
A Certified Proof Checker for Deep
Neural Network Verification in Imandra

Remi Desmartin*, Omri Isac*, Grant Passmore, Ekaterina

Komendantskaya, Kathrin Stark, Guy Katz

ITP, October 2025

2

Remi Desmartin, PhD student

Heriot-Watt University

Deep Neural Networks (DNNs) accomplish groundbreaking

results in many fields, including safety-critical.

Unlike traditional software, DNNs are opaque functions,

trained over a large set of input and output examples.

3

This may lead to undesirable behavior of DNNs, which is hard

to predict and potentially dangerous.

4

Understanding Adversarial Attacks on Deep Learning

Based Medical Image Analysis Systems, Ma et al., 2019

This may lead to undesirable behavior of DNNs, which is hard

to predict and potentially dangerous.

5

Understanding Adversarial Attacks on Deep Learning

Based Medical Image Analysis Systems, Ma et al., 2019

Can we rule out possibility of (some) errors?
Or find hidden errors, if exist

The verification community developed various DNN verifiers,

based on SMT, abstract interpretation, MILP and more.

6

DNNVerifier

DNN verifiers are prone to bugs and may be numerically

unstable, which can be exploited [Jia & Rinard, 2021].

They are complex software and performance-oriented, thus

their verification is very difficult.

7

DNNVerifier

Produce certificates of the verifiers’ results:

• Checked using an independent, trusted and simple checker.

• Witness the correctness of the verifier or reveal errors.

A common practice in SAT and SMT communities.

8

DNNVerifierChecker

9

Re-Checker DNNVerifierChecker…

Trusting this scheme requires implementing a reliable checker,

e.g., formally verified in an ITP.

Verify with ITP

The Model of Trust

10

Verifier

DNN

Spec.

Certificate

Counterexample

Checker

Eval.

The Model of Trust

11

Verifier

DNN

Spec.

Certificate

Counterexample

Checker

Eval.

Exists and

Simple

The Model of Trust

12

Verifier

DNN

Spec.

Certificate

Counterexample

Checker

Eval.

This Work

Exists and

Simple

Integration in System Verification

13

System

DNN DNN Verifier

System VerifierChecker

Certificate

14

Background

Deep Neural Networks

• Layered function:
• Affine: 𝒃𝒊 = σ𝒋 𝒘𝒊.𝒋 ⋅ 𝒇𝒋 + 𝒄𝒊

• Nonlinear activations: 𝒇𝒊 = 𝒂𝒊 𝒃𝒊

• The ReLU activation:

15

𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆
𝒃 ≤ 𝟎, 𝒇 = 𝟎

𝑨𝒄𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆
𝒃 ≥ 𝟎, 𝒇 = 𝒃

DNN Verification

• Given a DNN 𝓝 an input property 𝝋(𝒙) and an output

property 𝝍(𝒚), decide whether there exists an input vector

𝒙 that violates 𝝋 𝒙 → 𝝍(𝓝 𝒙).

o If exists, the problem is satisfiable (SAT);

o Otherwise unsatisfiable (UNSAT).

16

DNN Verification

• Assuming QF linear properties, and ReLU activations →

linear + piecewise linear constraints:

• Find assignment for 𝑽 ∈ ℝ𝒏

• Linear:

𝑨 ⋅ 𝑽 = ഥ𝟎 [𝑨 ∈ ℝ𝒎×𝒏]
𝒍 ≤ 𝑽 ≤ 𝒖 [𝒍, 𝒖 ∈ ℝ𝒏]

• Piecewise Linear:

𝒇𝒊 = 𝑹𝒆𝑳𝑼 𝒃𝒊 [𝒇𝒊, 𝒃𝒊 ∈ 𝑽]

17

Verification Query Example

18

 𝝋 𝒙 ≔ 𝒙 ∈ 𝟎, 𝟏 𝟐

𝝍 𝒚 ≔ 𝒚 ∈ 𝟒, 𝟓

𝑥1

𝑥2 𝑣2

𝑦

𝑣1

ReLU

ReLU

id-1

2

-1

2

1

1

Verification Query Example

19

 𝝋 𝒙 ≔ 𝒙 ∈ 𝟎, 𝟏 𝟐

𝝍 𝒚 ≔ 𝒚 ∈ 𝟒, 𝟓

𝑥1

𝑥2 𝑣2

𝑦

𝑣1

ReLU

ReLU

id-1

2

-1

2

1

1

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓 ⊺

𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒 ⊺

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 ⊺

DNN Verification Algorithms

• Many verification algorithms search for a satisfying

assignment with LP solvers + splitting approach.

20

𝑨 ⋅ 𝑽 = ഥ𝟎
𝒍 ≤ 𝑽 ≤ 𝒖

𝒇𝒊 = 𝑹𝒆𝑳𝑼 𝒃𝒊

21

Solver searches

for LP assignment

22

Solver searches

for LP assignment

UNSAT

Contradiction

23

Solver searches

for LP assignment

UNSAT
Check piecewise-

linear constraints

Contradiction Assignment

24

Solver searches

for LP assignment

UNSAT
Check piecewise-

linear constraints

SAT +

counterexample

Contradiction Assignment

Yes

25

Solver searches

for LP assignment

UNSAT
Check piecewise-

linear constraints

Split to

subqueries

SAT +

counterexample

Contradiction Assignment

Yes No

26

Splitting creates a tree structure to the search.

The query is UNSAT if and only if all leaves are UNSAT.

Solver searches

for LP assignment

UNSAT
Check piecewise-

linear constraints

Split to

subqueries

SAT +

counterexample

Contradiction Assignment

Yes No

Certificate Production

• Certifying SAT is straightforward; Certifying UNSAT is more

complicated, due to NP-Hardness [Katz et. al, ’17; Sälzer

and Lange, ‘21].

• Marabou DNN verifier produces and checks UNSAT proofs

(C++).

27

Neural Network Verification with Proof Production, Isac et. al, FMCAD 2022

The Certificate Tree

28

In the certificate-tree, nodes represent case-splits; leaves contain

proofs of contradictions, which are represented by a vector.

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪
𝑣2 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑣2 𝑎𝑐𝑡𝑖𝑣𝑒

The Farkas Lemma (Variant)

29

Gyula Farkas

For any set of linear equations 𝑨𝑽 = 𝟎 where

𝒍 ≤ 𝑽 ≤ 𝒖 exactly one holds:

• There exists a solution 𝒍 ≤ 𝑽 ≤ 𝒖 s.t.

𝑨𝑽 = 𝟎.

• There exists a refutation 𝒚 s.t.

∀𝒍 ≤ 𝑽 ≤ 𝒖: 𝒚⊤𝑨𝑽 < 𝟎.

Refutation can be constructed during

execution of DNN verifier.

30

Possibly many

iterations and

derivations

Certificate

The Certificate Tree

31

𝑣2 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑣2 𝑎𝑐𝑡𝑖𝑣𝑒

Certificate checking consists of traversing the tree, checking splits

are covering and checking leaves using the Farkas lemma.

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

32

Certified Checking

theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =

 well_formed s x && check_cert s c

 ==>

 eval_system s x = false

[@@by [% use cert_is_neg s c x]

@> [% use solution_is_not_neg s c x]

@> auto] [@@fc]

Imandra

33

• An OCaml-based FPL and an ITP.

• Supports arbitrary precision real arithmetic.

Data Representation

34

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚

Data Representation

35

type proofTree =

 | Leaf of real list

 | Node of Split * proofTree * proofTree

type Split = Relu of int * int * int

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚

Data Representation

36

type proofTree =

 | Leaf of real list

 | Node of Split * proofTree * proofTree

type Split = Relu of int * int * int

type poly = Real.t list
type expr =

 | Eq of poly

 | Geq of poly
type system = expr list

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 ≤ 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚

The Checking Function

37

let rec check_tree tableau upper_bounds lower_bounds constraints

proof_node =

match proof_node with

 | Proof_tree.Leaf contradiction ->

 check_contradiction … (* applies the Farkas lemma *)

 | Proof_tree.Node (split, left, right) ->

 let valid_split = … in

 let valid_children = … in (* includes recursive calls *)

 valid_split && valid_children

38

Type reduction
soundness

Farkas lemma
(UNSAT direction)

ReLU splits are
covering

Proof Main Components

The Farkas Lemma (Generalized)

39

Gyula Farkas

Given a polynomial system ⋀𝒊=𝟏
𝑵 (𝒑𝒊 (𝒙) = 𝟎)

∧ ⋀𝒊=𝟏
𝑲 (𝒒𝒊 𝒙 ≥ 𝟎) exactly one holds:

• There exists a solution.

• There exists a refutation: 𝕀 ∈ ℝ𝑵, ℂ ∈ ℝ≥𝟎
𝑲

with 𝕀 ⋅ 𝒑𝒊 + ℂ ⋅ 𝒒𝒋 < 𝟎 .

The Farkas Lemma (Generalized)

40

Gyula Farkas

Given a polynomial system ⋀𝒊=𝟏
𝑵 (𝒑𝒊 (𝒙) = 𝟎)

∧ ⋀𝒊=𝟏
𝑲 (𝒒𝒊 𝒙 ≥ 𝟎) exactly one holds:

• There exists a solution.

• There exists a refutation: 𝕀 ∈ ℝ𝑵, ℂ ∈ ℝ+
𝑲

with 𝕀 ⋅ 𝒑𝒊 + ℂ ⋅ 𝒒𝒋 < 𝟎 .

theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =

 well_formed s x && check_cert s c

 ==>

 eval_system s x = false

Data Representation

41

Matrix and vectors System of polynomial equations and

inequalities

If the system is UNSAT, so is the LP using the matrix and vectors.

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 Tableau:

𝟐𝒙𝟏 + 𝒙𝟐 − 𝒃𝟏 = 𝟎
…

Bounds:

𝟏 − 𝒙𝟏 ≥ 𝟎
𝒙𝟏 ≥ 𝟎

…

mk_system

Data Representation

42

Matrix and vectors System of polynomial Equations and

Inequalities

If the system is UNSAT, so is are the input matrix and vectors.

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 Tableau:

𝟐𝒙𝟏 + 𝒙𝟐 = 𝒃𝟏

…
Bounds:

𝟏 − 𝒙𝟏 ≥ 𝟎
𝒙𝟏 ≥ 𝟎

…

mk_system

lemma soundness_check_cert_composition tableau upper_bounds lower_bounds x =

 let sys = mk_system (mk_eq_constraints tableau) upper_bounds lower_bounds in

 well_formed_tableau_bounds tableau upper_bounds lower_bounds &&

 List.length x = List.length (List.hd tableau) &&

 not (eval_system sys x)

 ==>

 not (is_in_kernel tableau x) || not (bounded x upper_bounds lower_bounds)

If leaf checking returns true, then there is no
solution to underlying linear query

Soundness of Leaf Checking

43

If leaf checking returns true, then there is no
solution to underlying linear query

Soundness of Leaf Checking

44

lemma soundness_leaf tableau upper_bounds lower_bounds relu_constraints x

proof_tree =

 match proof_tree with

 | Node _ -> true

 | Leaf contradiction ->

 well_formed_tableau_bounds tableau upper_bounds lower_bounds &&

 List.length x = List.length (List.hd tableau) &&

 check_tree (mk_eq_constraints tableau) upper_bounds lower_bounds

 relu_constraints proof_tree

 ==>

 unsat tableau upper_bounds lower_bounds relu_constraints x

Soundness of ReLU Splits

45

𝑸

𝑸⋀(𝒃𝒊 ≤ 𝟎)⋀(𝒇𝒊 = 𝟎) 𝑸⋀(𝒃𝒊 ≥ 𝟎)⋀(𝒇𝒊 = 𝒃𝒊)

If the split corresponds to a ReLU constraint in 𝑸, and both
𝑸𝑳 and 𝑸𝑹 are UNSAT, so is 𝑸.

𝑸𝑳 𝑸𝑹

Soundness of ReLU Splits

46

𝑸

𝑸⋀(𝒇𝒊 ≤ 𝟎)⋀(𝒃𝒊 ≤ 𝟎) 𝑸⋀(𝒇𝒊 ≥ 𝟎)⋀(𝒃𝒊 ≥ 𝟎)

If the split corresponds to a ReLU constraint in 𝑸, and both
𝑸𝑳 and 𝑸𝑹 are UNSAT, so is 𝑸.

𝑸𝑳 𝑸𝑹

theorem soundness_relu_split_matching tableau us ls constraints xs split =

 let (lb_left, ub_left), (lb_right, ub_right) = update_bounds_from_split ls

us split in

 List.length xs = List.length ls

 && List.length xs = List.length us

 ==>

 match split with

 | ReluSplit (b,f,aux) ->

 List.mem (Relu (b,f,aux)) constraints

 && sat tableau us ls constraints xs

 ==>

 (sat tableau ub_left lb_left constraints xs

 || sat tableau ub_right lb_right constraints xs)

 | _ -> true

let rec check_tree tableau upper_bounds lower_bounds constraints

proof_node =

match proof_node with

 | Proof_tree.Leaf contradiction ->

 check_contradiction …

 | Proof_tree.Node (split, left, right) ->

 let valid_split = … in

 let valid_children = … in

 valid_split && valid_children

Main Result

47

let rec check_tree tableau upper_bounds lower_bounds constraints

proof_node =

match proof_node with

 | Proof_tree.Leaf contradiction ->

 check_contradiction …

 | Proof_tree.Node (split, left, right) ->

 let valid_split = … in

 let valid_children = … in

 valid_split && valid_children

Main Result

48

If check_node returns true, then there is no
solution to underlying linear + ReLU query

theorem check_tree_soundness (tableau: real list list) (upper_bounds: real list)

(lower_bounds: real list)

 (constraints: Constraint.t list) (tree: Proof_tree.t) (x: real list) =

 valid_proof tableau upper_bounds lower_bounds constraints tree

 && well_formed_vector tableau x

 ==>

 unsat tableau upper_bounds lower_bounds constraints x

Performance Evaluation

49

Evaluation shows a × ~𝟒. 𝟕 checking-to-verification delay,

suggesting a clear tradeoff between reliability and scalability.

L.o.C. Evaluation

50

51

Future Work

Bridge gap between
DNN and query

Support certificate
optimizations

Integrate in a
system verifier

52

Conclusion

Verifier

DNN

Spec.

Certificate

Counterexample

Checker

Eval.

This Work

Exists and Simple

Future

Work

53

paper + code available

Feel free to contact:
omri.isac@mail.huji.ac.il

	Slide 1: A Certified Proof Checker for Deep Neural Network Verification in Imandra
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: The Model of Trust
	Slide 11: The Model of Trust
	Slide 12: The Model of Trust
	Slide 13: Integration in System Verification
	Slide 14
	Slide 15: Deep Neural Networks
	Slide 16: DNN Verification
	Slide 17: DNN Verification
	Slide 18: Verification Query Example
	Slide 19: Verification Query Example
	Slide 20: DNN Verification Algorithms
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Certificate Production
	Slide 28: The Certificate Tree
	Slide 29: The Farkas Lemma (Variant)
	Slide 30
	Slide 31: The Certificate Tree
	Slide 32
	Slide 33: Imandra
	Slide 34: Data Representation
	Slide 35: Data Representation
	Slide 36: Data Representation
	Slide 37: The Checking Function
	Slide 38: Proof Main Components
	Slide 39: The Farkas Lemma (Generalized)
	Slide 40: The Farkas Lemma (Generalized)
	Slide 41: Data Representation
	Slide 42: Data Representation
	Slide 43: Soundness of Leaf Checking
	Slide 44: Soundness of Leaf Checking
	Slide 45: Soundness of ReLU Splits
	Slide 46: Soundness of ReLU Splits
	Slide 47: Main Result
	Slide 48: Main Result
	Slide 49: Performance Evaluation
	Slide 50: L.o.C. Evaluation
	Slide 51
	Slide 52
	Slide 53

