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Deep Neural Networks (DNNs) accomplish groundbreaking 

results in many fields, including safety-critical.

Unlike traditional software, DNNs are opaque functions, 

trained over a large set of input and output examples.  
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This may lead to undesirable behavior of DNNs, which is hard 

to predict and potentially dangerous.
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Understanding Adversarial Attacks on Deep Learning 

Based Medical Image Analysis Systems, Ma et al., 2019



This may lead to undesirable behavior of DNNs, which is hard 

to predict and potentially dangerous.

5

Understanding Adversarial Attacks on Deep Learning 

Based Medical Image Analysis Systems, Ma et al., 2019

Can we rule out possibility of (some) errors?
Or find hidden errors, if exist



The verification community developed various DNN verifiers, 

based on SMT, abstract interpretation, MILP and more. 
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DNNVerifier



DNN verifiers are prone to bugs and may be numerically 

unstable, which can be exploited [Jia & Rinard, 2021].

They are complex software and performance-oriented, thus 

their verification is very difficult.
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DNNVerifier



Produce certificates of the verifiers’ results:

• Checked using an independent, trusted and simple checker.

• Witness the correctness of the verifier or reveal errors. 

A common practice in SAT and SMT communities.
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DNNVerifierChecker
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Re-Checker DNNVerifierChecker…

Trusting this scheme requires implementing a reliable checker, 

e.g., formally verified in an ITP.

Verify with ITP



The Model of Trust
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Integration in System Verification
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Background



Deep Neural Networks

• Layered function:
• Affine: 𝒃𝒊 = σ𝒋 𝒘𝒊.𝒋 ⋅ 𝒇𝒋 + 𝒄𝒊

• Nonlinear activations: 𝒇𝒊 = 𝒂𝒊 𝒃𝒊

• The ReLU activation:
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𝑰𝒏𝒂𝒄𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆
𝒃 ≤ 𝟎, 𝒇 = 𝟎

𝑨𝒄𝒕𝒊𝒗𝒆 𝒑𝒉𝒂𝒔𝒆
𝒃 ≥ 𝟎, 𝒇 = 𝒃



DNN Verification

• Given a DNN 𝓝  an input property 𝝋(𝒙)  and an output 

property 𝝍(𝒚), decide whether there exists an input vector 

𝒙 that violates 𝝋 𝒙 → 𝝍(𝓝 𝒙 ).

o If exists, the problem is satisfiable (SAT);

o Otherwise unsatisfiable (UNSAT).
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DNN Verification

• Assuming QF linear properties, and ReLU activations → 

linear + piecewise linear constraints: 

• Find assignment for 𝑽 ∈ ℝ𝒏 

• Linear:

𝑨 ⋅ 𝑽 = ഥ𝟎 [𝑨 ∈ ℝ𝒎×𝒏 ]
𝒍 ≤ 𝑽 ≤ 𝒖 [𝒍, 𝒖 ∈ ℝ𝒏]

• Piecewise Linear:

𝒇𝒊 = 𝑹𝒆𝑳𝑼 𝒃𝒊  [𝒇𝒊, 𝒃𝒊 ∈ 𝑽]
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Verification Query Example
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  𝝋 𝒙 ≔ 𝒙 ∈ 𝟎, 𝟏 𝟐

𝝍 𝒚 ≔  𝒚 ∈ 𝟒, 𝟓 

𝑥1

𝑥2 𝑣2

𝑦

𝑣1

ReLU

ReLU

id-1

2

-1

2

1

1



Verification Query Example
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  𝝋 𝒙 ≔ 𝒙 ∈ 𝟎, 𝟏 𝟐

𝝍 𝒚 ≔  𝒚 ∈ 𝟒, 𝟓 

𝑥1

𝑥2 𝑣2

𝑦

𝑣1

ReLU

ReLU

id-1

2

-1

2

1

1

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓 ⊺

𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒 ⊺

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 ⊺



DNN Verification Algorithms

• Many verification algorithms search for a satisfying 

assignment with LP solvers + splitting approach. 
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𝑨 ⋅ 𝑽 = ഥ𝟎 
𝒍 ≤ 𝑽 ≤ 𝒖 

𝒇𝒊 = 𝑹𝒆𝑳𝑼 𝒃𝒊
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Solver searches 

for LP assignment
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Solver searches 

for LP assignment

UNSAT

Contradiction



23

Solver searches 

for LP assignment

UNSAT
Check piecewise-

linear constraints

Contradiction Assignment
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Solver searches 

for LP assignment

UNSAT
Check piecewise-

linear constraints

SAT +

counterexample

Contradiction Assignment

Yes
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Solver searches 

for LP assignment

UNSAT
Check piecewise-

linear constraints

Split to 

subqueries

SAT +

counterexample

Contradiction Assignment

Yes No
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Splitting creates a tree structure to the search. 

The query is UNSAT if and only if all leaves are UNSAT.

Solver searches 

for LP assignment

UNSAT
Check piecewise-

linear constraints

Split to 

subqueries

SAT +

counterexample

Contradiction Assignment

Yes No



Certificate Production

• Certifying SAT is straightforward; Certifying UNSAT is more 

complicated, due to NP-Hardness [Katz et. al, ’17; Sälzer 

and Lange, ‘21].

• Marabou DNN verifier produces and checks UNSAT proofs 

(C++).
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Neural Network Verification with Proof Production, Isac et. al, FMCAD 2022



The Certificate Tree
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In the certificate-tree, nodes represent case-splits; leaves contain 

proofs of contradictions, which are represented by a vector.

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪
𝑣2 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑣2 𝑎𝑐𝑡𝑖𝑣𝑒



The Farkas Lemma (Variant) 
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Gyula Farkas

For any set of linear equations 𝑨𝑽 = 𝟎 where 

𝒍 ≤ 𝑽 ≤ 𝒖 exactly one holds:

• There exists a solution 𝒍 ≤ 𝑽 ≤ 𝒖  s.t. 

𝑨𝑽 = 𝟎. 

• There exists a refutation 𝒚  s.t. 

∀𝒍 ≤ 𝑽 ≤ 𝒖: 𝒚⊤𝑨𝑽 < 𝟎.

Refutation can be constructed during 

execution of DNN verifier.
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Possibly many 

iterations and 

derivations

Certificate



The Certificate Tree
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𝑣2 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑣2 𝑎𝑐𝑡𝑖𝑣𝑒

Certificate checking consists of traversing the tree, checking splits 

are covering and checking leaves using the Farkas lemma.

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪
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Certified Checking



theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =

  well_formed s x && check_cert s c

   ==>

   eval_system s x = false

[@@by [% use cert_is_neg s c x]

@> [% use solution_is_not_neg s c x]

@> auto] [@@fc]

Imandra

33

• An OCaml-based FPL and an ITP.

• Supports arbitrary precision real arithmetic.



Data Representation
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𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚



Data Representation
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type proofTree =

 | Leaf of real list

 | Node of Split * proofTree * proofTree

type Split = Relu of int * int * int

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 = 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚



Data Representation
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type proofTree =

 | Leaf of real list

 | Node of Split * proofTree * proofTree

type Split = Relu of int * int * int

type poly = Real.t list
type expr =

 | Eq of poly 

 | Geq of poly
type system = expr list

𝑸⋀(𝒃𝟐 ≤ 𝟎)⋀(𝒇𝟐 ≤ 𝟎) 𝑸⋀(𝒃𝟐 ≥ 𝟎)⋀(𝒇𝟐 = 𝒃𝟐)

𝟎 𝟎 𝟏 −𝟐 𝟎 ⊺𝟎 𝟎 𝟏 𝟎 𝟎 ⊺

𝑸 = 𝑨, 𝒖, 𝒍, 𝑪

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

ReLUs:

𝒇𝟏 = 𝑹𝒆𝑳𝑼(𝒃𝟏)
𝒇𝟐 = 𝑹𝒆𝑳𝑼(𝒃𝟐)

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚



The Checking Function
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let rec check_tree tableau upper_bounds lower_bounds constraints 

proof_node =

match proof_node with

 | Proof_tree.Leaf contradiction ->

  check_contradiction … (* applies the Farkas lemma *)

 | Proof_tree.Node ( split, left, right ) ->

  let valid_split = … in

  let valid_children = … in (* includes recursive calls *)

  valid_split && valid_children
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Type reduction 
soundness

Farkas lemma 
(UNSAT direction)

ReLU splits are 
covering

Proof Main Components



The Farkas Lemma (Generalized) 
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Gyula Farkas

Given a polynomial system ⋀𝒊=𝟏
𝑵 (𝒑𝒊 (𝒙) = 𝟎)

∧ ⋀𝒊=𝟏
𝑲 (𝒒𝒊 𝒙 ≥  𝟎) exactly one holds:

• There exists a solution. 

• There exists a refutation: 𝕀 ∈ ℝ𝑵, ℂ ∈ ℝ≥𝟎
𝑲  

with 𝕀 ⋅ 𝒑𝒊 + ℂ ⋅ 𝒒𝒋 < 𝟎 .



The Farkas Lemma (Generalized) 
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Gyula Farkas

Given a polynomial system ⋀𝒊=𝟏
𝑵 (𝒑𝒊 (𝒙) = 𝟎)

∧ ⋀𝒊=𝟏
𝑲 (𝒒𝒊 𝒙 ≥  𝟎) exactly one holds:

• There exists a solution. 

• There exists a refutation: 𝕀 ∈ ℝ𝑵, ℂ ∈ ℝ+
𝑲 

with 𝕀 ⋅ 𝒑𝒊 + ℂ ⋅ 𝒒𝒋 < 𝟎 .

theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =

  well_formed s x && check_cert s c

   ==>

   eval_system s x = false



Data Representation
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Matrix and vectors System of polynomial equations and 

inequalities

If the system is UNSAT, so is the LP using the matrix and vectors. 

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 Tableau:

𝟐𝒙𝟏 + 𝒙𝟐 − 𝒃𝟏 = 𝟎
…

Bounds:

𝟏 − 𝒙𝟏 ≥ 𝟎
𝒙𝟏 ≥ 𝟎

…

mk_system



Data Representation
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Matrix and vectors System of polynomial Equations and 

Inequalities

If the system is UNSAT, so is are the input matrix and vectors. 

Bounds:

𝒖 = 𝟏 𝟏 𝟑 𝟏 𝟑 𝟏 𝟑 𝟐 𝟓
𝒍 = 𝟎 𝟎 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟒

Tableau:

𝑨 =

𝟐 𝟏 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝟏 𝟏 𝟎 −𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 −𝟏 𝟐 𝟎 𝟎 −𝟏
𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 𝟎
𝟎 𝟎 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎

Variables:

𝑽 = 𝒙𝟏 𝒙𝟐 𝒃𝟏 𝒃𝟐 𝒇𝟏 𝒇𝟐 𝒂𝒖𝒙𝟏 𝒂𝒖𝒙𝟐 𝒚 Tableau:

𝟐𝒙𝟏 + 𝒙𝟐 = 𝒃𝟏

…
Bounds:

𝟏 − 𝒙𝟏 ≥ 𝟎
𝒙𝟏 ≥ 𝟎

…

mk_system

lemma soundness_check_cert_composition tableau upper_bounds lower_bounds x =

  let sys = mk_system (mk_eq_constraints tableau) upper_bounds lower_bounds in

  well_formed_tableau_bounds tableau upper_bounds lower_bounds &&

  List.length x = List.length (List.hd tableau) &&

  not (eval_system sys x)

  ==>

  not (is_in_kernel tableau x) || not (bounded x upper_bounds lower_bounds)



If leaf checking returns true, then there is no 
solution to underlying linear query

Soundness of Leaf Checking

43



If leaf checking returns true, then there is no 
solution to underlying linear query

Soundness of Leaf Checking

44

lemma soundness_leaf tableau upper_bounds lower_bounds relu_constraints x 

proof_tree =

  match proof_tree with

  | Node _ -> true

  | Leaf contradiction ->

    well_formed_tableau_bounds tableau upper_bounds lower_bounds &&

    List.length x = List.length (List.hd tableau) &&

    check_tree (mk_eq_constraints tableau) upper_bounds lower_bounds 

  relu_constraints proof_tree

    ==> 

    unsat tableau upper_bounds lower_bounds relu_constraints x



Soundness of ReLU Splits

45

𝑸

𝑸⋀(𝒃𝒊 ≤ 𝟎)⋀(𝒇𝒊 = 𝟎) 𝑸⋀(𝒃𝒊 ≥ 𝟎)⋀(𝒇𝒊 = 𝒃𝒊)

If the split corresponds to a ReLU constraint in 𝑸, and both 
𝑸𝑳 and 𝑸𝑹 are UNSAT, so is 𝑸.

𝑸𝑳 𝑸𝑹



Soundness of ReLU Splits

46

𝑸

𝑸⋀(𝒇𝒊 ≤ 𝟎)⋀(𝒃𝒊 ≤ 𝟎) 𝑸⋀(𝒇𝒊 ≥ 𝟎)⋀(𝒃𝒊 ≥ 𝟎)

If the split corresponds to a ReLU constraint in 𝑸, and both 
𝑸𝑳 and 𝑸𝑹 are UNSAT, so is 𝑸.

𝑸𝑳 𝑸𝑹

theorem soundness_relu_split_matching tableau us ls constraints xs split =

  let (lb_left, ub_left), (lb_right, ub_right) = update_bounds_from_split ls 

us split in

  List.length xs = List.length ls 

  && List.length xs = List.length us

  ==>

  match split with 

  | ReluSplit (b,f,aux) ->

    List.mem (Relu (b,f,aux)) constraints

    && sat tableau us ls constraints xs

    ==>

    (sat tableau ub_left lb_left constraints xs 

    || sat tableau ub_right lb_right constraints xs)

  | _ -> true



let rec check_tree tableau upper_bounds lower_bounds constraints 

proof_node =

match proof_node with

 | Proof_tree.Leaf contradiction ->

  check_contradiction …

 | Proof_tree.Node ( split, left, right ) ->

  let valid_split = … in

  let valid_children = … in

  valid_split && valid_children

Main Result
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If check_node returns true, then there is no 
solution to underlying linear + ReLU query

theorem check_tree_soundness (tableau: real list list) (upper_bounds: real list) 

(lower_bounds: real list) 

    (constraints: Constraint.t list) (tree: Proof_tree.t) (x: real list) =

  valid_proof tableau upper_bounds lower_bounds constraints tree

  && well_formed_vector tableau x

  ==>

  unsat tableau upper_bounds lower_bounds constraints x



Performance Evaluation
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Evaluation shows a × ~𝟒. 𝟕  checking-to-verification delay, 

suggesting a clear tradeoff between reliability and scalability.



L.o.C. Evaluation
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Future Work

Bridge gap between 
DNN and query

Support certificate 
optimizations

Integrate in a 
system verifier 
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Conclusion

Verifier

DNN

Spec.

Certificate

Counterexample

Checker

Eval.

This Work

Exists and Simple

Future 

Work
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paper + code available

Feel free to contact: 
omri.isac@mail.huji.ac.il
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