complexes

Chevalley groups 
defined by a good set 
of Steinberg relations

Coset complexesQuotients of Bruhat-
Tits buildings

We formalized this part
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• To construct higher-dimensional expanders

• Useful for (quantum) error correction, local property testing, and higher-
dimensional geometry

• To do basic research in group theory

!
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• Linearity: {ζ, i, t} ⋅ {ζ, i, u} = {ζ, i, t + u}

• Identity:   {ζ, i, 0} = 1

• Inverse:   {ζ, i, t}−1 = {ζ, i, − t}

• Commutator: For any pair of roots  and , the commutator is a 
product of generators of the following form, for Chevalley constants 

, , and :

ζ η

a b Ca,b
ζ,η ∈ [−3,3]

[{ζ, i, t}, {η, j, u}] = Π {aζ + bη, ai + bj, Ca,b
ζ,η taub}

As far as I know, these constants don’t follow any pattern, 
and are hard-coded in our formalization

These are (some of the) 
Steinberg relations
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We specify these Chevalley groups with a presentation:
• Roughly, a presentation is a string rewriting system on a set of generator 

symbols S, modulo a set of relations R

• The identity element is the empty string ϵ

• Examples: 

• ⟨{x} ∣ {xn}⟩ ≅ (ℤ, + )

• ⟨{x, y} ∣ {xyx−1y−1}⟩ ≅ (ℤ × ℤ, + )

Presentations give a succinct way of specifying groups

Equivalently, G is the free 
group on S modulo the 
normal closure of R in S
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Almost all of the proofs in our formalization look like that calculation.

Sometimes it’s worse:

Sometimes it’s better (i.e. we get proofs for free):
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Many proofs were the exact same, differing only by the root.

Solution: use macros to write the theorems for us!

{ζ, i, t} ⋅ {ζ, i, u} = {ζ, i, t + u}

[{β, i, t}, {β + ψ, j, t}] = 1

Problem: need to declare the 
macros for each root system

Solution: a macro to 
declare macros?
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Problem: commute two terms not in the same set of parentheses

Solution: the grw tactic and g_reassoc_of% (borrowed from category theory)

Benefit: combine with chev_simps for automatic simplification

a * (b * c) = b * (a * c)

{β, i, t} ⋅ {β, i, − t} ⟹ {β, i, 0} ⟹ 1
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Presentation relations vs. equations

[{β, i, t}, {β + ψ, j, u}] = 1

{β, i, t} ⋅ {β + ψ, j, u} = {β + ψ, j, u} ⋅ {β, i, t}

⇔
{β, i, t} ⋅ {β + ψ, j, u} ⋅ {β, i, − t} ⋅ {β + ψ, j, − u} = 1

⇔
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Group/field arithmetic often needed massaging to discharge with automation



Thank you for your attention
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α ∣ β ∣ α + β

theorem lin_of_α
a * (b * c) = (a * b) * c

lin_id_inv_thms

{ζ, i, t}{ζ, t}

Root (vector) Field element in 𝔽q

Degree

https://github.com/singerng/steinberg-formalization



What we proved

X

We showed through calculation that three specific groups 
can be defined by a canonically smaller set of equations 

than previously known.

Graded unipotent Chevalley groups: 
, -small, and -largeA3 B3 B3

Defined by the presentation on Steinberg relations

Nonnegative span of a set of 
basis vectors

Polynomials with 
degrees at most d


