
1/37

A Formal Analysis of Algorithms for Matroids and
Greedoids

Mohammad Abdulaziz1, Thomas Ammer1,
Shriya Meenakshisundaram1, Adem Rimpapa2

1King’s College London (KCL)
2Technical University of Munich (TUM)

October 1, 2025

2/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching
▶ part of an Isabelle/HOL library on combinatorial optimisation

(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching
▶ part of an Isabelle/HOL library on combinatorial optimisation

(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover

▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching
▶ part of an Isabelle/HOL library on combinatorial optimisation

(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms

▶ yields 3 executable algorithms for minimum spanning tree and
maximum cardinality bipartite matching

▶ part of an Isabelle/HOL library on combinatorial optimisation
(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching

▶ part of an Isabelle/HOL library on combinatorial optimisation
(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching
▶ part of an Isabelle/HOL library on combinatorial optimisation

(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

3/37

The Project

▶ formalisation of matroid and greedoid theory with focus on
optimisation problems

▶ in the Isabelle/HOL prover
▶ 3 executable and verified optimisation algorithms
▶ yields 3 executable algorithms for minimum spanning tree and

maximum cardinality bipartite matching
▶ part of an Isabelle/HOL library on combinatorial optimisation

(Abdulaziz, Ammer, Dordjonova, Koller, Madlener,
Meenakshisundaram, Mehlhorn, Rimpapa)

▶ combinatorial optimisation: optimisation problems on discrete
structures, e.g. graphs

4/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

5/37

What’s a Matroid?

Definition (Independence System)
A ground set E and a family of independent sets F ⊆ P(E) is an
independence system (E,F) iff
M1. ∅ ∈ F
M2. A ∈ F and B ⊆ A then B ∈ F

Definition (Matroid)
An independence system (E,F) is a matroid iff
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

Definition (Basis)
A basis B of A ⊆ E is an inclusion-maximal independent subset of
A. A basis of the independence system F ⊆ P(E) is a basis of E.

5/37

What’s a Matroid?

Definition (Independence System)
A ground set E and a family of independent sets F ⊆ P(E) is an
independence system (E,F) iff
M1. ∅ ∈ F
M2. A ∈ F and B ⊆ A then B ∈ F

Definition (Matroid)
An independence system (E,F) is a matroid iff
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

Definition (Basis)
A basis B of A ⊆ E is an inclusion-maximal independent subset of
A. A basis of the independence system F ⊆ P(E) is a basis of E.

5/37

What’s a Matroid?

Definition (Independence System)
A ground set E and a family of independent sets F ⊆ P(E) is an
independence system (E,F) iff
M1. ∅ ∈ F
M2. A ∈ F and B ⊆ A then B ∈ F

Definition (Matroid)
An independence system (E,F) is a matroid iff
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

Definition (Basis)
A basis B of A ⊆ E is an inclusion-maximal independent subset of
A. A basis of the independence system F ⊆ P(E) is a basis of E.

5/37

What’s a Matroid?

Definition (Independence System)
A ground set E and a family of independent sets F ⊆ P(E) is an
independence system (E,F) iff
M1. ∅ ∈ F
M2. A ∈ F and B ⊆ A then B ∈ F

Definition (Matroid)
An independence system (E,F) is a matroid iff
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

Definition (Basis)
A basis B of A ⊆ E is an inclusion-maximal independent subset of
A. A basis of the independence system F ⊆ P(E) is a basis of E.

6/37

Why Matroids?

▶ generalisation of linear independence
▶ algebraic point of view for some optimisation problems
▶ weighted matroid optimisation: for costs c, find X ∈ F

maximising
∑
x∈X

c(x). (or minimum weight basis)

6/37

Why Matroids?

▶ generalisation of linear independence

▶ algebraic point of view for some optimisation problems
▶ weighted matroid optimisation: for costs c, find X ∈ F

maximising
∑
x∈X

c(x). (or minimum weight basis)

6/37

Why Matroids?

▶ generalisation of linear independence
▶ algebraic point of view for some optimisation problems

▶ weighted matroid optimisation: for costs c, find X ∈ F
maximising

∑
x∈X

c(x). (or minimum weight basis)

6/37

Why Matroids?

▶ generalisation of linear independence
▶ algebraic point of view for some optimisation problems
▶ weighted matroid optimisation: for costs c, find X ∈ F

maximising
∑
x∈X

c(x). (or minimum weight basis)

6/37

Why Matroids?

▶ generalisation of linear independence
▶ algebraic point of view for some optimisation problems
▶ weighted matroid optimisation: for costs c, find X ∈ F

maximising
∑
x∈X

c(x). (or minimum weight basis)

7/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ undirected (multi-)graph with edges E and costs c : E → R+

▶ forest = acyclic subgraph
▶ tree = forest with a single component
▶ spanning tree minimising/forest maximising accumulated costs

v1

v2 v4

v6 v3

v5

8

1

2

4

2

5

4

71

8/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph

v1

v2 v4

v6 v3

v5

8

1

2

4

2

5

4

71

9/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph

v1

v2 v4

v6 v3

v5

8

1

2

4

2

5

4

71

10/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph

v1

v2 v4

v6 v3

v5

8

1

2

4

2

5

4

71

11/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph

▶ matroid axioms satisfied
▶ independent sets are forests
▶ bases are spanning trees
▶ maximum weight forest is maximum weight independent set
▶ minimum spanning tree is minimum weight basis

11/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph
▶ matroid axioms satisfied

▶ independent sets are forests
▶ bases are spanning trees
▶ maximum weight forest is maximum weight independent set
▶ minimum spanning tree is minimum weight basis

11/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph
▶ matroid axioms satisfied
▶ independent sets are forests
▶ bases are spanning trees

▶ maximum weight forest is maximum weight independent set
▶ minimum spanning tree is minimum weight basis

11/37

Standard Example: Minimum Spanning Tree
and Maximum Weight Forest

▶ carrier set E
▶ independent sets: T ⊆ E forming an acyclic subgraph
▶ matroid axioms satisfied
▶ independent sets are forests
▶ bases are spanning trees
▶ maximum weight forest is maximum weight independent set
▶ minimum spanning tree is minimum weight basis

12/37

Theory of Matroids and Greedoids (Selection)

▶ Whitney (1935): introduction of matroids
▶ Tutte (1965): Lectures on Matroids, Homotopy Theorem
▶ Edmonds (1970, 1971): greedy algorithms, Matroid

Intersection Theorem
▶ Lawler (1975): matroid intersection algorithms
▶ Seymour (1980): Decomposition Theorem for Regular

Matroids
▶ Korte and Lovasz (1980): greedoids and greedy algorithms
▶ many concepts: set system, independence system, matroid,

basis, circuit, rank, rank quotient, closure operator, greedoid,
accessibility, etc. etc.

our main reference:
▶ Combinatorial Optimization (6th Edition) by Korte and Vygen

13/37

Formalisation of Matroids

▶ Mizar: basic matroid theory [Bancerek and Shidama 2008]
▶ Coq/Rocq: projective geometry and Desargues theorem

[Magaud et al. 2012]
▶ Isabelle/HOL: basic matroid theory [Keinholz 2018], basis for

our work
▶ Isabelle/HOL: Kruskal’s Algorithm [Haslbeck et al. 2018],

most related
▶ Lean: matroid theory [Nelson et al. github, 2023 - ongoing]
▶ Coq/Rocq: matroid-based automated prover [Magaud et al.

2024]

14/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one
▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?
▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one
▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?
▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs

▶ process them one by one
▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?
▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one

▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?
▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one
▶ add to solution if possible

▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is
F ∪ {e} ∈ F?

▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one
▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?

▶ concrete problem: focus on implementing oracle

15/37

The Best-In-Greedy Algorithm

Algorithm 1: BestInGreedy(E,F , c)
[Rado 1957, Edmonds 1971, Jenkyns 1976, Korte and Hausmann 1978]

Sort E := {e1, . . . , en} such that c(e1) ≥ c(e2) ≥ . . . ≥ c(en);
F ← ∅;
for i := 1 to n do

if F ∪ {ei} ∈ F then F ← F ∪ {ei};
return F ;

▶ sort elements in descending order of costs
▶ process them one by one
▶ add to solution if possible
▶ blackbox independence oracle: if e ∈ E \ F and F ∈ F , is

F ∪ {e} ∈ F?
▶ concrete problem: focus on implementing oracle

16/37

Formalisation of Algorithm

locale Best-In-Greedy = matroid: Matroid-Specs
where set-empty = set-empty for set-empty :: ’set +
fixes carrier :: ’set and indep :: ’set ⇒ bool

and sort-desc :: (’set ⇒ rat) ⇒ ’a list ⇒ ’a list
and indep-oracle::’a ⇒ ’set ⇒ bool

17/37

Formalisation (Loop)

function BestInGreedy ::
(’a, ’set) best-in-greedy-state
⇒ (’a, ’set) best-in-greedy-state

where
BestInGreedy state =
(case (carrier-list state) of
[] ⇒ state |
(x # xs) ⇒
(if indep-oracle x (result state) then

let new-result = (set-insert x (result state)) in
BestInGreedy
(state Lcarrier-list := xs, result := new-resultM)

else BestInGreedy (state Lcarrier-list := xsM)))

definition initial-state c order =
Lcarrier-list = (sort-desc c order), result = set-emptyM

18/37

Formalisation (Independence Oracle, simplified)

▶ if e ∈ E \ F and F ∈ F , is F ∪ {e} ∈ F?

context
assumes local-indep-oracle:∧

F :: ’set e :: ’a.
J set-inv F; indep F; subseteq F carrier; e /∈ to-set F K
=⇒ indep-oracle e F ←→ indep (set-insert e F)

and carrier-inv: set-inv carrier

19/37

Executability

▶ data structures to implement sets
▶ operations and behaviour specified by locale

locale Set =
fixes empty :: ’s
fixes insert :: ’a ⇒ ’s ⇒ ’s
fixes delete :: ’a ⇒ ’s ⇒ ’s
...
fixes set :: ’s ⇒ ’a set
fixes invar :: ’s ⇒ bool
assumes set-empty: set empty = {}
assumes set-insert: invar s

=⇒ set(insert x s) = set s ∪ {x}
...

▶ abstract data types
[Wirth 1971, Hoare 1972, Liskov and Zilles 1974]

19/37

Executability

▶ data structures to implement sets
▶ operations and behaviour specified by locale

locale Set =
fixes empty :: ’s
fixes insert :: ’a ⇒ ’s ⇒ ’s
fixes delete :: ’a ⇒ ’s ⇒ ’s
...
fixes set :: ’s ⇒ ’a set
fixes invar :: ’s ⇒ bool
assumes set-empty: set empty = {}
assumes set-insert: invar s

=⇒ set(insert x s) = set s ∪ {x}
...

▶ abstract data types
[Wirth 1971, Hoare 1972, Liskov and Zilles 1974]

20/37

Executability

▶ same for other subprocedures, e.g. oracles
▶ instantiation to obtain executable algorithms for concrete

problems, e.g. Kruskal’s Algorithm (for MWF)
▶ generic for different implementations and matroids
▶ stepwise refinement [Wirth 1971 + Hoare 1972]:

replace instruction (e.g. F ∪ {e} ∈ F?) with more detailed
instructions (e.g. does e add a cycle to F?)

20/37

Executability

▶ same for other subprocedures, e.g. oracles

▶ instantiation to obtain executable algorithms for concrete
problems, e.g. Kruskal’s Algorithm (for MWF)

▶ generic for different implementations and matroids
▶ stepwise refinement [Wirth 1971 + Hoare 1972]:

replace instruction (e.g. F ∪ {e} ∈ F?) with more detailed
instructions (e.g. does e add a cycle to F?)

20/37

Executability

▶ same for other subprocedures, e.g. oracles
▶ instantiation to obtain executable algorithms for concrete

problems, e.g. Kruskal’s Algorithm (for MWF)

▶ generic for different implementations and matroids
▶ stepwise refinement [Wirth 1971 + Hoare 1972]:

replace instruction (e.g. F ∪ {e} ∈ F?) with more detailed
instructions (e.g. does e add a cycle to F?)

20/37

Executability

▶ same for other subprocedures, e.g. oracles
▶ instantiation to obtain executable algorithms for concrete

problems, e.g. Kruskal’s Algorithm (for MWF)
▶ generic for different implementations and matroids

▶ stepwise refinement [Wirth 1971 + Hoare 1972]:
replace instruction (e.g. F ∪ {e} ∈ F?) with more detailed
instructions (e.g. does e add a cycle to F?)

20/37

Executability

▶ same for other subprocedures, e.g. oracles
▶ instantiation to obtain executable algorithms for concrete

problems, e.g. Kruskal’s Algorithm (for MWF)
▶ generic for different implementations and matroids
▶ stepwise refinement [Wirth 1971 + Hoare 1972]:

replace instruction (e.g. F ∪ {e} ∈ F?) with more detailed
instructions (e.g. does e add a cycle to F?)

21/37

Formalisation of the Oracle for Kruskal

definition local-indep-oracle e X =
((Card-Set2-RBT.subseteq (vset-insert e X) input-G) ∧
(lookup (Kruskal-E-to-G X) (fst e) ̸= None
∧ lookup (Kruskal-E-to-G X) (snd e) ̸= None−→

return (dfs-impl (Kruskal-E-to-G X) (snd e)
(dfs-initial-state (fst e))) = NotReachable))

22/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

23/37

Properties of the Algorithm

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system, with c : E → R+. Let F
be the output of BestInGreedy. Then c(F)≥q(E,F) ·max

X∈F
c(X).

▶ q(E,F) is the rank quotient, a number associated with every
independence system

▶ q(E,F) = 1 iff (E,F) is matroid

Corollary
Let (E,F) be a matroid, with c : E → R+. BestInGreedy finds X
with c(X) maximum.

▶ different proof for Corollary 2 already formalised by Haslbeck,
Lammich and Biendarra (2018, see AFP).

23/37

Properties of the Algorithm

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system, with c : E → R+. Let F
be the output of BestInGreedy. Then c(F)≥q(E,F) ·max

X∈F
c(X).

▶ q(E,F) is the rank quotient, a number associated with every
independence system

▶ q(E,F) = 1 iff (E,F) is matroid

Corollary
Let (E,F) be a matroid, with c : E → R+. BestInGreedy finds X
with c(X) maximum.

▶ different proof for Corollary 2 already formalised by Haslbeck,
Lammich and Biendarra (2018, see AFP).

23/37

Properties of the Algorithm

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system, with c : E → R+. Let F
be the output of BestInGreedy. Then c(F)≥q(E,F) ·max

X∈F
c(X).

▶ q(E,F) is the rank quotient, a number associated with every
independence system

▶ q(E,F) = 1 iff (E,F) is matroid

Corollary
Let (E,F) be a matroid, with c : E → R+. BestInGreedy finds X
with c(X) maximum.

▶ different proof for Corollary 2 already formalised by Haslbeck,
Lammich and Biendarra (2018, see AFP).

23/37

Properties of the Algorithm

Theorem (Cost Bound [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system, with c : E → R+. Let F
be the output of BestInGreedy. Then c(F)≥q(E,F) ·max

X∈F
c(X).

▶ q(E,F) is the rank quotient, a number associated with every
independence system

▶ q(E,F) = 1 iff (E,F) is matroid

Corollary
Let (E,F) be a matroid, with c : E → R+. BestInGreedy finds X
with c(X) maximum.

▶ different proof for Corollary 2 already formalised by Haslbeck,
Lammich and Biendarra (2018, see AFP).

24/37

Properties of the Algorithm

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system. There exists a cost
function c : E → R+ s.t. for the output F of BestInGreedy,
c(F)=q(E,F) ·max

X∈F
c(X).

Theorem (Characterisation[Rado 1957, Edmonds 1971])
An independence system (E,F) is a matroid if and only if
BestInGreedy finds an optimal solution for the maximum weight
independent set problem for (E,F , c) for all cost functions
c : E → R+.

24/37

Properties of the Algorithm

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system. There exists a cost
function c : E → R+ s.t. for the output F of BestInGreedy,
c(F)=q(E,F) ·max

X∈F
c(X).

Theorem (Characterisation[Rado 1957, Edmonds 1971])
An independence system (E,F) is a matroid if and only if
BestInGreedy finds an optimal solution for the maximum weight
independent set problem for (E,F , c) for all cost functions
c : E → R+.

24/37

Properties of the Algorithm

Theorem (Tightness [Jenkyns 1976, Korte and Hausmann 1978])
Let (E,F) be an independence system. There exists a cost
function c : E → R+ s.t. for the output F of BestInGreedy,
c(F)=q(E,F) ·max

X∈F
c(X).

Theorem (Characterisation[Rado 1957, Edmonds 1971])
An independence system (E,F) is a matroid if and only if
BestInGreedy finds an optimal solution for the maximum weight
independent set problem for (E,F , c) for all cost functions
c : E → R+.

25/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

26/37

Greedoids

Definition (Greedoid)
A ground set E and a family of independent sets F ⊆ P(E) is a
greedoid iff
M1. ∅ ∈ F
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

26/37

Greedoids

Definition (Greedoid)
A ground set E and a family of independent sets F ⊆ P(E) is a
greedoid iff
M1. ∅ ∈ F
M3. A ∈ F and B ∈ F and |B| > |A|

then ∃x ∈ B \A. A ∪ {x} ∈ F

27/37

Properties of Greedoid Algorithm

Theorem (Korte and Vygen: Characterisation of
Strong-Exchange Greedoids)
We fix a greedoid (E,F). GreedoidGreedy computes a
maximum-weight basis in F for any order of iteration e1, ..., en and
any modular cost function c : P(E)→ R iff (E,F) has the strong
exchange property (SEP).

theorem greedoid-characterisation:
(∀ c es. valid-modular-weight-func E c ∧ E = set es

∧ distinct es
−→ opt-basis c (set (greedoid-greedy es c Nil)))

←→ strong-exchange-property E F

28/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

29/37

Matroid Intersection

▶ two matroids (E,F1) and (E,F2)

▶ find X ∈ F1 ∩ F2 with maximum |X|
▶ example: maximum cardinality bipartite matching

29/37

Matroid Intersection

▶ two matroids (E,F1) and (E,F2)

▶ find X ∈ F1 ∩ F2 with maximum |X|
▶ example: maximum cardinality bipartite matching

29/37

Matroid Intersection

▶ two matroids (E,F1) and (E,F2)

▶ find X ∈ F1 ∩ F2 with maximum |X|

▶ example: maximum cardinality bipartite matching

29/37

Matroid Intersection

▶ two matroids (E,F1) and (E,F2)

▶ find X ∈ F1 ∩ F2 with maximum |X|
▶ example: maximum cardinality bipartite matching

30/37

Optimality Criterion

▶ for X ∈ F1 ∩ F2, define GX , SX , TX (omitted)
▶ use oracles

Theorem (Optimality Criterion by Korte and Vygen)
X is a set of maximum cardinality in F1 ∩ F2 iff GX does not
contain a path from some s ∈ SX to some t ∈ TX .

definition is-max X = (indep1 X ∧ indep2 X ∧
(∄ Y. indep1 Y ∧ indep2 Y ∧ card Y > card X))

theorem maximum-characterisation:
is-max X ←→
¬ (∃ p x y. x ∈ S ∧ y ∈ T ∧

(vwalk-bet (A1 ∪ A2) x p y ∨ x = y))

30/37

Optimality Criterion

▶ for X ∈ F1 ∩ F2, define GX , SX , TX (omitted)
▶ use oracles

Theorem (Optimality Criterion by Korte and Vygen)
X is a set of maximum cardinality in F1 ∩ F2 iff GX does not
contain a path from some s ∈ SX to some t ∈ TX .

definition is-max X = (indep1 X ∧ indep2 X ∧
(∄ Y. indep1 Y ∧ indep2 Y ∧ card Y > card X))

theorem maximum-characterisation:
is-max X ←→
¬ (∃ p x y. x ∈ S ∧ y ∈ T ∧

(vwalk-bet (A1 ∪ A2) x p y ∨ x = y))

30/37

Optimality Criterion

▶ for X ∈ F1 ∩ F2, define GX , SX , TX (omitted)
▶ use oracles

Theorem (Optimality Criterion by Korte and Vygen)
X is a set of maximum cardinality in F1 ∩ F2 iff GX does not
contain a path from some s ∈ SX to some t ∈ TX .

definition is-max X = (indep1 X ∧ indep2 X ∧
(∄ Y. indep1 Y ∧ indep2 Y ∧ card Y > card X))

theorem maximum-characterisation:
is-max X ←→
¬ (∃ p x y. x ∈ S ∧ y ∈ T ∧

(vwalk-bet (A1 ∪ A2) x p y ∨ x = y))

31/37

Intersection Algorithm: Idea

▶ shortest SX -TX -paths in GX of the form x0y1x1...yixi

▶ these are augmenting sequences: for X ∈ F1 ∩ F2,
X ∪ {x0, ..., xi} \ {y1, ..., yi} ∈ F1 ∩ F2

▶ this is an augmentation

31/37

Intersection Algorithm: Idea

▶ shortest SX -TX -paths in GX of the form x0y1x1...yixi

▶ these are augmenting sequences: for X ∈ F1 ∩ F2,
X ∪ {x0, ..., xi} \ {y1, ..., yi} ∈ F1 ∩ F2

▶ this is an augmentation

31/37

Intersection Algorithm: Idea

▶ shortest SX -TX -paths in GX of the form x0y1x1...yixi

▶ these are augmenting sequences: for X ∈ F1 ∩ F2,
X ∪ {x0, ..., xi} \ {y1, ..., yi} ∈ F1 ∩ F2

▶ this is an augmentation

31/37

Intersection Algorithm: Idea

▶ shortest SX -TX -paths in GX of the form x0y1x1...yixi

▶ these are augmenting sequences: for X ∈ F1 ∩ F2,
X ∪ {x0, ..., xi} \ {y1, ..., yi} ∈ F1 ∩ F2

▶ this is an augmentation

31/37

Intersection Algorithm: Idea

▶ shortest SX -TX -paths in GX of the form x0y1x1...yixi

▶ these are augmenting sequences: for X ∈ F1 ∩ F2,
X ∪ {x0, ..., xi} \ {y1, ..., yi} ∈ F1 ∩ F2

▶ this is an augmentation

32/37

Algorithm 2: MaxMatroidIntersection(E, F1, F2)
[Lawler 1975, Korte and Vygen]

Initialise X ← ∅;
while True do

compute GX : Initialise SX ← ∅; TX ← ∅; AX,1 ← ∅;
AX,2 ← ∅;
for y ∈ E \X do

if X ∪ {y} ∈ F1 then SX ← SX ∪ {y};
else for x ∈ X do [if X \ {x} ∪ {y} ∈ F1 then
AX,1 ← AX,1 ∪ {(x, y)};]
if X ∪ {y} ∈ F2 then TX ← TX ∪ {y};
else for x ∈ X do [if X \ {x} ∪ {y} ∈ F2 then
AX,2 ← AX,2 ∪ {(y, x)};]

if ∃ path leading from SX to TX via the edges in
AX,1 ∪AX,2 then

find a shortest path P = x0y1x1...ysxs leading from SX to
TX ;
augment along P : X ← X ∪ {x0, ..., xs} \ {y1, ..., ys};

else return X as maximum cardinality set in F1 ∩ F2;

33/37

Table of Contents

Introduction

Matroids

Best-In-Greedy Algorithm

Properties of the Algorithm

Greedoids

Matroid Intersection

Conclusion

34/37

Conclusion

▶ greedoids formalised for the first time
▶ maximum cardinality matroid intersection
▶ uses augmentation (common in combinatorial optimisation)
▶ algorithmic characterisations of matroids and greedoids

34/37

Conclusion

▶ greedoids formalised for the first time

▶ maximum cardinality matroid intersection
▶ uses augmentation (common in combinatorial optimisation)
▶ algorithmic characterisations of matroids and greedoids

34/37

Conclusion

▶ greedoids formalised for the first time
▶ maximum cardinality matroid intersection

▶ uses augmentation (common in combinatorial optimisation)
▶ algorithmic characterisations of matroids and greedoids

34/37

Conclusion

▶ greedoids formalised for the first time
▶ maximum cardinality matroid intersection
▶ uses augmentation (common in combinatorial optimisation)

▶ algorithmic characterisations of matroids and greedoids

34/37

Conclusion

▶ greedoids formalised for the first time
▶ maximum cardinality matroid intersection
▶ uses augmentation (common in combinatorial optimisation)
▶ algorithmic characterisations of matroids and greedoids

35/37

Conclusion

▶ executable algorithms obtained
▶ integrated into an Isabelle/HOL library on combinatorial

optimisation
▶ suitable for library: part of reasoning

conducted at abstract level/algebraic point of view
▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:

2.9K, instantiation: 3.5K)
▶ disadvantage: performance loss possible

35/37

Conclusion

▶ executable algorithms obtained

▶ integrated into an Isabelle/HOL library on combinatorial
optimisation

▶ suitable for library: part of reasoning
conducted at abstract level/algebraic point of view

▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:
2.9K, instantiation: 3.5K)

▶ disadvantage: performance loss possible

35/37

Conclusion

▶ executable algorithms obtained
▶ integrated into an Isabelle/HOL library on combinatorial

optimisation

▶ suitable for library: part of reasoning
conducted at abstract level/algebraic point of view

▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:
2.9K, instantiation: 3.5K)

▶ disadvantage: performance loss possible

35/37

Conclusion

▶ executable algorithms obtained
▶ integrated into an Isabelle/HOL library on combinatorial

optimisation
▶ suitable for library: part of reasoning

conducted at abstract level/algebraic point of view

▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:
2.9K, instantiation: 3.5K)

▶ disadvantage: performance loss possible

35/37

Conclusion

▶ executable algorithms obtained
▶ integrated into an Isabelle/HOL library on combinatorial

optimisation
▶ suitable for library: part of reasoning

conducted at abstract level/algebraic point of view
▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:

2.9K, instantiation: 3.5K)

▶ disadvantage: performance loss possible

35/37

Conclusion

▶ executable algorithms obtained
▶ integrated into an Isabelle/HOL library on combinatorial

optimisation
▶ suitable for library: part of reasoning

conducted at abstract level/algebraic point of view
▶ 17.4K lines (matroids, greedoids, algorithms: 11K, graphs:

2.9K, instantiation: 3.5K)
▶ disadvantage: performance loss possible

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]
▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:

▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]
▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]

▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,
Mehlhorn and Nipkow 2019, Maric 2020]

▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov
and Zilles 1974]

▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]

▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov
and Zilles 1974]

▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]

▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]
▶ function package to model loops

▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]
▶ function package to model loops
▶ program states as records

36/37

Conclusion

▶ methodology:
▶ oracles: stepwise refinement [Wirth 1971, Hoare 1972]
▶ locales for stepwise refinement [Nipkow 2015, Abdulaziz,

Mehlhorn and Nipkow 2019, Maric 2020]
▶ abstract data types by locales [Wirth 1971, Hoare 1972, Liskov

and Zilles 1974]
▶ function package to model loops
▶ program states as records

37/37

THANK YOU!

Mohammad Abdulaziz Thomas Ammer

Shriya Meenakshisundaram Adem Rimpapa

	Introduction
	Matroids
	Best-In-Greedy Algorithm
	Properties of the Algorithm
	Greedoids
	Matroid Intersection
	Conclusion

