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Perfectoid rings as defined in the theory of perfectoid spaces by P. Scholze (Etdle Cohomology
of Diamaonds, arXiv):

Definition A Tate ring R is perfectoid if R is complete, uniform, i.e. R°C R is bounded, and
there exists a pseudo-uniformizer w € R such that @w?|p in R° and the Frobenius map

¢: R°/w— R°/wP: x+— xP

is an isomorphism.
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there exists a pseudo-uniformizer w € R such that @w?|p in R° and the Frobenius map

¢: R°/w— R°/wP: x+— xP

is an isomorphism.

Formalization in the Naproche Natural language proof checking system:

Definition. R is perfectoid iff R is complete and uniform and there exists a pseudouniformizer
w of R such that w? %|pl® in R within R and

PR R° /o> R°/ wP £,
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within R. Indeed (z — y)P — ¢ = 2P — yP. O

This map also respects the ring operations modulo @ and wP”.

Lemma 286. ®(0) = 0.
Lemma 287. &(1) = 1.

Lemma 288. Let @ be an element of R° such that (w?)|p!¥ in
R? within R. Let z,y be elements of R°. Then

®(z +y) =g- ®(z) + ®(y) mod w” within R.
Proof. plB! divides (z 4+ y)P — (2P + yP) in R° within R. Then w?
divides (z 4 y)P — (zP + yP) in R° within R.

O

Lemma 289. Let @ be an element of R° such that (w?)|pl® in
R° within R. Let z be an element of R°. Then

®(—z) =go —P(z) mod wP within R.

Proof.

®(z + (—z)) =go ®(z) + ®(—2) mod wP within R.

w? divides 0 — (®(z) + ®(—2)) in R° within R. [timelimit 10] w”
divides —®(z) — ®(—) in R° within R. [timelimit 3] O
Lemma 290. Let @ be an element of R such that (wp)|p[R] in
R° within R. Let z,y be elements of R°. Then

O(z - y) =go (z) - ®(y) mod w? within R.
Proof. ®(z-y) = (z-y)? =P -y = O(z) - B(y). O

A perfectoid ring requires the Frobenius map to be an isomorphism
So far we have established that it is a homomorphism. To express
the crucial isomorphism property one would ordinarily apply a general
predicate for ring congruence to the rings R°/a and R°/b. To cut
things short, we (slightly miss-)use the notation @ : S/a = T//b with
IATEX source

$\Phi*{R} : S/ a \cong T / b$

by defining its meaning in terms of congruences using the parameters
S,a,T,b.

Definition 291. Let S,T C R. Leta€ Sand beT. & : S/a =
T/b iff (for every z,y € S if &(z) =r ®(y) mod b within R then
T =g y mod a within R) and (for every z € T there exists w € S

47

such that z =7 ®(w) mod b within R).

14 Perfectoid rings

Now all ingredients are prepared for defining perfectoid rings in Naproche:

Let R denote a Tate ring.

Lemma 292. Let R be complete and w be a pseudouniformizer
of R. Then w, w? do not divide 1 in R° within R.

Proof. @ does not divide 1 in R® within R.

Assume that w? divides 1 in R° within R. Take b € R° such that
@w?-b=1 Letq=p—1 Theno? =w - w? w:(w? b) =
(w-w?) - b= 1. [timelimit 6] Then w divides 1 in R° within R.
Indeed w? € R°. [timelimit 3] O

In this case the quotients R°/w and R°/w? are well-defined rings,
and one can define:

Definition 293. R is perfectoid iff R is complete and uniform
and there exists a pseudouniformizer @ of R such that w?[pl® in
R° within R and

®:R°/w ™ R°/w".

The present formalization has mainly been directed towards the
definition of perfectoid rings in a readable and proof-checked mathe-
matical language. We do not pursue the theory of perfectoid rings any
further and we do not consider examples. If one wanted to do so one
would have to refine and considerably expand the previous develop-
ments.
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The Naproche formalization was motivated and guided by the Lean formalization of perfectoid
spaces by Kevin Buzzard, Johan Commelin, and Patrick Massot.

—— We fix a prime number p
parameter (p : primes)

/— A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the power bounded subring,
and such that Frobenius is a surjection on the reduction modulo p.—/

structure perfectoid_ring (R : Type) [Huber_ring R] extends Tate_ring R : Prop :=
(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : 3 w : pseudo_uniformizer R, w*p | p in R°)

(Frobenius : surjective (Frob R°/p))

/_

CLVRS ("complete locally valued ringed space") is a category

whose objects are topological spaces with a sheaf of complete topological rings
and an equivalence class of valuation on each stalk, whose support is the unique
maximal ideal of the stalk; in Wedhorn's notes this category is called V.

A perfectoid space is an object of CLVRS which is locally isomorphic to Spa(A) with
A a perfectoid ring. Note however that CLVRS is a full subcategory of the category
‘PreValuedRingedSpace’ of topological spaces equipped with a presheaf of topological
rings and a valuation on each stalk, so the isomorphism can be checked in
PreValuedRingedSpace instead, which is what we do.

=

/—— Condition for an object of CLVRS to be perfectoid: every point should have an open
neighbourhood isomorphic to Spa(A) for some perfectoid ring A.-/
def is_perfectoid (X : CLVRS) : Prop :=
Vx: X, 3 (U: opens X) (A : Huber_pair) [perfectoid_ring A],
(x € U) A (Spa A = U)

/— The category of perfectoid spaces.—/
def PerfectoidSpace := {X : CLVRS // is_perfectoid X}

end



Boundedness in topological rings

Think of rings of formal power series like

with metric

d(f,g)=2"°rdf~9),

Let R denote a ring that is a topological space.

Definition 240 (title = L 42). Assume that B is a subset of
R. B is bounded in R iff for all neighborhoods U of 0 in R there
exists a neighborhood V of () in R such that v-b € U where v € V
and b € B.

Definition 251 (title = L 179). Let r be an element of R. r is
powerbounded in R iff {r™ | n € N} is bounded in R.



Boundedness in topological rings

Think of rings of formal power series like

with metric

d(f,g)= g—ord(f—g)

Let R denote a ring that is a topological space.

Definition 240 (title = L 42). Assume that B is a subset of

R. B is bounded in R iff for all neighborhoods U of () in R there { ZOO_ an Xn} is bounded
exists a neighborhood V' of 0 in R such that v-b € U where v e V n=No

and b € B.

o0 .
Definition 251 (title = L 179). Let r be an element of R. r is anl apX"™ is power-
powerbounded in R iff {r™* | n € N} is bounded in R. bounded



Uniform and Huber rings

Definition 259 (title = L 310). R° = {r € R | x is power-
bounded in R}.

Definition 233. (& is nonarchimedean iff every neighborhood U
of 0¥ in G has a subset S that is a subgroup of G and open in G.

Lemma 268 (title = L 371). Let R be nonarchimedean. Then
R? is a subring of R.

Definition 269 (title = 380). R is uniform iff R° is a bounded
subset of K.

Definition 276. A Huber ring is a topological ring i such that for
some subset U of R and some finite subset T of U {U™# | n € N}
is a fundamental system of neighborhoods of R and T-U = U-U C
U.



Uniform and Huber rings

Definition 259 (title = L 310). R° = {x € R | = is power- RO:{ZZOZO an X"}
bounded in R}.

Definition 233. (G is nonarchimedean iff every neighborhood U {ZZO_ No a,X"} is an opel
o o: C - = o
of 0" in GG has a subset 5 that is a subgroup of G’ and open in G. subgroup of 0.

Lemma 268 (title = L 371). Let R be nonarchimedean. Then
R? is a subring of R.

Definition 269 (title = 380). R is uniform iff R° is a bounded
subset of K.

Definition 276. A Huber ring is a topological ring i such that for U — {ZOO a X"}
some subset [7 of R and some finite subset T of U {UU"# | n € N} N n=1""

is a fundamental system of neighborhoods of R and T-U = U-U C T={X}

U.



Tate rings

Definition 270 (title = L 30). Let r be an element of R. r is
topologically nilpotent in I iff for all neighborhoods UV of 0 in R
there exists a natural number N such that ™ € U for all natural
numbers n such that n > N.

Definition 279. A pseudouniformizer of I is a unit in R that is
topologically nilpotent in R.

Definition 281. A Tate ring is a Huber ring that has a pseu-
douniformizer.



Tate rings

Definition 270 (title = L 30). Let r be an element of R. r is
topologically nilpotent in I iff for all neighborhoods UV of 0 in R
there exists a natural number N such that r™ & [U for all natural
numbers n such that n > N.

Definition 279. A pseudouniformizer of i is a unit in R that is
topologically nilpotent in R.

Definition 281. A Tate ring is a Huber ring that has a pseu-
douniformizer.

X is topologically nilpotent

Xisaunit: XX 1=1



Perfectoid rings

Let R denote a Huber ring.
Signature 282. p is a prime number.

Definition 283. Let x € R. ®(x) = ¥,

Definition 291. Let ST C R. Letae Sand be T. ®: §5/a =
T/biff (for every z,y € S if ®(z) =r ®(y) mod b within R then
x =g y mod a within R) and (for every z € T there exists w € S
such that z =¢ ®(w) mod b within R).

Let R denote a Tate ring.

Definition 293. R is perfectoid iff R is complete and uniform
and there exists a pseudouniformizer w of R such that % |pl® in
R? within R and

®: R/ = R°/w?.



Lean INaproche

/--A subset B of a topological ring
is bounded if for all neighbourhoods
U of O € R, there exists a
neighbourhood V or O such that for
all v € V and b € B we have v*b €
U.

See [Wedhorn, Def 5.27, p. 36]. -/

def is_bounded (B : set R) : Prop :=
V U € nhds (O : R), d V € nhds (0 :
R), VveVv,Vbe&B, vkb € U
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Lean INaproche

/--A subset B of a topological ring Let R denote a ring that is a topological space.
is bounded if for all neighbourhoods

v (_)f 0 € R, there exists a Definition. Assume that B is a subset of R. B
neighbourhood V or O such that for .., .jed in R iff for all neighborhoods U of
all v € V and b € B we have v*b < 07 in R there exists a neighborhood V of 0%
v in R such that v-'b € U wherev €V and b € B.

See [Wedhorn, Def 5.27, p. 36]. -/

def is_bounded (B : set R) : Prop :=

VU € nhds (0 : R), 3V € nhds (0 : \edhorn original:

R), VveV, VbeB, vxb €U
Definition 5.27. Let A be a topological ring. A subset
B of A is called bounded if for every neighborhood U

of 0 in A there exists an open neighborhood V' of 0 in
A such that vbe U forallveV and b€ B.



Lean

/--A subset of a bounded subset
is bounded. See [Wedhorn, Rmk
5.28(2)]1.-/

lemma subset {S:1 S: : set R} (h
: 81 C S2) (H : is_bounded S:)
is_bounded S: :=

begin
intros U hU,

rcases H U hU with (V, hVi, hV.),

use [V, th],

intros v hv b hb,

exact hV:. _ hv _ (h hb),
end

INaproche

Lemma 1. (title = L 136) Every subset of every
bounded subset of R is a bounded subset of R.

Proof. Let B be a bounded subset of R. Let A C
B. Let U be a neighborhood of 0 in R. Take a
neighborhood V' of 0% in R such that V+® B CU.
Then VABACVAREBCU. VARACU. O



Lean

/--The sum of two power bounded
elements of a nonarchimedean ring is
power bounded.-/

lemma add (hR : nonarchimedean R)
(a b : R)(ha : is_power_bounded
a) (hb : is_power_bounded b)
is_power_bounded (a + b)

begin
rw singleton at ha hb K,

refine subset

hR (union ha hb)),

(add_group.closure

rw set.singleton_subset_iff,
apply is_add_submonoid.add_mem;

apply add_group.subset_closure;
simp

end

INaproche

Lemma 2. (title = L 290) Let R be nonar-
chimedean. Let a,b be elements of R that are
powerbounded in R. Then a +7b is power-

bounded in R.

Proof. Let U be a neighborhood of 0% in R.
Take a subset U’ of U that is a subgroup of
R and open in R. U is a neighborhood of 0%
in R. [timelimit 30] Take a neighborhood V'
of 07 in R such that v - 6™ c U’ where v €
V' and n is a natural number. [timelimit 30]
Take a neighborhood W of 0 in R such that
w-a™ R eV where w €W and m is a natural
number. [timelimit 3]

(1) w -2 (a™ BBy 1) € U where w € W and
m,n are natural numbers.

Proof. Let w € W and m.,n be natural num-
bers. w-Ta™ eV and w - (g™ LHpm 1) =
(w-BamB) Lyl e U, qed.

L]



Lean

import topology.basic
import topology.algebra.ring
import algebra.group power
import ring theory.subring

Import tactic.ring

import for mathlib.topological rings

import
for mathlib.nonarchimedean.adic topology
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Preliminaries in the Naproche formalization

2 Natural Numbers 5 Rings
We introduce the notion (or type) of natural numbers. Together with 5.1 Axioms
an induction axiom to be stated later, the natural numbers can be
understood as the inductive type generated by 0 and +1.

In this chapter we proceed towards prime numbers and divisibility
properties of factorials and binomial coefficients.

We shall only consider commutative rings with 1. After defining a
group as a sef with further structure, we can now define a ring as a
group together with multiplication and a 1.

. Signature 130. A ring is an additive group.
2.1 Axioms g ° S
Let R denote a ring.

Signature 28. A natural number is a mathematical object.
Let n,m, k,[,,j denote natural numbers.

Definition 29. N is the collection of natural numbers.
Axiom 30 (Axiom of Infinity). N is a set.

Signature 31. 0 is a natural number.

Let z is nonzero stand for « # 0.
Signature 32. 1 is a nonzero natural number.
Signature 33. m + n is a natural number.

Axiom 34. If n is a nonzero natural number then n = m + 1 for

Signature 131. 17 is an element of R such that 1% &£ 0%,
Signature 132. Let r,y € R. = - y is an element of R.

Axiom 133. (x-By) Bz=u B (y-F2) for all 2.y,.z € R.
Axiom 134. % 1% =z for all x € R.

Axiom 135 (title = Commutativity). = -7y = y - 2 for all
x,y € H.

Axiom 136 (title = Distributivity). Let x.y.z € R. (z +7
y)-Fz=(z-R2)+7 (y -7 2).

Again readability is improved if we hide the recurring superseript # by
the above method.



Preliminaries in the Naproche formalization

The INaproche preliminaries build a highly
structured FO universe with FO-defined
notions (~ types).

INaproche provides rudimentary notions of
objects, sets and classes, that can be further
specified by axioms.

albject )
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Lean INaproche

— original, comprehensive formalization — formalization of a part of the Lean formaliza-
tion

. _ _ — ad hoc preliminaries

— unified Lean foundations (mathlib) P

— "little theory”
— within a big theory Y

— FOL with methods for first-order defined soft

— dependent type theory types

— computer language — (controlled) natural language

~ explicit imperative tactic proofs — declarative proofs with implicit proof details

- efficient proof checking _ heavy use of ATPs
- checking the perfectoid formalization takes
~ 30 minutes

Fully developed proving and programming Experimental, explorative proof of concept for
language with continuous development, and Natural Language Proof Checking
growing support, libraries and user community
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Conclusions and future work

— fully formal mathematics appears possible within a traditional (INaproche-)style of mathemat-
ical writing

— can INaproche be extended to a “big system”, with a universal axiomatic foundation and a
comprehensive library, preserving its naturalness?

( — continue work on Naproche: language, efficiency of proof checking, formalizations)
— can Naproche's natural language approach be applied to established “big systems” like Lean?

— can the translations and processings of various languages in natural formal mathematics be
supported by machine learning and LLMs? Controlled Natural Languages like the Naproche
input language may be advantageous for LLMs since they are “natural languages'.
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https://naproche.github.io/
https://github.com/naproche/FLib/blob/master/PerfectoidRings/
perfectoidrings.ftl.tex

https://isabelle.in.tum.de/website-Isabelle2024/
https://files.sketis.net/Isabelle_Naproche-20250328/
https://isabelle.in.tum.de
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