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An unlikely partnership

This project came out of the semester on formal mathematics at the Hausdorff Institute
of Mathematics in summer 2024.

® | am a Lean formalization expert who took a category theory class once.

® Emily is an oco-category theorist with a bit of Lean experience.

So | suggested that we try to define the fundamentals of co-category theory in Lean.

As it turns out, co-categories are complicated to define, but you can abstract the details
and define the rules that a reasonable definition of co-categories should satisfy; this is
called an oco-cosmos and the co-cosmos project came out of this.


https://emilyriehl.github.io/infinity-cosmos/

The oo-cosmos project: overview

The oco-cosmos project aims to use a convenient abstraction boundary to formalize some
core category theory of co-categories for immediate use in Mathlib.



The oo-cosmos project: overview

The oco-cosmos project aims to use a convenient abstraction boundary to formalize some
core category theory of co-categories for immediate use in Mathlib.

Mathlib knows definitions of

® oo-groupoid, that is a weak infinite-dimensional category with all morphisms
invertible, modeled as Kan complexes

® oo-category, that is a weak infinite-dimensional category with non-invertible
morphisms only allowed in dimension one, modeled as quasi-categories

But very few theorems have been formalized about these notions. In particular, earlier
this year, Joél Riou noticed that the definition of Kan complexes was wrong!



The oo-cosmos project: status <




From oo-categories to 2-categories

There is a 2-category (aka strict bicategory) whose objects are co-categories, whose
morphisms are oo-functors, and whose 2-cells are co-natural transformations. This

simplifies matters because we can make use of the existing work on 2-categories in
Mathlib.

Key to the construction is the nerve of a category, and its left adjoint the homotopy
functor.



From oo-categories to 2-categories

There is a 2-category (aka strict bicategory) whose objects are co-categories, whose
morphisms are oo-functors, and whose 2-cells are co-natural transformations. This

simplifies matters because we can make use of the existing work on 2-categories in
Mathlib.

Key to the construction is the nerve of a category, and its left adjoint the homotopy
functor.

Mathlib already had the definition of nerve; this talk will be about how we constructed
the homotopy functor.



Simplicial sets

The simplex category, A, is the category which has an object for each natural number
denoted [n] thought of as Fin(n 4 1), and whose morphisms [n| — [m| are monotone
maps Fin(n 4+ 1) — Fin(m + 1).

For example, there is one morphism i : [1] — [0] which sends both 0 and 1 to 0, and two
morphisms s, : [0] — [1] defined by s(0) =0 and ¢(0) = 1.
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A simplicial set is a functor X: A°P? = Type.

So a simplicial set has sets X[0], X|[1], X[2], etc. which we interpret as “objects”,
“morphisms” and in general “n-cells”, and the functions X(s), X(¢) : X[1] — X[0] pick
out the source and target of a morphism / 1-cell, while X (i) : X[0] — X[1] gives the
identity morphism on an object.



Simplicial sets

The simplex category, A, is the category which has an object for each natural number
denoted [n] thought of as Fin(n 4 1), and whose morphisms [n| — [m| are monotone
maps Fin(n 4+ 1) — Fin(m + 1).

For example, there is one morphism i : [1] — [0] which sends both 0 and 1 to 0, and two
morphisms s, : [0] — [1] defined by s(0) =0 and ¢(0) = 1.

A simplicial set is a functor X: A°P? = Type.

So a simplicial set has sets X[0], X|[1], X[2], etc. which we interpret as “objects”,
“morphisms” and in general “n-cells”, and the functions X(s), X(¢) : X[1] — X[0] pick
out the source and target of a morphism / 1-cell, while X (i) : X[0] — X[1] gives the
identity morphism on an object.

So even with these rudimentary definitions we can see something like an co-category
structure taking shape.



The nerve of a category
Given a category C, nerve C is a simplicial set, whose type of n-cells (nerve €)[n] is the
collection of functors [n] — €, where [n] is the preorder category:
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This assembles into a functor nerve : Cat = sSet between the category of categories and
the category of simplicial sets.



The nerve of a category

Given a category C, nerve C is a simplicial set, whose type of n-cells (nerve C)[n] is the
collection of functors [n] — €, where [n] is the preorder category:
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This assembles into a functor nerve : Cat = sSet between the category of categories and
the category of simplicial sets.

Our objective is to define the left adjoint of this functor, which takes a simplicial set to
its homotopy category.



The homotopy category

The action of ho : sSet = (Cat is to take a simplicial set X to its quotient 1-category
ho X. Intuitively, the objects will be X|[0] and the morphisms will be formal composites
of arrows from X[1], except that two morphisms are identified whenever there is a 2-cell
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The homotopy category d

The action of ho : sSet = Cat is to take a simplicial set X to its quotient 1-category
ho X. Intuitively, the objects will be X|[0] and the morphisms will be formal composites
of arrows from X[1], except that two morphisms are identified whenever there is a 2-cell

Yy
f 9 i i o =
. NJ  witnessing that go f = h.

.TT)Z

The nerve functor admits a left adjoint defined by the functor that sends a simplicial set

nerve




An abstract nonsense proof |

This adjunction exists as a special case of a result already in Mathlib by Mehta and Riou:

Theorem

Suppose A: A — & is any functor, where A is small and € is cocomplete. Then the left

Kan extension of A along the Yoneda embedding x: A — Set”” is left adjoint to the
lan , A
i

e L set'”

8(A7v7)

restricted Yoneda functor:

The nerve adjunction is an example of a Yoneda adjunction defined relative to the
functor SimplexCategory.toCat : A = Cat which sends [n] : A to [n] : Cat.



An abstract nonsense proof |

This adjunction exists as a special case of a result already in Mathlib by Mehta and Riou:

Theorem

Suppose A: A — & is any functor, where A is small and € is cocomplete. Then the left

Kan extension of A along the Yoneda embedding x: A — Set”” is left adjoint to the
lan , A
i
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restricted Yoneda functor:

The nerve adjunction is an example of a Yoneda adjunction defined relative to the
functor SimplexCategory.toCat : A = Cat which sends [n] : A to [n] : Cat.

Unfortunately, applying this requires that € := Cat is cocomplete, i.e. Cat has colimits.



A circular proof

Consulting the literature, we are reminded that colimits in Cat are constructed as a
corollary of the nerve adjunction we wanted in the first place: since the nerve functor is
fully faithful, the adjunction exhibits Cat as a reflective subcategory of the cocomplete
category sSet := Set™” from which the result follows by a theorem formalized by
Morrison, McKoen and Mehta:

limits_of_reflective (R : D = C)
[Reflective R] [HasColimitsofSize.{v, u} CI :

HasColimitsofSize.{v, u} D :=
( _ = hasColimitsOfShape_of_reflective R)




A circular proof

Consulting the literature, we are reminded that colimits in Cat are constructed as a
corollary of the nerve adjunction we wanted in the first place: since the nerve functor is
fully faithful, the adjunction exhibits Cat as a reflective subcategory of the cocomplete
category sSet := Set™” from which the result follows by a theorem formalized by
Morrison, McKoen and Mehta:

limits_of_reflective (R : D = C)
[Reflective R] [HasColimitsofSize.{v, u} CI :

HasColimitsofSize.{v, u} D :=
( _ = hasColimitsOfShape_of_reflective R)

So we scrapped the abstract nonsense proof and set out to construct the adjunction
directly.



A pen-and-paper proof

A joint book Emily had written with
Dominic Verity reviews the construction of
the reflective embedding of 1-categories into
oo-categories in less than one page:

Elements of
oo = Category Theory

EMILY RIEHL
DOMINIC VERITY

LL10. DEFINITION (the homotopy category [44, §24]). By l-truncating, any simplicial sec X has an
underlying reflexive directed graph with the O-simplices of X defining the objects and the 1-simplices
defining the arrows:

o
—

Xy 00— Xo,
-

By convention, the source of an arrow f € X is its mh face f - 6" (the face opposite 1) while the target
is s It face f - 67 (the face oppos category on th ccted graph has Xp
as its object set, degenerate 1-simplices serving as identity morphisms, and nonidentity morphisms
defined to be finite directed paths of nondegenerate I-simplices. The homotopy category X of X is the
quotient of the free category on its underlying reflexive directed graph by the congruence” generated
by imposing a composition relacion i = g'o f witnessed by 2-simplices

exive di

X1
LN

Xp —— X;

(— 2

This relation implies in particular thac homotopic I-simplices represent the same arrow in the homotopy
category.

The homotopy category of the nerve of a 1-category is isomorphic to the original category, as

the 2-simplices in the nerve witness all of the composition relations s

isfied by the arrows in the
underlying reflexive directed graph. Indeed, the nacural isomorphism hC = C forms the counic of an
adjunction, embedding Cat as a reflective subcategory of sSet.

L.L11. PROPOSITION. The nerve embedding admits a left adjoine, namely the functor which sends a simplicial

set 10 its homotopy category:

h
Cat @ sSet

The adjunction of Proposition 1111 exists for formal reasons (see Exercise 1.1i), but nevertheless, a
direct proof can be enlightening.

ProOF. For any simplicial set X, there is a natural map from X to the nerve of its homotopy
category hX; since nerves are 2-coskeletal, it suffices to define the map sky X — hX, and this is given
immediately by the construction of Definition 1.1.10. Note that the quotient map X — hX becomes an
isomorphism upon applying the homotopy category functor and is already an isomorphism whenever
X is the nerve of a category. Thus the adjoineness follows from Lemma B.4.2 or by direct verification
of the triangle equal




A formalized proof

The paper goes into more detail on the
formalization and the challenges we

It took the two of us three months (part encountered along the way. Needless to say
time) to formalize this result in Lean. it's a lot more than 1 page.

It then took another six months Formalizing colimits in Cat

Mario Carneiro &

for this code, which totalled Chialers University of Tochnclogy, Swoden
2240 lines split across seven PRs Emily Riehl! ©

Department of Mathematics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, USA

to pass the review process to be — Abstract

. . y . Certain results involving “higher structures” are not currently accessible to computer formalization

Integrated into Lea ns M at hli b . because the prerequisite co-category theory has not been formalized. To support future work
on formalizing oc-category theory in Lean’s mathematics library, we formalize some fundamental
constructions involving the 1-category of categories. Specifically, we construct the left adjoint to
the nerve embedding of categories into simplicial sets, defining the homotopy category functor. We
prove further that this adjunction is reflective, which allows us to conclude that Cat has colimits. To
our knowledge this is the first formalized proof that the category of eategories is cocomplete.
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It took the two of us three months (part encountered along the way. Needless to say
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Integrated into Lea ns M at hli b . because the prerequisite co-category theory has not been formalized. To support future work
on formalizing cc-category theory in Lean's mathematics library, we formalize some fundamental
constructions involving the 1-category of categories. Specifically, we construct the left adjoint to
the nerve embedding of categories into simplicial sets, defining the homotopy category functor. We
prove further that this adjunction is reflective, which allows us to conclude that Cat has colimits. To
our knowledge this is the first formalized proof that the category of categories is cocomplete.

What happened here? J




Plan

1. Overview of the proof

2. Difficulties and complications



@

Overview of the proof



Decomposing the adjunction

We will build the adjunction as a composition of two other adjunctions, by proving that
nerve is isomorphic to the composition cosk, o nerve, going through the category SetA2
of 2-truncated simplicial sets. Given n : N, we define the n-truncated simplex category
A_, as the full subcategory A_, C A spanned by the objects [0], ..., [n].

try : Set®” = Set®*> is 2-truncation (forgetting higher components of a simplicial set).
cosk, is its right Kan extension. nerve, := tr, o nerve just returns the 0,1,2-cells of
nerve and the adjunction tr, - cosk, allows us to construct v.

ho
i
ho2 try
PR op op
Cat = | Set®2 | Set®
—
nerves cosks



Decomposing the adjunction

We are left with essentially three subgoals:
® To construct the map ho, : Set®% — Cat.

® To prove ho, - nerve,.

® To prove that the nerve is 2-coskeletal, which is equivalent to the assertion that the
natural transformation v is an isomorphism.



Reflexive quivers

A quiver is a "category without identity and composition”: it has a set of objects and
morphisms between pairs of objects, and no laws on top. There is an obvious forgetful

F

functor from categories to quivers, with a left adjoint Cat g Quiv  which builds
U

the “free category” generated from given arrows.

For our project we defined reflexive quivers, a “category without composition”, adding

only the identity morphisms. This decomposes the above adjunction to
F F

Cat “ 1 rQuiv | _ Quiv giving us the free category from a reflexive quiver.
\ﬁ \5/7



The homotopy relation

Recall that we want to construct ho, : SetA (at, so consider a 2-truncated
simplicial set X : A%, = Type. First, we use the set X[0] for the objects, and

{f + X[ [ X(s)(f) = AN X(O)(f) = B}

defines Hom(A, B). This is not a category, but it is a reflexive quiver because we have
X(7)(A) : Hom(A, A).

We then construct the free category generated by this refl.quiver, whose morphisms are
formal composites of the above. There is a general construction for taking the morphism
quotient generated from a relation, and we use the relation generated by

X(o1)(p) o X(015)(p) ~ X(00,) () for each ¢ : X[2], where o, 0,,,0, are the
three elements of [1] — [2]. This quotient is (the object part of) ho,(X) : Cat.



Constructing the adjunction ‘

The tricky part of the adjunction ho, - nerve, is the unit, which is constructed using
the following lemma:

Given X : A‘;pz = Type a 2-truncated simplicial set and C a category, consider a

reflexive prefunctor F': U(X) — U(C) a map from the r.q. of X to the r.q. of C. If for
each ¢ : X[2], F(oy,(v)) = Flog, (@) o Floy,(p)) (using composition from C), then F

lifts uniquely to a map F': X — U,(C) in sSet_,.

Constructing the lift F, a natural transformation, involves constructing three
components for F[0],..F]2]; and because of the definition by cases we have 31 different
naturalities to prove (one for each morphism in A_,).



©

Difficulties and complications



Confusions of notation/encoding ‘

Category theory famously eats itself:

® A category C consists of objects A, B, C and arrows f: A — B, g: B — C with
composition and identities satisfying axioms.

® (Categories themselves assemble into a category Cat whose objects are categories
and whose morphisms are functors.




Confusions of notation/encoding

Category theory famously eats itself:

® A category C consists of objects A, B, C and arrows f: A — B, g: B — C with
composition and identities satisfying axioms.

® (Categories themselves assemble into a category Cat whose objects are categories
and whose morphisms are functors.

In Mathlib, categories are typically unbundled, as types with a category structure, while
objects of Cat are bundled categories. Functors come with

e two different notations whether they are thought of as functors between categories
or arrows in Cat (“=" vs “—") and

e distinct notations for composition (“>3>" vs “>>") and identities (“1" vs “1") in
each setting.



Confusions of notation/encoding ‘

We formalized the free
category and underlying
reflexive quiver adjunction

F
P

rQuiv. 1  Cat.

)
U

But the construction of
the adjunction was
repeatedly hindered by
confusions about the
encoding of categorical
data.

left_triangle := by

ext V

apply Cat.FreeRefl.lift_unique'

simp only [id_obj, Cat.free_obj, comp_obj, Cat.freeRefl_obj_a, NatTrans.comp_app,
forget_obj, whiskerRight_app, associator_hom_app, whiskerLeft_app, id_comp,
NatTrans.id_app']

lrw [Cat.id_eq_id, Cat.comp_eq_comp]!

simp only [Cat.freeRefl_obj_a, Functor.comp_id]l

rw [« Functor.assoc, « Cat.freeRefl_naturality, Functor.assoc]

dsimp [Cat.freeRefll

rw [adj.counit.component_eq' (Cat.FreeRefl V)]

conv => I
enter [1, 1, 2] ‘
apply (Quiv.comp_eq_comp (X := Quiv.of _) (Y := Quiv.of _) (Z := Quiv.of _) ..).symmg

rw [Cat.free.map_comp]

|show (_ » ((Quiv.forget » Cat.free).map (X := Cat.of _) (Y := Cat.of _)

| (Cat.FreeRefl.quotientFunctor V))) » _ = _ |

[rw [Functor.assoc, « Cat.comp_eq_comp]|

[conv => enter [1, 2];[apply Quiv.adj.counit.naturality

[rw [Cat.comp_eq_comp, « Functor.assoc, « Cat.comp_eq_comp] ‘

exact Functor.id_comp _



Universe levels

On paper size issues in category theory are typically addressed in a hand wavy fashion:®

Remark 1.1.5. Russell’s paradox implies that there is no set whose elements are “all sets.”
This is the reason why we have used the vague word “collection’ in Definition 1.1.1. Indeed,
in each of the examples listed in 1.1.3, the collection of objects is not a set. Eilenberg and
Mac Lane address this potential area of concern as follows:

... the whole concept of a category is essentially an auxiliary one;

our basic concepts are essentially those of a functor and of a natural

transformation . ... The idea of a category is required only by the

precept that every function should have a definite class as domain

and a definite class as range, for the categories are provided as the

domains and ranges of functors. Thus one could drop the category

concept altogether and adopt an even more intuitive standpoint, in

which a functor such as “Hom” is not defined over the category of

“all” groups, but for each particular pair of groups which may be

given. [EM45]
The set-theoretical issues that confront us while defining the notion of a category will
compound as we develop category theory further. For that reason, common practice among
category theorists is to work in an extension of the usual Zermelo-Fraenkel axioms of set
theory, with new axioms allowing one to distinguish between “small” and “large” sets,
or between sets and classes. The search for the most useful set-theoretical foundations
for category theory is a fascinating topic that unfortunately would require too long of a
digression to explore.? Instead, we sweep these foundational issues under the rug, not
because these issues are not serious or interesting, but because they distract from the task
at hand.®

1Footnote 13 begins “If pressed, let us assume that there exists a countable sequence of inaccessible
cardinals, .."”



Universe levels (Emily’s take)

Of course this doesn’t work in proof assistant and over a year's worth of attempts to
formalize some category theory in Lean | find myself drawn between two poles:
® On the one hand, I'm embarrassed by how poorly | understand the implications of
various categorical constructions on universe levels.

® On the other, | am frustrated by how often universe errors “distract from the task
at hand” and feel increasingly drawn to the dark side of type-in-type.



Universe levels (Emily’s take)

Of course this doesn’t work in proof assistant and over a year's worth of attempts to
formalize some category theory in Lean | find myself drawn between two poles:

® On the one hand, I'm embarrassed by how poorly | understand the implications of
various categorical constructions on universe levels.

® On the other, | am frustrated by how often universe errors “distract from the task
at hand” and feel increasingly drawn to the dark side of type-in-type.

There are two open questions related to practical treatment of universes that | would
like to answer:

® \What are the best strategies for dealing with universe errors that arise during
formalization, both with the aim of resolving them and with the aim of not letting
them get in the way of other progress?

® How should universes be addressed in the pen-and-paper literature to better prepare
category theorists for formalization, i.e., how should | address this in Category
Theory in Context volume 117



Universe levels (Mario's take)

As someone who works on ITP design to some extent, | find it interesting how people
like Emily experience universes in practice.

® A common piece of advice | would give is to just ignore universe parametricity and
set everything to use Type 0.
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As someone who works on ITP design to some extent, | find it interesting how people
like Emily experience universes in practice.

® A common piece of advice | would give is to just ignore universe parametricity and
set everything to use Type 0.

® This would allow us to split the work between doing “real mathematics” and
administrative stuff for the universes (which | felt much more competent to do
without understanding the surrounding structure)



Universe levels (Mario's take)

As someone who works on ITP design to some extent, | find it interesting how people
like Emily experience universes in practice.

® A common piece of advice | would give is to just ignore universe parametricity and
set everything to use Type 0.

® This would allow us to split the work between doing “real mathematics” and
administrative stuff for the universes (which | felt much more competent to do
without understanding the surrounding structure)

e | think it would actually be a good idea to have a type-in-type / ignore-universes
flag for being able to do this systematically.



Invisible inclusions ‘

A simplicial set is a functor X: A°P = Type, indexed by a category /A whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory A_, C A spanned by the objects [0], [1], [2].
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On paper, A_, has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from A.
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then has hom-types inherited from A.

In Mathlib, objects of A_, are natural numbers 1 together with a proof that m < 2.



Invisible inclusions

A simplicial set is a functor X: A°P = Type, indexed by a category /A whose objects are
natural numbers.

Some constructions require only the data of a 2-truncated simplicial set,
indexed by the subcategory A_, C A spanned by the objects [0], [1], [2].

On paper, A_, has just three objects — the natural numbers [0], [1], and [2] — and
then has hom-types inherited from A.

In Mathlib, objects of A_, are natural numbers 1 together with a proof that m < 2.

This causes all sorts of problems.



Invisible inclusions

Proofs involving A_, often require rewriting along an equality between arrows that has
been proven for A. Since rw typically fails, we are forced to duplicate infrastructure:

/-- Abbreviations for face maps in the 2-truncated simplex category. -/
abbrev 62 {n} (i : Fin (n + 2)) (hn := by decide) (hn' := by decide)
(([n], hn) : SimplexCategory.Truncated 2) — ([n + 1], hn') := SimplexCategory.b i

/-- Abbreviations for degeneracy maps in the 2-truncated simplex category. -/
abbrev 62 {n} (i : Fin (n + 1)) (hn := by decide) (hn' := by decide)
(([n+1], hn) : SimplexCategory.Truncated 2) — ([n], hn') := SimplexCategory.c i

@[reassoc (attr := simp)]
lemma 62_zero_comp_oz_zero {n} (hn := by decide) (hn' := by decide)

62 (n :=n) © hn hn' > 02 © hn' hn = 1 _ := SimplexCategory.5_comp_o_self
@[reassoc]

lemma 62_zero_comp_c2_one : 62 (0 : Fin 3) > 02 1 =02 0 > 62 0 :=
SimplexCategory.6_comp_o_of_le (i := 0) (j := 0) (Fin.zero_le _)

@[reassoc (attr := simp)]
lemma 62_one_comp_o2_zero {n} (hn := by decide) (hn' := by decide)
62 (n :=n) 1 hn hn' > 02 © hn' hn = 1 _ := SimplexCategory.5_comp_o_succ
@[reassoc (attr := simp)]
lemma &2_two_comp_o2_one : 62 (2 : Fin 3) » 02 1 = 1 _ := SimplexCategory.d_comp_o_succ' (by decide)
@[reassoc]

lemma &2_two_comp_o2_zero : 62 (2 : Fin 3) > 02 0 = 02 0 >» 62 1 :=
SimplexCategory.6_comp_o_of_gt' (by decide)



Dependent equality and “evil”

Universal properties characterize objects of a category only up to (unique) isomorphism.
Categorical statements that refer to an equality between objects are known as “evil.” J

Equality between parallel functors I, G: C = D is certainly evil,
though strangely the “evil” equality between objects is the easiest part to formalize.



Dependent equality and “evil”

Universal properties characterize objects of a category only up to (unique) isomorphism.
Categorical statements that refer to an equality between objects are known as “evil.” J

Equality between parallel functors I, G: C = D is certainly evil,
though strangely the “evil” equality between objects is the easiest part to formalize.

On paper, F' = G just when
o ['X = (GGX for all objects X in C, and
o ['f = (Gf for all arrows f: X — Yin C.

But Mathlib, the second statement does not type check: it is not meaningful to ask
whether /' f equals G f because F'f: FX — FYand GGf: GX — GY. Even if we have
proofs hX : FX = GX and hY': I'Y = GGY, these are different types.



Dependent equality and “evil” “

Using an evil hypothesis h_obj : VX, F.obj X = G.obj X involving parallel functors
F,G: C= D, there are various ways to conclude that F'= G-

/-- Proving equality between functors. This isn't an extensionality lemma,
because usually you don't really want to do this. -/
theorem ext {F G : C = D} (h_obj : V X, F.obj X = G.obj X)
(hmap : ¥ XY f,
.map f = eqToHom (h obj X) > G.map f > eqToHom (h obj Y).symm := by aesop cat) :
G := by

nomi

F

/-- Proving equality between functors using heterogeneous equality. -/
theorem hext {F G : C = D} (h_obj : ¥V X, F.obj X = G.obj X)
(hmap : ¥ (XY) (f: X=Y), HEq (F.map f) (G.map f)) : F =G :=

lemma ext_of _iso {F G : C =D} (e : F=G) (hobj : ¥ X, F.obj X = G.obj X)
(happ : ¥ X, e.hom.app X = eqToHom (hobj X)) : F = G :=

None of these are particularly fun to use,
as they involve arguments that are totally invisible on paper.



Coherence theorems

On paper, a coherence theorem of Power tells us that 2-cells in a 2-category compose by
pasting, generalization the primitive operations of vertical composition and whiskering:

A— C}/ Cc —2 > F E
| |22 A |~
R, L Ja L, R, L, /8 s UE} -
ze ] Ut LR
B B— D — F
H, H,

In Mathlib, the 2-cells displayed here belong to dependent types (over their boundary
1-cells and objects).

Depending on how the whiskerings are chosen, 2-cells that are composable on paper are
composable in Lean as 1-cells along their common boundary are not definitionally equal:

e.g., is RyHyLyn,G| Ry composable with Ry Hyeo LoG R, 7?



Coherence theorems

A i} C/ C &) E — iS R3H2L2772G1R1
R, ; K an - o g composable
%el SRR 2 8 L0 R with RyHyeyLoyG R, ?
1 2

Lean has a clever composition operation for 2-cells in a bicategory:

/-- Construct an isomorphism between two objects in a bicategorical category

out of unitors and associators. -/

abbrev bicategoricallso (f g ! a - b) [BicategoricalCoherence f g] : f = g :=
el

/-- Compose two morphisms in a bicategorical category,
inserting unitors and associators between as necessary. -/
def bicategoricalComp {f g h i : a — b} [BicategoricalCoherence g h]
n:f-=9g)(0®:h-=1) : f=1:=
n = el.hom >» @

but no normal form for whiskered 2-cells or pasting diagram composites.



Coherence theorems

/- The mates equivalence commutes with vertical composition. -/
theorem mateEquiv_vcomp (@ : g1 » 1z — 1 » h1) (B : gz » s — Lz » h2) :
mateEquiv adj: adjs (leftAdjointSquare.vcomp a B) =
rightAdjointSquare.vcomp (mateEquiv adj: adj: «) (mateEquiv adjz adjs B) := by H
dsimp only [leftAdjointSquare.vcomp, mateEquiv_apply, rightAdjointSquare.vcomp] A formal prOOf by Yuma MlZUnO

symm

i leveraged his bicategory tactic to prove

=[1 _e» r1 <91 < adjz.unit > g2 @> 1 <A > r2 > g2 @

((adi-counit o (hs » ra » g2 » 1 €)) » 1 b (s < r2 < g2 4 adjs.unit)) o» an equality between the previous

hi 4 r: 4B > rs e hi < adjz.counit > ha b ra e» 1 _ := by

bicategory pasting composite and a reduced form

_=[i_e>r1 <01 <adjz.unit > g2 &>

(1 o (am (122 g2 2 16) » (L = ) @ 12 .92 @ adfs.unit) o» (with the whiskered composite of 7,

((adji.counit &> (hi » r2) & (g2 » 1) » (1 b » hi » r2) < B) > r3) e»

h:1 < adjz.counit > hz > rs @» 1 _ := by

et and ¢, replaced by an identity).

bicategory
=f _e> ri<g: < (adjz.unit > (g2 > 1 €) » (12 > ra) < g2 < adja.unit) e»
(ria(ap (r2 » gz » 13) » (L » hi) 91z <B) > rs) e»

(adji.counit > hi > (rz » 12) » (1 b » hi) < adjz.counit) > hz > rs @» 1 _ := by
rw [~ whisker_exchange, « whisker_exchangel - .
YT, ’ ’ But his proof required a lot of
_=l1_e> r1 a g1 < gz < adja.unit &> . . . r o
fs @ g1 < (adfaunit b (g2 > L) » {Ls > r2) @) b 2 or intermediate calculation — specifying a
ria (@ (r2 » 12) » (L » h1) < adjz.counit) & ha > ra e ) .
adja.countt b hs o hs b s 0s 1 _t= by particular sequence of presentations of
rw [~ whisker_exchange, « whisker_exchange, « whisker_exchange] ) )
bicategory o . the pasted composite as a vertical
i T T s
((r1 » g1) < leftzigzag adjz - unit adjz.counit & (hz » ra)) e» com pOSIte Of Whlskered 2—ce||s _ that
ri < o> hz > rs e adji.counit > hi > hz b rs ®» 1 _ i= by

rw [ whisker_exchange, « whisker_exchange] H

s ideally would be automated.
= _:i=by

rw [adjz.left_trianglel

bicategory



Naturality

Because the simplex category A is a strict Reedy category, there is a well understood
procedure for extending a map f: X — Y of n — 1-truncated simplicial sets to a map of
n-truncated simplicial sets:

(i) define the new component: f, : X, — Y, , a function carrying n-simplices of X to

n-simplices of Y, and

(ii) check that the map f,, respects degeneracies and faces.
If desired, each of the checks mentioned in (ii) can be encoded as a single commutative
square, one involving a colimit forming the latching object of degenerate simplices and
the other involving a limit forming the matching object of simplex face data.
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Because the simplex category A is a strict Reedy category, there is a well understood
procedure for extending a map f: X — Y of n — 1-truncated simplicial sets to a map of
n-truncated simplicial sets:

(i) define the new component: f, : X, — Y, , a function carrying n-simplices of X to

n-simplices of Y, and

(ii) check that the map f,, respects degeneracies and faces.
If desired, each of the checks mentioned in (ii) can be encoded as a single commutative
square, one involving a colimit forming the latching object of degenerate simplices and
the other involving a limit forming the matching object of simplex face data.

These conditions are both necessary and sufficient.



Naturality
Mathlib does not know any Reedy category theory. Do we digress to formalize this
general abstract nonsense or instead just check that the given family of maps
f('): XO _>)/})7 f1: Xl _>Y17 R fn 1° Xn 1 _>Yn 1 fn: Xn_>Yn

defines a natural transformation in the case of interest, checking a lot of unnecessary
naturality conditions?

2While integrating this into Mathlib, Joél Riou provided infrastructure that allowed us to reduce to
four cases, though there should have just been two.



Naturality

Mathlib does not know any Reedy category theory. Do we digress to formalize this
general abstract nonsense or instead just check that the given family of maps

f(J: XO - }/07 f1: Xl - Y17 A fn 1° Xn 1 - Yn 1» fn: Xn - Yn

defines a natural transformation in the case of interest, checking a lot of unnecessary
naturality conditions?

As mentioned previously, in order to define the unit of the adjunction between the nerve
functor and the homotopy category functor, we had to extend a map of 1-truncated

simplicial sets to a map of 2-truncated simplicial sets, which requires 31 naturality checks.
We essentially did this by hand, splitting into 9 cases, parametrized by pairs of objects.?

2While integrating this into Mathlib, Joél Riou provided infrastructure that allowed us to reduce to
four cases, though there should have just been two.
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® There are still a lot of friction points before we can get to the point that we could
just type in the informal proof directly. Needs more automation?

® The oo-cosmos project is underway, so if you like co-categories go check out
https://emilyriehl.github.io/infinity-cosmos/

Questions?


https://emilyriehl.github.io/infinity-cosmos/
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