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The Problem (1900) z

Is there an algorithm to determine if a given

Diophantine equation has a solution in the integers?

Parametric equation Set of squares

49

1
2 4
a — =0 “
Yy 5

/ \ o

Parameter a  Unknown i & ™
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The OG Solution (1970)

Every recursively enumerable set is Diophantine.

Hence, there Is no algorithm that can

decide all Diophantine equations.

More generally: More specifically:

Hilbert Tenth's Problem over Q ? Hilbert Tenth's Problem for
bounded complexity ?

(v,0)N is a universal pair if any Diophantine set can be represented by a

DEF

polynomial with 1) at most v unknowns in N, ii) total degree at most 6.
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Complicated Diophantine Equations

s the set of primes Diophantine?

Yes, primes are recursively enumerable. Explicitly:

(k+2){1—[wz+h+j-—q]2
~((gk +2g +k+1)(h+3) +h—2]°
—Rn+p+q+z—e¢?
~ [16(k + 1)3(k +2)(n+ 1)? +1 - f?]°
- [Ee+2)(a+1)*+1 —02]2
- [(@®-1)y* +1 ——:1:2]2
— [16r%y*(a® ~ 1) +1 - u?]”
—n+l+v—y?
— [((a.+u2(u,2 —a))?—1)(n+4dy)* +1- (:r:+cu.)2]2
- [(@®*-1)? +1 —m2]2
- [q+y(a—p—1)+s(2ap+2a—p2—2p—2)—9:]2
~ [z +pl(a —p) + t(2ap — p* — 1) — pm]”
—lai+k+1-1-1)?
- [p+l(a+-n—1)+b(20n+2a—n2-—2n-»2)—m]2}.
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Complicated Diophantine Equations

Collatz Problem Other “Diophantine” Problems
f(n) = 2 if 7 even - Goldbach Conjecture
3n+1, else
— ABC Conjecture

= 36-page polynomial

, - Riemann Hypothesis
Collatz Conjecture:.
This polynomial encodes the
Diophantine set N.

DEF (v,0)N is a universal pair if any Diophantine set can be represented by a

polynomial with i) at most v unknowns in N, ii) total degree at most 6.
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Universal Pairs over N and Z

/ e \
- Z..
JyeN.a=y+3 o A
a=(z"4+y +z2z"°+w")+3
Four Squares Theorem: Basic translation of pairs:

Any n € N is given by
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Universal Pairs over N and Z

/ = \
dx, y, z,w € Z.

dJyeN.a=y+3
a=(z*+y*+2°+w?)+3

Four Squares Theorem: Basic translation of pairs:

Any n € N is given by
n =224y + 22 + w? (v, 0)n = (4v,20)z

Ex: (58,4)ny (9,1.64-10%)y



Universal Pairs over N and Z

/ e \
dx, y, z, w € Z.
JyeN.a=y—+ 3 B
Y Y a=(z2+y®+ 22+ w?) +3
Four Squares Theorem: Basic translation of pairs:

Any n € N is given by
4v, 2
n=z+y? + 2% + w? o)y = (4,20)z

Ex: (58,4)ny (9,1.64-10%)y

For an axiomatizable theory T and any proposition P, if P has a proof in T, then

P has another proof consisting of 100 additions and multiplications of integers.
[Jones 1982]



First Nontrivial Universal Pair in Z

Let (v, §)n be universal. Then

THM
(11,7(v,9)),
IS universal, where
n(v,6) = 15616 + 233856 & + 233952 6 (26 + 1)1 + 467712 §2 (26 + 1)¥ 1,
The pair

COR (11,1681 043 235226 619916 301 182624 511 918 527 834 137 733 707 408 448 335 539 840)
~ (11,1.68105 - 10°%)

IS universal.



Optimizing universality

b(a, f) :=1+32a+1)f U:=2XY
B(a, f) = B b° V = dgwY
M(a, f) = masl(b, B, n) A:=U(V +1)
No(a, f) 1= BTV B:=2X +1
Ni(a, f) i= 4BEFDEHITH C:=B+(A-2)h
N(&,f)3:N0N1 D:(A2_4)Cz+4
C(a7f7g) :1+GB;g E:: Csz
j(: = 1
(0 ,9) = valuele, %) Fi=4(A% — 4)E? 41
8(a, f,9) == g+ 2KNo -
vl G:=14+CDF —2(A+2)(A-2)°E
Na ) =M+ @-DBT N o ob 90— DNOF
R(a, f,9) = (S +T+1)N+T+1 = ;L +2( y—1)
X(a, f,g9) == (N —1)R I:=(G*-1)H*+1
Y(a, f) := N? J =X+ 14+ k(U?*V -2)

Any chance Isabelle could help..?

DFI O
(UV? —4)J? +4 €0
(24 - 5) | (3bwC — 2(b*w” — 1))

C 2 1
R Y — .
(J ) = T6g2

A =D

Ay := DFI

Az = (U*V? —4)J? + 4
S:=2A-5
T := 3bwC — 2(b%w? — 1)



The General Strategy

Given: Universal Pair (v, §)n and a Diophantine Set A
ac A

1, ...,y € NY : Pa(a,y1,---,y,) =0
where deg Py < ¢

T

.Intermediate representations..

1

y1,...,y11 € Z"7 : Pla,yr,...,y11) =0
where deg P < (v, d)
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Project Organisation

Core Student Workgroup at ENS Paris

|sabelle workshop followed by throwing students in at the deep end

Structure of the mathematics emerged through formalisation

Mativasevich
Coding Theorem Bridge Theorem Robinson
Polynomial
9 Unknowns Three Squares
inZ and N Theorem

1 I

11 Unknownsin Z

!

Universal Pair
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Polynomials in Isabelle

Isabelle datatype mpoly for multivariate polynomials

Example: 1 + 3 * (2 * Var 0 + 1) * Var 1

)u«l»l

No

b(a,f):=14+312a+1)f
B(a, f) = B0’
M(a, f) := mask(b, B, n)
Noa, f) = BETD+
Ni(a, f) i= 4BEIHDED) +1
N(a, f) := NoN;
cla,f,g):=1+aB+g
K(a, f,g) = value(e, B)
8(a, f,9) =g +2XNo
)
)
)
)



Polynomials in Isabelle

Isabelle datatype mpoly for multivariate polynomials

Example: 1 + 3 * (2 * Var 0 + 1) * Var 1

Proved correctness theorem: Afn.
insertion fn b poly = coding variables.b (fn 0) (fn 1)

b(a,f) :=1+3Q2a+1f Command poly extract
B(a, f) := B B° o
M (a, f) := mask(b, B, n) definition b :: "int = int = int" where
No(a, f) = BE+D+1 "baf=14+ 3*%(2%a + 1) * f"
Ni(a, f) := AR (25+1)(+1)" +1
N(a, f) := NoVy poly extract b
c(a,f,9):=1+aB+yg consts
K(a, f,g) := value(c, B) b poly :: "int mpoly"
8(a, f,9) =g+ 2K Ny Generated definition: 1 + 3 * (2 * Var 0 + 1) * Var 1
)
)
)
)

Further command poly degree
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“In-situ” Formalisation

Formalized in its natural environment: A maths department
Manuscript & Formalisation developed at the same time

Benefits of the collaboration ITP <-> Researcher:
Fixing Bugs
Streamlining arguments

Precise Dependencies
Experimenting with the proof

|sabelle works as a proof assistant
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Future Work

|sabelle Feature Wishlist: Blueprint Tool

Means continuing the mathematical research!

2<rpv<107?

Universal Pairs for multiple parameters

We unlock new research methods for researching
extensions of Hilbert's Tenth Problem
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