
Mario Carneiro and Emily Riehl

Chalmers University of Technology
Johns Hopkins University

Formalizing colimits in Cat

ITP 2025



An unlikely partnership

This project came out of the semester on formal mathematics at the Hausdorff Institute
of Mathematics in summer 2024.

• I am a Lean formalization expert who took a category theory class once.
• Emily is an ∞-category theorist with a bit of Lean experience.

So I suggested that we try to define the fundamentals of ∞-category theory in Lean.

As it turns out, ∞-categories are complicated to define, but you can abstract the details
and define the rules that a reasonable definition of ∞-categories should satisfy; this is
called an ∞-cosmos and the ∞-cosmos project came out of this.

https://emilyriehl.github.io/infinity-cosmos/


The ∞-cosmos project: overview

The ∞-cosmos project aims to use a convenient abstraction boundary to formalize some
core category theory of ∞-categories for immediate use in Mathlib.

Mathlib knows definitions of
• ∞-groupoid, that is a weak infinite-dimensional category with all morphisms

invertible, modeled as Kan complexes
• ∞-category, that is a weak infinite-dimensional category with non-invertible

morphisms only allowed in dimension one, modeled as quasi-categories
But very few theorems have been formalized about these notions. In particular, earlier
this year, Joël Riou noticed that the definition of Kan complexes was wrong!



The ∞-cosmos project: overview

The ∞-cosmos project aims to use a convenient abstraction boundary to formalize some
core category theory of ∞-categories for immediate use in Mathlib.

Mathlib knows definitions of
• ∞-groupoid, that is a weak infinite-dimensional category with all morphisms

invertible, modeled as Kan complexes
• ∞-category, that is a weak infinite-dimensional category with non-invertible

morphisms only allowed in dimension one, modeled as quasi-categories
But very few theorems have been formalized about these notions. In particular, earlier
this year, Joël Riou noticed that the definition of Kan complexes was wrong!



The ∞-cosmos project: status



From ∞-categories to 2-categories

There is a 2-category (aka strict bicategory) whose objects are ∞-categories, whose
morphisms are ∞-functors, and whose 2-cells are ∞-natural transformations. This
simplifies matters because we can make use of the existing work on 2-categories in
Mathlib.

Key to the construction is the nerve of a category, and its left adjoint the homotopy
functor.

Mathlib already had the definition of nerve; this talk will be about how we constructed
the homotopy functor.



From ∞-categories to 2-categories

There is a 2-category (aka strict bicategory) whose objects are ∞-categories, whose
morphisms are ∞-functors, and whose 2-cells are ∞-natural transformations. This
simplifies matters because we can make use of the existing work on 2-categories in
Mathlib.

Key to the construction is the nerve of a category, and its left adjoint the homotopy
functor.

Mathlib already had the definition of nerve; this talk will be about how we constructed
the homotopy functor.



Simplicial sets

The simplex category, Δ, is the category which has an object for each natural number
denoted [𝑛] thought of as Fin(𝑛 + 1), and whose morphisms [𝑛] → [𝑚] are monotone
maps Fin(𝑛 + 1) → Fin(𝑚 + 1).

For example, there is one morphism 𝑖 ∶ [1] → [0] which sends both 0 and 1 to 0, and two
morphisms 𝑠, 𝑡 ∶ [0] → [1] defined by 𝑠(0) = 0 and 𝑡(0) = 1.

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type.

So a simplicial set has sets 𝑋[0], 𝑋[1], 𝑋[2], etc. which we interpret as “objects”,
“morphisms” and in general “𝑛-cells”, and the functions 𝑋(𝑠), 𝑋(𝑡) ∶ 𝑋[1] → 𝑋[0] pick
out the source and target of a morphism / 1-cell, while 𝑋(𝑖) ∶ 𝑋[0] → 𝑋[1] gives the
identity morphism on an object.

So even with these rudimentary definitions we can see something like an ∞-category
structure taking shape.



Simplicial sets

The simplex category, Δ, is the category which has an object for each natural number
denoted [𝑛] thought of as Fin(𝑛 + 1), and whose morphisms [𝑛] → [𝑚] are monotone
maps Fin(𝑛 + 1) → Fin(𝑚 + 1).

For example, there is one morphism 𝑖 ∶ [1] → [0] which sends both 0 and 1 to 0, and two
morphisms 𝑠, 𝑡 ∶ [0] → [1] defined by 𝑠(0) = 0 and 𝑡(0) = 1.

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type.

So a simplicial set has sets 𝑋[0], 𝑋[1], 𝑋[2], etc. which we interpret as “objects”,
“morphisms” and in general “𝑛-cells”, and the functions 𝑋(𝑠), 𝑋(𝑡) ∶ 𝑋[1] → 𝑋[0] pick
out the source and target of a morphism / 1-cell, while 𝑋(𝑖) ∶ 𝑋[0] → 𝑋[1] gives the
identity morphism on an object.

So even with these rudimentary definitions we can see something like an ∞-category
structure taking shape.



Simplicial sets

The simplex category, Δ, is the category which has an object for each natural number
denoted [𝑛] thought of as Fin(𝑛 + 1), and whose morphisms [𝑛] → [𝑚] are monotone
maps Fin(𝑛 + 1) → Fin(𝑚 + 1).

For example, there is one morphism 𝑖 ∶ [1] → [0] which sends both 0 and 1 to 0, and two
morphisms 𝑠, 𝑡 ∶ [0] → [1] defined by 𝑠(0) = 0 and 𝑡(0) = 1.

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type.

So a simplicial set has sets 𝑋[0], 𝑋[1], 𝑋[2], etc. which we interpret as “objects”,
“morphisms” and in general “𝑛-cells”, and the functions 𝑋(𝑠), 𝑋(𝑡) ∶ 𝑋[1] → 𝑋[0] pick
out the source and target of a morphism / 1-cell, while 𝑋(𝑖) ∶ 𝑋[0] → 𝑋[1] gives the
identity morphism on an object.

So even with these rudimentary definitions we can see something like an ∞-category
structure taking shape.



The nerve of a category

Given a category C, nerve C is a simplicial set, whose type of 𝑛-cells (nerve C)[𝑛] is the
collection of functors [𝑛] → C, where [𝑛] is the preorder category:

0 1 ⋯ 𝑛 − 1 𝑛

This assembles into a functor nerve ∶ Cat ⇀⇁ sSet between the category of categories and
the category of simplicial sets.

Our objective is to define the left adjoint of this functor, which takes a simplicial set to
its homotopy category.



The nerve of a category

Given a category C, nerve C is a simplicial set, whose type of 𝑛-cells (nerve C)[𝑛] is the
collection of functors [𝑛] → C, where [𝑛] is the preorder category:

0 1 ⋯ 𝑛 − 1 𝑛

This assembles into a functor nerve ∶ Cat ⇀⇁ sSet between the category of categories and
the category of simplicial sets.

Our objective is to define the left adjoint of this functor, which takes a simplicial set to
its homotopy category.



The nerve of a category

Given a category C, nerve C is a simplicial set, whose type of 𝑛-cells (nerve C)[𝑛] is the
collection of functors [𝑛] → C, where [𝑛] is the preorder category:

0 1 ⋯ 𝑛 − 1 𝑛

This assembles into a functor nerve ∶ Cat ⇀⇁ sSet between the category of categories and
the category of simplicial sets.

Our objective is to define the left adjoint of this functor, which takes a simplicial set to
its homotopy category.



The homotopy category

The action of ho ∶ sSet ⇀⇁ Cat is to take a simplicial set 𝑋 to its quotient 1-category
ho 𝑋. Intuitively, the objects will be 𝑋[0] and the morphisms will be formal composites
of arrows from 𝑋[1], except that two morphisms are identified whenever there is a 2-cell

𝑦

𝑥 𝑧

𝑔𝑓

ℎ

𝜎 witnessing that 𝑔 ∘ 𝑓 = ℎ.

Theorem
The nerve functor admits a left adjoint defined by the functor that sends a simplicial set

to its homotopy category: Cat SetΔop.
nerve
⊥
ho

The nerve functor is full and faithful.



The homotopy category

The action of ho ∶ sSet ⇀⇁ Cat is to take a simplicial set 𝑋 to its quotient 1-category
ho 𝑋. Intuitively, the objects will be 𝑋[0] and the morphisms will be formal composites
of arrows from 𝑋[1], except that two morphisms are identified whenever there is a 2-cell

𝑦

𝑥 𝑧

𝑔𝑓

ℎ

𝜎 witnessing that 𝑔 ∘ 𝑓 = ℎ.

Theorem
The nerve functor admits a left adjoint defined by the functor that sends a simplicial set

to its homotopy category: Cat SetΔop.
nerve
⊥
ho

The nerve functor is full and faithful.



An abstract nonsense proof

This adjunction exists as a special case of a result already in Mathlib by Mehta and Riou:

Theorem
Suppose 𝐴∶ A → E is any functor, where A is small and E is cocomplete. Then the left
Kan extension of 𝐴 along the Yoneda embedding よ ∶ A → SetAop is left adjoint to the

restricted Yoneda functor: E SetAop.
E(𝐴−,−)

⊥

lan
よ

𝐴

The nerve adjunction is an example of a Yoneda adjunction defined relative to the
functor SimplexCategory.toCat ∶ Δ ⇀⇁ Cat which sends [𝑛] ∶ Δ to [𝑛] ∶ Cat.

Unfortunately, applying this requires that E ∶= Cat is cocomplete, i.e. Cat has colimits.



An abstract nonsense proof

This adjunction exists as a special case of a result already in Mathlib by Mehta and Riou:

Theorem
Suppose 𝐴∶ A → E is any functor, where A is small and E is cocomplete. Then the left
Kan extension of 𝐴 along the Yoneda embedding よ ∶ A → SetAop is left adjoint to the

restricted Yoneda functor: E SetAop.
E(𝐴−,−)

⊥

lan
よ

𝐴

The nerve adjunction is an example of a Yoneda adjunction defined relative to the
functor SimplexCategory.toCat ∶ Δ ⇀⇁ Cat which sends [𝑛] ∶ Δ to [𝑛] ∶ Cat.

Unfortunately, applying this requires that E ∶= Cat is cocomplete, i.e. Cat has colimits.



A circular proof

Consulting the literature, we are reminded that colimits in Cat are constructed as a
corollary of the nerve adjunction we wanted in the first place: since the nerve functor is
fully faithful, the adjunction exhibits Cat as a reflective subcategory of the cocomplete
category sSet ∶= SetΔop , from which the result follows by a theorem formalized by
Morrison, McKoen and Mehta:

So we scrapped the abstract nonsense proof and set out to construct the adjunction
directly.



A circular proof

Consulting the literature, we are reminded that colimits in Cat are constructed as a
corollary of the nerve adjunction we wanted in the first place: since the nerve functor is
fully faithful, the adjunction exhibits Cat as a reflective subcategory of the cocomplete
category sSet ∶= SetΔop , from which the result follows by a theorem formalized by
Morrison, McKoen and Mehta:

So we scrapped the abstract nonsense proof and set out to construct the adjunction
directly.



A pen-and-paper proof

A joint book Emily had written with
Dominic Verity reviews the construction of
the reflective embedding of 1-categories into
∞-categories in less than one page:



A formalized proof

It took the two of us three months (part
time) to formalize this result in Lean.

It then took another six months
for this code, which totalled

2240 lines split across seven PRs
to pass the review process to be

integrated into Lean’s Mathlib.

The paper goes into more detail on the
formalization and the challenges we
encountered along the way. Needless to say
it’s a lot more than 1 page.

What happened here?



A formalized proof

It took the two of us three months (part
time) to formalize this result in Lean.

It then took another six months
for this code, which totalled

2240 lines split across seven PRs
to pass the review process to be

integrated into Lean’s Mathlib.

The paper goes into more detail on the
formalization and the challenges we
encountered along the way. Needless to say
it’s a lot more than 1 page.

What happened here?



Plan

1. Overview of the proof

2. Difficulties and complications



1

Overview of the proof



Decomposing the adjunction
We will build the adjunction as a composition of two other adjunctions, by proving that
nerve is isomorphic to the composition cosk2 ∘ nerve2 going through the category SetΔop

≤2

of 2-truncated simplicial sets. Given 𝑛 ∶ ℕ, we define the 𝑛-truncated simplex category
Δ≤𝑛 as the full subcategory Δ≤𝑛 ⊂ Δ spanned by the objects [0], … , [𝑛].

tr2 ∶ SetΔop ⇀⇁ SetΔop
≤2 is 2-truncation (forgetting higher components of a simplicial set).

cosk2 is its right Kan extension. nerve2 ∶= tr2 ∘ nerve just returns the 0,1,2-cells of
nerve and the adjunction tr2 ⊣ cosk2 allows us to construct 𝜐.

Cat SetΔop
≤2 SetΔop

nerve2

nerve
≅⇑𝜐

⊥
ho2

cosk2

⊥
tr2

ho

≔



Decomposing the adjunction

We are left with essentially three subgoals:
• To construct the map ho2 ∶ SetΔop

≤2 → Cat.
• To prove ho2 ⊣ nerve2.
• To prove that the nerve is 2-coskeletal, which is equivalent to the assertion that the

natural transformation 𝜐 is an isomorphism.



Reflexive quivers

A quiver is a “category without identity and composition”: it has a set of objects and
morphisms between pairs of objects, and no laws on top. There is an obvious forgetful

functor from categories to quivers, with a left adjoint Cat Quiv
𝑈
⊥
𝐹

which builds

the “free category” generated from given arrows.

For our project we defined reflexive quivers, a “category without composition”, adding
only the identity morphisms. This decomposes the above adjunction to

Cat rQuiv Quiv
𝑈

⊥
𝐹

𝑈
⊥
𝐹

giving us the free category from a reflexive quiver.



The homotopy relation

Recall that we want to construct ho2 ∶ SetΔop
≤2 → Cat, so consider a 2-truncated

simplicial set 𝑋 ∶ Δop
≤2 ⇀⇁ Type. First, we use the set 𝑋[0] for the objects, and

{𝑓 ∶ 𝑋[1] ∣ 𝑋(𝑠)(𝑓) = 𝐴 ∧ 𝑋(𝑡)(𝑓) = 𝐵}

defines Hom(𝐴, 𝐵). This is not a category, but it is a reflexive quiver because we have
𝑋(𝑖)(𝐴) ∶ Hom(𝐴, 𝐴).

We then construct the free category generated by this refl.quiver, whose morphisms are
formal composites of the above. There is a general construction for taking the morphism
quotient generated from a relation, and we use the relation generated by
𝑋(𝜎01)(𝜑) ∘ 𝑋(𝜎12)(𝜑) ∼ 𝑋(𝜎02)(𝜑) for each 𝜑 ∶ 𝑋[2], where 𝜎01, 𝜎12, 𝜎02 are the
three elements of [1] → [2]. This quotient is (the object part of) ho2(𝑋) ∶ Cat.



Constructing the adjunction

The tricky part of the adjunction ho2 ⊣ nerve2 is the unit, which is constructed using
the following lemma:

Theorem
Given 𝑋 ∶ Δop

≤2 ⇀⇁ Type a 2-truncated simplicial set and C a category, consider a
reflexive prefunctor 𝐹 ∶ 𝑈(𝑋) → 𝑈(C) a map from the r.q. of 𝑋 to the r.q. of C. If for
each 𝜑 ∶ 𝑋[2], 𝐹(𝜎02(𝜑)) = 𝐹(𝜎01(𝜑)) ∘ 𝐹(𝜎01(𝜑)) (using composition from C), then 𝐹
lifts uniquely to a map ̂𝐹 ∶ 𝑋 → 𝑈2(C) in sSet≤2.

Constructing the lift ̂𝐹, a natural transformation, involves constructing three
components for ̂𝐹[0],… ̂𝐹[2]; and because of the definition by cases we have 31 different
naturalities to prove (one for each morphism in Δ≤2).



2

Difficulties and complications



Confusions of notation/encoding

Category theory famously eats itself:
• A category C consists of objects 𝐴, 𝐵, 𝐶 and arrows 𝑓∶ 𝐴 → 𝐵, 𝑔∶ 𝐵 → 𝐶 with

composition and identities satisfying axioms.
• Categories themselves assemble into a category Cat whose objects are categories

and whose morphisms are functors.

In Mathlib, categories are typically unbundled, as types with a category structure, while
objects of Cat are bundled categories. Functors come with

• two different notations whether they are thought of as functors between categories
or arrows in Cat (“⇀⇁” vs “⟶”) and

• distinct notations for composition (“⋙” vs “≫”) and identities (“1” vs “1”) in
each setting.



Confusions of notation/encoding

Category theory famously eats itself:
• A category C consists of objects 𝐴, 𝐵, 𝐶 and arrows 𝑓∶ 𝐴 → 𝐵, 𝑔∶ 𝐵 → 𝐶 with

composition and identities satisfying axioms.
• Categories themselves assemble into a category Cat whose objects are categories

and whose morphisms are functors.

In Mathlib, categories are typically unbundled, as types with a category structure, while
objects of Cat are bundled categories. Functors come with

• two different notations whether they are thought of as functors between categories
or arrows in Cat (“⇀⇁” vs “⟶”) and

• distinct notations for composition (“⋙” vs “≫”) and identities (“1” vs “1”) in
each setting.



Confusions of notation/encoding

We formalized the free
category and underlying
reflexive quiver adjunction

rQuiv Cat.
𝐹

⊥
𝑈

But the construction of
the adjunction was
repeatedly hindered by
confusions about the
encoding of categorical
data.



Universe levels
On paper size issues in category theory are typically addressed in a hand wavy fashion:1

1Footnote 13 begins “If pressed, let us assume that there exists a countable sequence of inaccessible
cardinals, …”



Universe levels (Emily’s take)
Of course this doesn’t work in proof assistant and over a year’s worth of attempts to
formalize some category theory in Lean I find myself drawn between two poles:

• On the one hand, I’m embarrassed by how poorly I understand the implications of
various categorical constructions on universe levels.

• On the other, I am frustrated by how often universe errors “distract from the task
at hand” and feel increasingly drawn to the dark side of type-in-type.

There are two open questions related to practical treatment of universes that I would
like to answer:

• What are the best strategies for dealing with universe errors that arise during
formalization, both with the aim of resolving them and with the aim of not letting
them get in the way of other progress?

• How should universes be addressed in the pen-and-paper literature to better prepare
category theorists for formalization, i.e., how should I address this in Category
Theory in Context volume II?



Universe levels (Emily’s take)
Of course this doesn’t work in proof assistant and over a year’s worth of attempts to
formalize some category theory in Lean I find myself drawn between two poles:

• On the one hand, I’m embarrassed by how poorly I understand the implications of
various categorical constructions on universe levels.

• On the other, I am frustrated by how often universe errors “distract from the task
at hand” and feel increasingly drawn to the dark side of type-in-type.

There are two open questions related to practical treatment of universes that I would
like to answer:

• What are the best strategies for dealing with universe errors that arise during
formalization, both with the aim of resolving them and with the aim of not letting
them get in the way of other progress?

• How should universes be addressed in the pen-and-paper literature to better prepare
category theorists for formalization, i.e., how should I address this in Category
Theory in Context volume II?



Universe levels (Mario’s take)

As someone who works on ITP design to some extent, I find it interesting how people
like Emily experience universes in practice.

• A common piece of advice I would give is to just ignore universe parametricity and
set everything to use Type 0.

• This would allow us to split the work between doing “real mathematics” and
administrative stuff for the universes (which I felt much more competent to do
without understanding the surrounding structure)

• I think it would actually be a good idea to have a type-in-type / ignore-universes
flag for being able to do this systematically.



Universe levels (Mario’s take)

As someone who works on ITP design to some extent, I find it interesting how people
like Emily experience universes in practice.

• A common piece of advice I would give is to just ignore universe parametricity and
set everything to use Type 0.

• This would allow us to split the work between doing “real mathematics” and
administrative stuff for the universes (which I felt much more competent to do
without understanding the surrounding structure)

• I think it would actually be a good idea to have a type-in-type / ignore-universes
flag for being able to do this systematically.



Universe levels (Mario’s take)

As someone who works on ITP design to some extent, I find it interesting how people
like Emily experience universes in practice.

• A common piece of advice I would give is to just ignore universe parametricity and
set everything to use Type 0.

• This would allow us to split the work between doing “real mathematics” and
administrative stuff for the universes (which I felt much more competent to do
without understanding the surrounding structure)

• I think it would actually be a good idea to have a type-in-type / ignore-universes
flag for being able to do this systematically.



Invisible inclusions

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type, indexed by a category Δ whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory Δ≤2 ⊂ Δ spanned by the objects [0], [1], [2].

On paper, Δ≤2 has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from Δ.

In Mathlib, objects of Δ≤2 are natural numbers 𝑚 together with a proof that 𝑚 ≤ 2.

This causes all sorts of problems.



Invisible inclusions

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type, indexed by a category Δ whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory Δ≤2 ⊂ Δ spanned by the objects [0], [1], [2].

On paper, Δ≤2 has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from Δ.

In Mathlib, objects of Δ≤2 are natural numbers 𝑚 together with a proof that 𝑚 ≤ 2.

This causes all sorts of problems.



Invisible inclusions

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type, indexed by a category Δ whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory Δ≤2 ⊂ Δ spanned by the objects [0], [1], [2].

On paper, Δ≤2 has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from Δ.

In Mathlib, objects of Δ≤2 are natural numbers 𝑚 together with a proof that 𝑚 ≤ 2.

This causes all sorts of problems.



Invisible inclusions

A simplicial set is a functor 𝑋∶ Δop ⇀⇁ Type, indexed by a category Δ whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory Δ≤2 ⊂ Δ spanned by the objects [0], [1], [2].

On paper, Δ≤2 has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from Δ.

In Mathlib, objects of Δ≤2 are natural numbers 𝑚 together with a proof that 𝑚 ≤ 2.

This causes all sorts of problems.



Invisible inclusions
Proofs involving Δ≤2 often require rewriting along an equality between arrows that has
been proven for Δ. Since rw typically fails, we are forced to duplicate infrastructure:



Dependent equality and “evil”

Universal properties characterize objects of a category only up to (unique) isomorphism.
Categorical statements that refer to an equality between objects are known as “evil.”

Equality between parallel functors 𝐹, 𝐺∶ C ⇀⇁ D is certainly evil,
though strangely the “evil” equality between objects is the easiest part to formalize.

On paper, 𝐹 = 𝐺 just when
• 𝐹𝑋 = 𝐺𝑋 for all objects 𝑋 in C, and
• 𝐹𝑓 = 𝐺𝑓 for all arrows 𝑓∶ 𝑋 → 𝑌 in C.

But Mathlib, the second statement does not type check: it is not meaningful to ask
whether 𝐹𝑓 equals 𝐺𝑓 because 𝐹𝑓 ∶ 𝐹𝑋 → 𝐹𝑌 and 𝐺𝑓 ∶ 𝐺𝑋 → 𝐺𝑌. Even if we have
proofs ℎ𝑋 ∶ 𝐹𝑋 = 𝐺𝑋 and ℎ𝑌 ∶ 𝐹𝑌 = 𝐺𝑌, these are different types.



Dependent equality and “evil”

Universal properties characterize objects of a category only up to (unique) isomorphism.
Categorical statements that refer to an equality between objects are known as “evil.”

Equality between parallel functors 𝐹, 𝐺∶ C ⇀⇁ D is certainly evil,
though strangely the “evil” equality between objects is the easiest part to formalize.

On paper, 𝐹 = 𝐺 just when
• 𝐹𝑋 = 𝐺𝑋 for all objects 𝑋 in C, and
• 𝐹𝑓 = 𝐺𝑓 for all arrows 𝑓∶ 𝑋 → 𝑌 in C.

But Mathlib, the second statement does not type check: it is not meaningful to ask
whether 𝐹𝑓 equals 𝐺𝑓 because 𝐹𝑓 ∶ 𝐹𝑋 → 𝐹𝑌 and 𝐺𝑓 ∶ 𝐺𝑋 → 𝐺𝑌. Even if we have
proofs ℎ𝑋 ∶ 𝐹𝑋 = 𝐺𝑋 and ℎ𝑌 ∶ 𝐹𝑌 = 𝐺𝑌, these are different types.



Dependent equality and “evil”
Using an evil hypothesis h_obj ∶ ∀X, F.obj X = G.obj X involving parallel functors
𝐹, 𝐺∶ C ⇀⇁ D, there are various ways to conclude that 𝐹 = 𝐺:

None of these are particularly fun to use,
as they involve arguments that are totally invisible on paper.



Coherence theorems
On paper, a coherence theorem of Power tells us that 2-cells in a 2-category compose by
pasting, generalization the primitive operations of vertical composition and whiskering:

𝐴 𝐶 𝐶 𝐸 𝐸

𝐵 𝐵 𝐷 𝐷 𝐹
⇙𝜖1

⇙𝛼𝐿1

𝐺1

𝐿2

⇙𝜂2

⇙𝜖2

⇙𝛽𝐿2

𝐺2

𝐿3
⇙𝜂3𝑅1

𝐻1

𝑅2

𝐻2

𝑅3

In Mathlib, the 2-cells displayed here belong to dependent types (over their boundary
1-cells and objects).

Depending on how the whiskerings are chosen, 2-cells that are composable on paper are
composable in Lean as 1-cells along their common boundary are not definitionally equal:

e.g., is 𝑅3𝐻2𝐿2𝜂2𝐺1𝑅1 composable with 𝑅3𝐻2𝜖2𝐿2𝐺1𝑅1?



Coherence theorems

𝐴 𝐶 𝐶 𝐸 𝐸

𝐵 𝐵 𝐷 𝐷 𝐹
⇙𝜖1

⇙𝛼𝐿1

𝐺1

𝐿2

⇙𝜂2

⇙𝜖2

⇙𝛽𝐿2

𝐺2

𝐿3
⇙𝜂3𝑅1

𝐻1

𝑅2

𝐻2

𝑅3

is 𝑅3𝐻2𝐿2𝜂2𝐺1𝑅1
composable
with 𝑅3𝐻2𝜖2𝐿2𝐺1𝑅1?

Lean has a clever composition operation for 2-cells in a bicategory:

but no normal form for whiskered 2-cells or pasting diagram composites.



Coherence theorems

A formal proof by Yuma Mizuno
leveraged his bicategory tactic to prove
an equality between the previous
pasting composite and a reduced form
(with the whiskered composite of 𝜂2
and 𝜖2 replaced by an identity).

But his proof required a lot of
intermediate calculation — specifying a
particular sequence of presentations of
the pasted composite as a vertical
composite of whiskered 2-cells — that
ideally would be automated.



Naturality

Because the simplex category Δ is a strict Reedy category, there is a well understood
procedure for extending a map 𝑓∶ 𝑋 → 𝑌 of 𝑛 − 1-truncated simplicial sets to a map of
𝑛-truncated simplicial sets:
(i) define the new component: 𝑓𝑛 ∶ 𝑋𝑛 → 𝑌𝑛, a function carrying 𝑛-simplices of 𝑋 to

𝑛-simplices of 𝑌, and
(ii) check that the map 𝑓𝑛 respects degeneracies and faces.
If desired, each of the checks mentioned in (ii) can be encoded as a single commutative
square, one involving a colimit forming the latching object of degenerate simplices and
the other involving a limit forming the matching object of simplex face data.

These conditions are both necessary and sufficient.



Naturality

Because the simplex category Δ is a strict Reedy category, there is a well understood
procedure for extending a map 𝑓∶ 𝑋 → 𝑌 of 𝑛 − 1-truncated simplicial sets to a map of
𝑛-truncated simplicial sets:
(i) define the new component: 𝑓𝑛 ∶ 𝑋𝑛 → 𝑌𝑛, a function carrying 𝑛-simplices of 𝑋 to

𝑛-simplices of 𝑌, and
(ii) check that the map 𝑓𝑛 respects degeneracies and faces.
If desired, each of the checks mentioned in (ii) can be encoded as a single commutative
square, one involving a colimit forming the latching object of degenerate simplices and
the other involving a limit forming the matching object of simplex face data.

These conditions are both necessary and sufficient.



Naturality

Mathlib does not know any Reedy category theory. Do we digress to formalize this
general abstract nonsense or instead just check that the given family of maps

𝑓0 ∶ 𝑋0 → 𝑌0, 𝑓1 ∶ 𝑋1 → 𝑌1, … , 𝑓𝑛−1 ∶ 𝑋𝑛−1 → 𝑌𝑛−1, 𝑓𝑛 ∶ 𝑋𝑛 → 𝑌𝑛

defines a natural transformation in the case of interest, checking a lot of unnecessary
naturality conditions?

As mentioned previously, in order to define the unit of the adjunction between the nerve
functor and the homotopy category functor, we had to extend a map of 1-truncated
simplicial sets to a map of 2-truncated simplicial sets, which requires 31 naturality checks.
We essentially did this by hand, splitting into 9 cases, parametrized by pairs of objects.2

2While integrating this into Mathlib, Joël Riou provided infrastructure that allowed us to reduce to
four cases, though there should have just been two.



Naturality

Mathlib does not know any Reedy category theory. Do we digress to formalize this
general abstract nonsense or instead just check that the given family of maps

𝑓0 ∶ 𝑋0 → 𝑌0, 𝑓1 ∶ 𝑋1 → 𝑌1, … , 𝑓𝑛−1 ∶ 𝑋𝑛−1 → 𝑌𝑛−1, 𝑓𝑛 ∶ 𝑋𝑛 → 𝑌𝑛

defines a natural transformation in the case of interest, checking a lot of unnecessary
naturality conditions?

As mentioned previously, in order to define the unit of the adjunction between the nerve
functor and the homotopy category functor, we had to extend a map of 1-truncated
simplicial sets to a map of 2-truncated simplicial sets, which requires 31 naturality checks.
We essentially did this by hand, splitting into 9 cases, parametrized by pairs of objects.2

2While integrating this into Mathlib, Joël Riou provided infrastructure that allowed us to reduce to
four cases, though there should have just been two.



Conclusion

• There was quite a lot of previous work in Mathlib we were able to build on

• This project couldn’t have happened without our collaboration; we had some pair
programming sessions where Emily would dictate the math to me and I would type
it in and we both learned a lot in the process

• There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

• The ∞-cosmos project is underway, so if you like ∞-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?

https://emilyriehl.github.io/infinity-cosmos/


Conclusion

• There was quite a lot of previous work in Mathlib we were able to build on
• This project couldn’t have happened without our collaboration; we had some pair

programming sessions where Emily would dictate the math to me and I would type
it in and we both learned a lot in the process

• There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

• The ∞-cosmos project is underway, so if you like ∞-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?

https://emilyriehl.github.io/infinity-cosmos/


Conclusion

• There was quite a lot of previous work in Mathlib we were able to build on
• This project couldn’t have happened without our collaboration; we had some pair

programming sessions where Emily would dictate the math to me and I would type
it in and we both learned a lot in the process

• There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

• The ∞-cosmos project is underway, so if you like ∞-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?

https://emilyriehl.github.io/infinity-cosmos/


Conclusion

• There was quite a lot of previous work in Mathlib we were able to build on
• This project couldn’t have happened without our collaboration; we had some pair

programming sessions where Emily would dictate the math to me and I would type
it in and we both learned a lot in the process

• There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

• The ∞-cosmos project is underway, so if you like ∞-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?

https://emilyriehl.github.io/infinity-cosmos/


Conclusion

• There was quite a lot of previous work in Mathlib we were able to build on
• This project couldn’t have happened without our collaboration; we had some pair

programming sessions where Emily would dictate the math to me and I would type
it in and we both learned a lot in the process

• There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

• The ∞-cosmos project is underway, so if you like ∞-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?

https://emilyriehl.github.io/infinity-cosmos/

	Overview of the proof
	Difficulties and complications

