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Deep Neural Networks (DNNs) accomplish groundbreaking

results in many fields, including safety-critical.

Unlike traditional software, DNNs are opaque functions,

trained over a large set of input and output examples.



This may lead to undesirable behavior of DNNs, which is hard

to predict and potentially dangerous.
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Understanding Adversarial Attacks on Deep Learning
Based Medical Image Analysis Systems, Ma et al., 2019



Can we rule out possibility of (some) errors?

Or find hidden errors, if exist



The verification community developed various DNN verifiers,
based on SMT, abstract interpretation, MILP and more.

DNN



DNN verifiers are prone to bugs and may be numerically
unstable, which can be exploited [Jia & Rinard, 2021].

DNN

They are complex software and performance-oriented, thus
their verification is very difficult.



Produce certificates of the verifiers’ results:
* Checked using an independent, trusted and simple checker.
* Witness the correctness of the verifier or reveal errors.

IOl

Checker DNN

A common practice in SAT and SMT communities.



Verify with ITP
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Checker DNN

Trusting this scheme requires implementing a reliable checker,
e.g., formally verified in an ITP.



The Model of Trust
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Background



Deep Neural Networks

* Layered function:
» Affine: bi — Z] Wi, - f] + C;
* Nonlinear activations: f; = a;(b;)

* The ReLU activation:

Inactive phase Active phase
b<0f=0 5 b=0f=b




DNN Verification

« Given a DNN N an input property ¢@(x) and an output
property y¥(y), decide whether there exists an input vector
x that violates ¢(x) - Y (WNV(x)).

. If exists, the problem is satisfiable (SAT);
. Otherwise unsatisfiable (UNSAT).

=1 &
:=| - (X

-




DNN Verification

 Assuming QF linear properties, and RelLU activations —
linear + piecewise linear constraints:

* Find assignment for V € R"

 Linear:

 Piecewise Linear:

fi = ReLU(b;) [fi,b; EV]



Verification Query Example

RelLU

RelLU

@(x) =x€[0,1]
Y(y)=y€l[45]



Verification Query Example

RelLU Variables:
V=[x1 x2 by by f1 f, aux; aux; Y[

Tableau:
2 1 -1 0 0O 0 O 0 0]
-1 1 0 -1 O O O 0 0
> A=lo 0 0 0 -1 2 0 0 -1
O 0 -1 O 1 0 -1 0 0
Lo 0 0 -1 0 1 0 -1 o0\
RelLU
Bounds

p(x) :==x€[0,1]?

Y(y)=yel45]
ReLUs:

f1=ReLU(b,)

f2 = ReLU(b,)



DNN Verification Algorithms

 Many verification algorithms search for a satisfying
assignment with LP solvers + splitting approach.

AV=0
[<V<u
fi = ReLU(b;)
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Solver searches
for LP assignment



Contradiction

Solver searches
for LP assignment

A\ 4
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Solver searches
o for LP assignment ,
Contradiction Assignment
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Check piecewise-
linear constraints
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Solver searches

for LP assignment
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Solver searches

for LP assignment

Contradiction Assignment

Check piecewise-
linear constraints
Yes No
Split to
subqueries

Splitting creates a tree structure to the search.
The query is UNSAT if and only if all leaves are UNSAT.

SAT +
counterexample




Certificate Production

 Certifying SAT is straightforward; Certifying UNSAT is more

complicated, due to NP-Hardness [Katz et. al, ’17; Salzer
and Lange, ‘21].

 Marabou DNN verifier produces and checks UNSAT proofs
(C++).

Neural Network Verification with Proof Production, Isac et. al, FACAD 2022



The Certificate Tree

Q=(AulC)

v, lnactive v, active

QA(bz = 0)A(f2 = 0) QA(bz = 0)A(f2 = b2)

0 0 1 0 o] 0 0 1 -2 of

In the certificate-tree, nodes represent case-splits; leaves contain
proofs of contradictions, which are represented by a vector.



The Farkas Lemma (Variant)

- For any set of linear equations AV = 0 where
| [ <V < u exactly one holds:

* There exists a solution <V <u s.t.

 There exists a refutation y s.t.
VISV <u: y"AV < 0.

. Refutation can be constructed during
Gyula Farkas execution of DNN verifier.
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Possibly many
------------------ iterations and----------~
derivations

Certificate



The Certificate Tree

Q=(AulC)

v, lnactive v, active

QA(bz = 0)A(f2 = 0) QA(bz = 0)A(f2 = b2)

0 0 1 0 o] 0 0 1 -2 of

Certificate checking consists of traversing the tree, checking splits
are covering and checking leaves using the Farkas lemma.



Certified Checking




Imandra o1 o |

* An OCaml-based FPL and an ITP.

« Supports arbitrary precision real arithmetic.

theorem farkas unsat (s : system) (x : var vect) (c : certificate) =
well formed s x && check cert s c
==>
eval system s x = false

[@eby [% use cert is neg s c x]

@> [% use solution is not neg s c x]

@> auto] [@Rfc]



Data Representation

Q=(4ulC)
QA(bz < 0)A(f2 = 0) QA(bz = 0)A(f2 = by)
[0 0 1 0 O 0 0 1 -2 of

Variables:
V=[xy x; by by f1 [, aux; aux; Y]

Tableau:
2 1 -1 0 0O 0 O 0 0
-1 1 0 -1 0 0 O 0 0
A=|10 0 O 0 -1 2 0 0o -1
0O 0 -1 O 1 0 -1 0 0
o o 0 -1 0 1 0 -1 O
Bounds:
u=[1 1 3 1 3 1 3 2 5]
l=[0 0 0 -1 0 0 0 0 4]

ReLUs:
fl = ReLU(bl)
f2 = ReLU(b3)



Data Representation

Q=(4,ulC)

type proofTree =
QA(by < OA(f, = 0) QA(by = O)A(fz = by) | Node of Split * proofTree * proofTree
type Split = Relu of int * int * int
0 0 1 0 o 0 0 1 -2 of YP P
Variables:
V=I[xy x2 by by fy1 f, aux; aux; Y]
Tableau:
2 1. -1 0 0 0 0 0 O
-1 1 0 -1 0 0 0 0 O
A=l0 0 0 0 -1 2 0 0 -1
0 0-1 0 1 0 -1 0 0
0 0 0 -1 0 1 0 -1 0
Bounds:
u=[1 1 3 1 3 1 3 2 5]
I=[0 0 0 -1 0 0 0 0 4]

RelLUs:
f1=ReLU(by)
f2 = ReLU(by)



Data Representation

Q=(4,ulC)
type proofTree =
A ‘ | Leaf of real list
QA(by < O)A(f2 < 0) QA(by = O)A(f2 = by) | Node of Split * proofTree * proofTree
: : type Split = Relu of int * int * int
[0 0 1 0 o [0 0 1 -2 0]

Variables:
V=[xy x; by by f1 [, aux; aux; Y]

type poly = Real.t 1list

Tableau:

2 1-10 00 0 0 0 type expr =

110 -1 0 0 0 0 0
A=[0 0 0 0 -12 0 o0 —1‘ ‘ | Eq of poly

0 0-1 0 10 -1 0 0

© 0 0 -1 010 -1 0 | Geq of poly _
Bounds: type system = expr list

u=[11 3 1 3 1 3 2 5]

1=[0 00 -1 0 0 0 0 4]

RelLUs:
f1=RelLU(by)
f2 = ReLU(by)



The Checking Function

let rec check tree tableau upper bounds lower bounds constraints
proof node =

match proof node with
| Proof tree.Leaf contradiction ->
check contradiction .. (* applies the Farkas lemma ¥*)
| Proof tree.Node ( split, left, right ) ->
let valid split = .. in
let valid children = .. in (* includes recursive calls ¥*)

valid split && valid children



Proof Main Components

y=x
I s
I ‘ 2
I 1
y=0

Farkas lemma Type reduction RelLU splits are
(unsaT direction) soundness covering

38



The Farkas Lemma (Generalized)

Given a polynomial system AX.(p; (x) =0)
AN (g; (x) = 0) exactly one holds:

e There exists a solution.

» There exists a refutation: I € RY, C € R,

Gyula Farkas

39



theorem farkas unsat (s : system) (x : var vect) (c : certificate) =
well formed s x && check cert s c

eval system s x = false



Data Representation

Matrix and vectors System of polynomial equations and
inequalities
v?;'i:t:’[f: : X, by by fq1 f, auxqy aux; Y| mk_SYStem TableaU:
ableau: 2 + — b =0
T 1 10 000 0 o ‘ LT !
_—1 1 0 -1 _0 0 O 0 _0
s g g —01 8 11 (2) —01 g 01 Bounds:
Bounds:ﬂ o o -1 0 1 0 -1 O 1_x120
u=[1 131313 2 5 x1 =0
I=[0 0 0 -1 0 0 0 0 4]

If the system is UNSAT, so is the LP using the matrix and vectors.



lemma soundness check cert composition tableau upper bounds lower bounds x =
let sys = mk system (mk _eq constraints tableau) upper bounds lower bounds in
well formed tableau bounds tableau upper bounds lower bounds &é&
List.length x = List.length (List.hd tableau) &&
not (eval system sys x)

not (is_in kernel tableau x) || not (bounded x upper bounds lower bounds)




Soundness of Leaf Checking

If leaf checking returns true, then there is no
solution to underlying linear query



lemma soundness leaf tableau upper bounds lower bounds relu constraints x
proof tree =

match proof tree with

| Node -> true

| Leaf contradiction ->

well formed tableau bounds tableau upper bounds lower bounds &é&

List. length x = List. length (List.hd tableau) &&

check tree (mk eq constraints tableau) upper bounds lower bounds
relu constraints proof tree

unsat tableau upper bounds lower bounds relu constraints x




Soundness of ReLU Splits

/ Q \
QA(b; = 0O)A(f; = 0) QA(b; = 0)A(f; = b;)
\ J \ |
| |
Q; Qr

If the split corresponds to a ReLU constraint in Q, and both
Q; and Q are UNSAT, so is Q.



theorem soundness relu split matching tableau us ls constraints xs split

let (1b_left, ub left), le_right, ub right) = update bounds from split 1s

us split in
List.length xs = List.length 1s
&& List.length xs = List.length us

match split with

| ReluSplit (b, f,aux) ->
List.mem (Relu (b,f,aux)) constraints
&& sat tableau us ls constraints xs

(sat tableau ub left 1lb left constraints xs
| | sat tableau ub right 1lb right constraints xs)

-> true




Main Result

let rec check tree tableau upper bounds lower bounds constraints
proof node =

match proof node with
| Proof tree.Leaf contradiction ->
check contradiction ..
| Proof tree.Node ( split, left, right ) ->
let valid split = .. in
let valid children = .. in

valid split && valid children



theorem check tree soundness (tableau: real list list) (upper bounds: real list)
(lower bounds: real list)

(constraints: Constraint.t list) (tree: Proof tree.t) (x: real list) =

valid proof tableau upper bounds lower bounds constraints tree
&& well formed vector tableau x

unsat tableau upper bounds lower bounds constraints x




Performance Evaluation

Robotics Benchmark Coav Benchmark
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0 20 40 60 80 0 50 100 150 200 250
Time (sec) Time (sec)

Evaluation shows a x ~4.7 checking-to-verification delay,
suggesting a clear tradeoff between reliability and scalability.

49



L.o.C. Evaluation

Result Module name L.O.C Aux. Library Dependencies
Lem. (accumulating)

Poly Farkas lemma farkas.iml 194 21 Imandra Standard Libraries:
(Theorem 5) Real, List, Polynomials
Sound application of  well_formed_reduction.iml 11 13 farkas.iml, certificate.iml,
DNN polynomial bound_reduction.iml 350 arithmetic.iml, util.iml,
Farkas lemma tableau_reduction.iml 356 tightening.iml, constraint.iml,
(Theorem 7) proof tree.iml, checker.iml,

bound_ reduct_ g.iml,
mk_bound_ poly.iml

Soundness of leaf leaf_soundness.iml 145 10 sat.iml, split.iml
checking bound__reduction.iml,
(Lemma 10) well_formed_ reduction.iml,

tableau_ reduction.iml

Single variable splits  single_var_split_soundness.iml 81 10
are covering
(Lemma 12)

ReLU splits are relu_split_soundness.iml 113 18 relu.iml

covering relu_case_1_bounded.iml 337

(Lemma 14) relu_case_2_bounded.iml 338

Soundness of node node_soundness.iml 8 19 relu_split_ soundness.iml, sin-
checking gle_ var_ split_ soundness.iml
Soundness checker_soundness.iml 71 146 leal soundness.iml,
(Theorem 15) node_soundness.iml

Total: 2113 267

Table 2 Summary of the entire formalisation. The Table reads as follows: a result A is proven in
module A_mod, which is N lines long, calls M auxiliary lemmas, and depends on libraries as listed.



Future Work

X

Integrate in a Support certificate Bridge gap between
system verifier optimizations DNN and query



Conclusion

Future
Work

This Work
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Feel free to contact:
omri.isac@mail.huji.ac.il
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