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The Project

» formalisation of matroid and greedoid theory with focus on
optimisation problems

» in the Isabelle/HOL prover
» 3 executable and verified optimisation algorithms

» yields 3 executable algorithms for minimum spanning tree and
maximum cardinality bipartite matching

» part of an Isabelle/HOL library on combinatorial optimisation
(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

» combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs
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What's a Matroid?

Definition (Independence System)

A ground set E and a family of independent sets F C P(E) is an
independence system (E, F) iff

M1. e F
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What's a Matroid?

Definition (Independence System)

A ground set E and a family of independent sets F C P(E) is an
independence system (E, F) iff

M1. 0 e F
M2. A€ Fand BC A then Be F

Definition (Matroid)
An independence system (E,F) is a matroid iff

M3. A€ Fand B € F and |B| > |A|
then 3r € B\ A. AU{z} € F

Definition (Basis)
A basis B of A C E is an inclusion-maximal independent subset of
A. A basis of the independence system F C P(FE) is a basis of E.
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» generalisation of linear independence
> algebraic point of view for some optimisation problems

> weighted matroid optimisation: for costs ¢, find X € F

maximising Y c(x). (or minimum weight basis)
rzeX




Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

» undirected (multi-)graph with edges E and costs ¢: E — R*
> forest = acyclic subgraph
> tree = forest with a single component

» spanning tree minimising/forest maximising accumulated costs
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Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

vVvvyVvVvVvyyypy

carrier set

independent sets: T' C E forming an acyclic subgraph
matroid axioms satisfied

independent sets are forests

bases are spanning trees

maximum weight forest is maximum weight independent set

minimum spanning tree is minimum weight basis




Theory of Matroids and Greedoids (Selection)

v

Whitney (1935): introduction of matroids
Tutte (1965): Lectures on Matroids, Homotopy Theorem

Edmonds (1970, 1971): greedy algorithms, Matroid
Intersection Theorem

Lawler (1975): matroid intersection algorithms

Seymour (1980): Decomposition Theorem for Regular
Matroids
Korte and Lovasz (1980): greedoids and greedy algorithms

many concepts: set system, independence system, matroid,
basis, circuit, rank, rank quotient, closure operator, greedoid,
accessibility, etc. etc.

our main reference:

>

Combinatorial Optimization (6th Edition) by Korte and Vygen



Formalisation of Matroids

» Mizar: basic matroid theory [Bancerek and Shidama 2008]

» Coq/Rocq: projective geometry and Desargues theorem
[Magaud et al. 2012]

> Isabelle/HOL: basic matroid theory [Keinholz 2018], basis for
our work

» Isabelle/HOL: Kruskal's Algorithm [Haslbeck et al. 2018],
most related

» Lean: matroid theory [Nelson et al. github, 2023 - ongoing]

» Coq/Rocq: matroid-based automated prover [Magaud et al.
2024]
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F < 0;
for i :=1 ton do
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The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(F, F, ¢)

[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]
Sort E := {ey,..., ey} such that c(e1) > c(ea) > ... > c(en);
F < 0;
for i :=1 ton do

| if FU{e;} € F then F' + F U {e;};

return I

> sort elements in descending order of costs

» process them one by one

» add to solution if possible

» blackbox independence oracle: if e € E\ F and F' € F, is
FuU{e} € F?

concrete problem: focus on implementing oracle

v



Formalisation of Algorithm

locale Best-In-Greedy = matroid: Matroid-Specs
where set-empty = set-empty for set-empty :: ’set +
fixes carrier :: ’set and indep :: ’set = bool
and sort-desc :: (’set = rat) = ’a list = ’a list
and indep-oracle::’a = ’set = bool




Formalisation (Loop)

function BestInGreedy :
(’a, ’set) best-in-greedy-state
= (’a, ’set) best-in-greedy-state
where
BestInGreedy state =
(case (carrier-list state) of
[1 = state

(x # xs) =
(if indep-oracle x (result state) then
let new-result = (set-insert x (result state)) in
BestInGreedy
(state (carrier-list := xs, result := new-result))
else BestInGreedy (state (carrier-list := xs|))))

definition initial-state c order =
(carrier-list = (sort-desc c order), result = set-empty)



Formalisation (Independence Oracle, simplified)

» ifec E\Fand FeF,is FU{e} € F?

context
assumes local-indep-oracle:
A F :’set e ’a.
[ set-inv F; indep F; subseteq F carrier; e ¢ to-set F |
—> 1indep-oracle e F +— indep (set-insert e F)
and carrier-inv: set-inv carrier



Executability

» data structures to implement sets

» operations and behaviour specified by locale

locale Set =

fixes empty :: ’s

fixes insert :: ’a = ’s = ’s
fixes delete :: ’a = ’s = ’s

fixes set i1 ’s = ’a set
fixes invar :: ’s = bool
assumes set-empty: set empty = {}
assumes set-insert: invar s
—> set(insert x s) = set s U {x}



Executability

» data structures to implement sets

» operations and behaviour specified by locale

locale Set =

fixes empty :: ’s

fixes insert :: ’a = ’s = ’s
fixes delete :: ’a = ’s = ’s

fixes set i1 ’s = ’a set
fixes invar :: ’s = bool
assumes set-empty: set empty = {}
assumes set-insert: invar s
—> set(insert x s) = set s U {x}

> abstract data types
[Wirth 1971, Hoare 1972, Liskov and Zilles 1974]
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Executability

» same for other subprocedures, e.g. oracles



Executability

» same for other subprocedures, e.g. oracles

> instantiation to obtain executable algorithms for concrete
problems, e.g. Kruskal's Algorithm (for MWF)



Executability

» same for other subprocedures, e.g. oracles

> instantiation to obtain executable algorithms for concrete
problems, e.g. Kruskal's Algorithm (for MWF)

» generic for different implementations and matroids



Executability

» same for other subprocedures, e.g. oracles

> instantiation to obtain executable algorithms for concrete
problems, e.g. Kruskal's Algorithm (for MWF)

» generic for different implementations and matroids

> stepwise refinement [Wirth 1971 + Hoare 1972]:

replace instruction (e.g. F'U {e} € F7) with more detailed
instructions (e.g. does e add a cycle to F'?)



Formalisation of the Oracle for Kruskal

definition local-indep-oracle e X =
((Card-Set2-RBT.subseteq (vset-insert e X) input-G) A
(lookup (Kruskal-E-to-G X) (fst e) # None
A lookup (Kruskal-E-to-G X) (snd e) # None—
return (dfs-impl (Kruskal-E-to-G X) (snd e)
(dfs-initial-state (fst e))) = NotReachable))
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Let (E, F) be an independence system, with ¢ : E — R,. Let
be the output of BestInGreedy. Then ¢(F)>q(E,F) - max c(X).
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» q(E,F) is the rank quotient, a number associated with every
independence system
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Properties of the Algorithm

Theorem (COSt Bound [Jenkyns 1976, Korte and Hausmann 1978] )

Let (E, F) be an independence system, with ¢ : E — R,. Let
be the output of BestInGreedy. Then ¢(F)>q(E,F) - max c(X).
€

» ¢(E,F) is the rank quotient, a number associated with every
independence system

> ¢(E,F)=1Iiff (E,F) is matroid

Corollary
Let (E,F) be a matroid, with ¢ : E — R. BestInGreedy finds X
with ¢(X') maximum.

» different proof for Corollary 2 already formalised by Haslbeck,
Lammich and Biendarra (2018, see AFP).
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Properties of the Algorithm

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978])

Let (E,F) be an independence system. There exists a cost
function ¢ : E — R s.t. for the output F' of BestInGreedy,
c(F)=q(E,F) - Qaﬁc(X).

€

Theorem (Characterisation[Rado 1957, Edmonds 1971] )

An independence system (E, F) is a matroid if and only if
BestInGreedy finds an optimal solution for the maximum weight
independent set problem for (E, F,c) for all cost functions

c: B —Ry.



Table of Contents

Greedoids



[%2]
=
o
o
D
O
| .
O



Greedoids

Definition (Greedoid)

A ground set E and a family of independent sets F C P(E) is a
greedoid iff

ML Qe F

M3. A€ Fand B € F and |B| > |4]
then 3z € B\ A. AU{z} € F



Properties of Greedoid Algorithm

Theorem (Korte and Vygen: Characterisation of
Strong-Exchange Greedoids)

We fix a greedoid (E, F). GreedoidGreedy computes a
maximum-weight basis in F for any order of iteration ey, ..., e, and
any modular cost function ¢ : P(E) — R iff (E, F) has the strong
exchange property (SEP).

theorem greedoid-characterisation:
(V ¢ es. valid-modular-weight-func E ¢ A E = set es

A distinct es

—> opt-basis ¢ (set (greedoid-greedy es c Nil)))
<—> strong-exchange-property E F
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Matroid Intersection

» two matroids (E, F;) and (E, F2)
» find X € F; N Fy with maximum |X|



Matroid Intersection

» two matroids (E, F;) and (E, F2)
» find X € F; N Fy with maximum |X|

> example: maximum cardinality bipartite matching
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Optimality Criterion

» for X € Fi N Fy, define Gx,Sx,Tx (omitted)

» use oracles



Optimality Criterion

» for X € Fi N Fy, define Gx,Sx,Tx (omitted)

» use oracles

Theorem (Optimality Criterion by Korte and Vygen)

X is a set of maximum cardinality in F1 N Fo iff Gx does not
contain a path from some s € Sx to somet € Tx.

definition is-max X = (indepl X A indep2 X A
(3 Y. indepl Y A indep2 Y A card Y > card X))

theorem maximum-characterisation:
is-max X <+—
- dpxy.x€8 A yeT A
(vwalk-bet (A1 U A2) xpy V x=1y))
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» shortest Sx-T'x-paths in Gx of the form zgy 21...y;2;
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» this is an augmentation




Algorithm 2: MaxMatroidIntersection(E, F1, F2)
[Lawler 1975, Korte and Vygen]

Initialise X < 0;

while T'rue do

compute Gx: Initialise Sx < 0; Tx < 0; Ax 1+ 0;
Ax o« 0;

forye F\ X do

if XU {y} € F1 then Sx < Sx U {y};

else for z € X do [ if X \ {z} U{y} € F1 then

Ax1 — Ax1U{(z,y)}]

if XU {y} e Fathen Tx «+ Tx U{y};

else for z € X do [ if X \ {z} U{y} € F3 then

| Axo < Ax2U{(y,2)}; ]

if 3 path leading from Sx to Tx via the edges in

AX,l U AX72 then

find a shortest path P = xgy121...ysxs leading from Sy to
Tx;

augment along P: X < X U{zq,....,xs} \ {y1,---,Ys };
| else return X as maximum cardinality set in F; N Fo;




Table of Contents

Conclusion



c
.Q
2]
=
O
c
(@)
)



Conclusion

> greedoids formalised for the first time



Conclusion

> greedoids formalised for the first time

» maximum cardinality matroid intersection



Conclusion

> greedoids formalised for the first time
» maximum cardinality matroid intersection

> uses augmentation (common in combinatorial optimisation)



Conclusion

> greedoids formalised for the first time
» maximum cardinality matroid intersection
> uses augmentation (common in combinatorial optimisation)

» algorithmic characterisations of matroids and greedoids
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Conclusion

> executable algorithms obtained

> integrated into an Isabelle/HOL library on combinatorial
optimisation

> suitable for library: part of reasoning
conducted at abstract level/algebraic point of view

» 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:
2.9K, instantiation: 3.5K)

» disadvantage: performance loss possible
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locales for stepwise refinement [Nipkow 2015, Abdulaziz,
Mehlhorn and Nipkow 2019, Maric 2020]

abstract data types by locales [Wirth 1971, Hoare 1972, Liskov
and Zilles 1974]

function package to model loops

program states as records
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