
A stronger solution to Hilbert‘s Tenth

Problem, and its in-situ formalization

Jonas Bayer and Marco David



A stronger solution to Hilbert‘s Tenth

Problem, and its in-situ formalization

Jonas Bayer and Marco David

and Yuri Matiyasevich and Dierk Schleicher



A stronger solution to Hilbert‘s Tenth

Problem, and its in-situ formalization

Jonas Bayer and Marco David

and Yuri Matiyasevich and Dierk Schleicher
and Malte Haßler and Thomas Serafini and Simon Dubischar



A stronger solution to Hilbert‘s Tenth

Problem, and its in-situ formalization

Jonas Bayer and Marco David

and Yuri Matiyasevich and Dierk Schleicher

and Timothé Ringeard and Xavier Pigé and Anna Danilkin and Mathis 
Bouverot-Dupuis and Paul Wang and Quentin Vermande and Theo 
André and Loïc Chevalier and Charlotte Dorneich and Eva Brenner 
and Chris Ye and Kevin Lee and Annie Yao

and Malte Haßler and Thomas Serafini and Simon Dubischar



The Problem (1900)

Is there an algorithm to determine if a given 

Diophantine equation has a solution in the integers? 



The Problem (1900)

Is there an algorithm to determine if a given 

Diophantine equation has a solution in the integers? 

Parametric equation



The Problem (1900)

Is there an algorithm to determine if a given 

Diophantine equation has a solution in the integers? 

Parametric equation

UnknownParameter



The Problem (1900)

Is there an algorithm to determine if a given 

Diophantine equation has a solution in the integers? 

1 4

16
0

49

…
25

Set of squaresParametric equation

UnknownParameter



The OG Solution (1970)

Every recursively enumerable set is Diophantine.



The OG Solution (1970)

Every recursively enumerable set is Diophantine.

Hence, there is no algorithm that can

decide all Diophantine equations.



The OG Solution (1970)

Every recursively enumerable set is Diophantine.

Hence, there is no algorithm that can

decide all Diophantine equations.

More generally:

Hilbert Tenth’s Problem over ℚ ?



The OG Solution (1970)

Every recursively enumerable set is Diophantine.

Hence, there is no algorithm that can

decide all Diophantine equations.

More generally:

Hilbert Tenth’s Problem over ℚ ?

More specifically:

Hilbert Tenth’s Problem for
bounded complexity ?



The OG Solution (1970)

Every recursively enumerable set is Diophantine.

Hence, there is no algorithm that can

decide all Diophantine equations.

More generally:

Hilbert Tenth’s Problem over ℚ ?

More specifically:

Hilbert Tenth’s Problem for
bounded complexity ?

DEF
is a universal pair if any Diophantine set can be represented by a 

polynomial with   i)  at most ν unknowns in ℕ,   ii)  total degree at most δ.
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Complicated Diophantine Equations

Yes, primes are recursively enumerable. Explicitly:

Is the set of primes Diophantine?
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Universal Pairs over ℕ and ℤ

Four Squares Theorem:
Any            is given by 

Basic translation of pairs:

! For an axiomatizable theory T and any proposition P, if P has a proof in T, then 
P has another proof consisting of 100 additions and multiplications of integers.

[Jones 1982] 

Ex:



First Nontrivial Universal Pair in ℤ

THM
Let              be universal. Then 

is universal, where 

                 .

COR
The pair 

is universal.



Optimizing universality

Any chance Isabelle could help…?



The General Strategy

…intermediate representations…

Given: Universal Pair      and a Diophantine Set A
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Project Organisation

Core Student Workgroup at ENS Paris

Isabelle workshop followed by throwing students in at the deep end

Coding Theorem Bridge Theorem

9 Unknowns 
in ℤ and ℕ

11 Unknowns in ℤ

Universal Pair

Three Squares 
Theorem

Mativasevich 
Robinson 

Polynomial

Structure of the mathematics emerged through formalisation
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Polynomials in Isabelle

Command poly_extract

Isabelle datatype mpoly for multivariate polynomials

Example: 

Further command poly_degree
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“In-situ” Formalisation

Formalized in its natural environment: A maths department
Manuscript & Formalisation developed at the same time

Benefits of the collaboration ITP <-> Researcher: 
Fixing Bugs
Streamlining arguments
Precise Dependencies
Experimenting with the proof

Isabelle works as a proof assistant
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Future Work

Means continuing the mathematical research!

Universal Pairs for multiple parameters

Isabelle Feature Wishlist: Blueprint Tool

We unlock new research methods for researching 
extensions of Hilbert’s Tenth Problem
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