A Certified Proof Checker for Deep
Neural Network Verification in Imandra

Remi Desmartin®*, Omri Isac*, Grant Passmore, Ekaterina
Komendantskaya, Kathrin Stark, Guy Katz

ITP, October 2025

Remi Desmartin, PhD student

Heriot-Watt University

Deep Neural Networks (DNNs) accomplish groundbreaking

results in many fields, including safety-critical.

Unlike traditional software, DNNs are opaque functions,

trained over a large set of input and output examples.

This may lead to undesirable behavior of DNNs, which is hard

to predict and potentially dangerous.

 peter il A w et QNN et L o dpo bty lmion
Perturbations I Adversarial Examples I

WETYE

Chest X-Ray Fundoscopy

Dermoscopy

Understanding Adversarial Attacks on Deep Learning
Based Medical Image Analysis Systems, Ma et al., 2019

Can we rule out possibility of (some) errors?

Or find hidden errors, if exist

The verification community developed various DNN verifiers,
based on SMT, abstract interpretation, MILP and more.

DNN

DNN verifiers are prone to bugs and may be numerically
unstable, which can be exploited [Jia & Rinard, 2021].

DNN

They are complex software and performance-oriented, thus
their verification is very difficult.

Produce certificates of the verifiers’ results:
* Checked using an independent, trusted and simple checker.
* Witness the correctness of the verifier or reveal errors.

IOl

Checker DNN

A common practice in SAT and SMT communities.

Verify with ITP
l B
B
B

Checker DNN

Trusting this scheme requires implementing a reliable checker,
e.g., formally verified in an ITP.

The Model of Trust

DNN Certificate Checker
N
i =—
N
) —]
o - N
v — - ' .}.
) — [

Spec. Counterexample Eval.

The Model of Trust

DNN

Certificate

Checker

=—@
’

-

Exists and
Simple

~

The Model of Trust

DNN 4

:E|_. _ This Work
- q

_ S

2= Exists and
Spec. Simple

Integration in System Verification

System Checker

' &
*
=]

O

!

Certificate

-1)

DNN

Background

Deep Neural Networks

* Layered function:
» Affine: bi — Z] Wi, - f] + C;
* Nonlinear activations: f; = a;(b;)

* The ReLU activation:

Inactive phase Active phase
b<0f=0 5 b=0f=b

DNN Verification

« Given a DNN N an input property ¢@(x) and an output
property y¥(y), decide whether there exists an input vector
x that violates ¢(x) - Y (WNV(x)).

. If exists, the problem is satisfiable (SAT);
. Otherwise unsatisfiable (UNSAT).

=1 &
:=| - (X

-

DNN Verification

 Assuming QF linear properties, and RelLU activations —
linear + piecewise linear constraints:

* Find assignment for V € R"

 Linear:

 Piecewise Linear:

fi = ReLU(b;) [fi,b; EV]

Verification Query Example

RelLU

RelLU

@(x) =x€[0,1]
Y(y)=y€l[45]

Verification Query Example

RelLU Variables:
V=[x1 x2 by by f1 f, aux; aux; Y[

Tableau:
2 1 -1 0 0O 0 O 0 0]
-1 1 0 -1 O O O 0 0
> A=lo 0 0 0 -1 2 0 0 -1
O 0 -1 O 1 0 -1 0 0
Lo 0 0 -1 0 1 0 -1 o0\
RelLU
Bounds

p(x) :==x€[0,1]?

Y(y)=yel45]
ReLUs:

f1=ReLU(b,)

f2 = ReLU(b,)

DNN Verification Algorithms

 Many verification algorithms search for a satisfying
assignment with LP solvers + splitting approach.

AV=0
[<V<u
fi = ReLU(b;)

i &
X

Solver searches
for LP assignment

Contradiction

Solver searches
for LP assignment

A\ 4

22

Solver searches
o for LP assignment ,
Contradiction Assignment

v \ 4

Check piecewise-
linear constraints

Solver searches
o for LP assignment
Contradiction

v

\ 4

Assignment

Check piecewise-
linear constraints
Yes

\4

SAT +
counterexample

Solver searches

for LP assignment

Contradiction Assignment

Check piecewise-
linear constraints
Yes No

\4 v

Split to
subqueries

SAT +
counterexample

Solver searches

for LP assignment

Contradiction Assignment

Check piecewise-
linear constraints
Yes No
Split to
subqueries

Splitting creates a tree structure to the search.
The query is UNSAT if and only if all leaves are UNSAT.

SAT +
counterexample

Certificate Production

 Certifying SAT is straightforward; Certifying UNSAT is more

complicated, due to NP-Hardness [Katz et. al, ’17; Salzer
and Lange, ‘21].

 Marabou DNN verifier produces and checks UNSAT proofs
(C++).

Neural Network Verification with Proof Production, Isac et. al, FACAD 2022

The Certificate Tree

Q=(AulC)

v, lnactive v, active

QA(bz = 0)A(f2 = 0) QA(bz = 0)A(f2 = b2)

0 0 1 0 o] 0 0 1 -2 of

In the certificate-tree, nodes represent case-splits; leaves contain
proofs of contradictions, which are represented by a vector.

The Farkas Lemma (Variant)

- For any set of linear equations AV = 0 where
| [<V < u exactly one holds:

* There exists a solution <V <u s.t.

 There exists a refutation y s.t.
VISV <u: y"AV < 0.

. Refutation can be constructed during
Gyula Farkas execution of DNN verifier.

29

Possibly many
------------------ iterations and----------~
derivations

Certificate

The Certificate Tree

Q=(AulC)

v, lnactive v, active

QA(bz = 0)A(f2 = 0) QA(bz = 0)A(f2 = b2)

0 0 1 0 o] 0 0 1 -2 of

Certificate checking consists of traversing the tree, checking splits
are covering and checking leaves using the Farkas lemma.

Certified Checking

Imandra o1 o |

* An OCaml-based FPL and an ITP.

« Supports arbitrary precision real arithmetic.

theorem farkas unsat (s : system) (x : var vect) (c : certificate) =
well formed s x && check cert s c
==>
eval system s x = false

[@eby [% use cert is neg s c x]

@> [% use solution is not neg s c x]

@> auto] [@Rfc]

Data Representation

Q=(4ulC)
QA(bz < 0)A(f2 = 0) QA(bz = 0)A(f2 = by)
[0 0 1 0 O 0 0 1 -2 of

Variables:
V=[xy x; by by f1 [, aux; aux; Y]

Tableau:
2 1 -1 0 0O 0 O 0 0
-1 1 0 -1 0 0 O 0 0
A=|10 0 O 0 -1 2 0 0o -1
0O 0 -1 O 1 0 -1 0 0
o o 0 -1 0 1 0 -1 O
Bounds:
u=[1 1 3 1 3 1 3 2 5]
l=[0 0 0 -1 0 0 0 0 4]

ReLUs:
fl = ReLU(bl)
f2 = ReLU(b3)

Data Representation

Q=(4,ulC)

type proofTree =
QA(by < OA(f, = 0) QA(by = O)A(fz = by) | Node of Split * proofTree * proofTree
type Split = Relu of int * int * int
0 0 1 0 o 0 0 1 -2 of YP P
Variables:
V=I[xy x2 by by fy1 f, aux; aux; Y]
Tableau:
2 1. -1 0 0 0 0 0 O
-1 1 0 -1 0 0 0 0 O
A=l0 0 0 0 -1 2 0 0 -1
0 0-1 0 1 0 -1 0 0
0 0 0 -1 0 1 0 -1 0
Bounds:
u=[1 1 3 1 3 1 3 2 5]
I=[0 0 0 -1 0 0 0 0 4]

RelLUs:
f1=ReLU(by)
f2 = ReLU(by)

Data Representation

Q=(4,ulC)
type proofTree =
A ‘ | Leaf of real list
QA(by < O)A(f2 < 0) QA(by = O)A(f2 = by) | Node of Split * proofTree * proofTree
: : type Split = Relu of int * int * int
[0 0 1 0 o [0 0 1 -2 0]

Variables:
V=[xy x; by by f1 [, aux; aux; Y]

type poly = Real.t 1list

Tableau:

2 1-10 00 0 0 0 type expr =

110 -1 0 0 0 0 0
A=[0 0 0 0 -12 0 o0 —1‘ ‘ | Eq of poly

0 0-1 0 10 -1 0 0

© 0 0 -1 010 -1 0 | Geq of poly _
Bounds: type system = expr list

u=[11 3 1 3 1 3 2 5]

1=[0 00 -1 0 0 0 0 4]

RelLUs:
f1=RelLU(by)
f2 = ReLU(by)

The Checking Function

let rec check tree tableau upper bounds lower bounds constraints
proof node =

match proof node with
| Proof tree.Leaf contradiction ->
check contradiction .. (* applies the Farkas lemma ¥*)
| Proof tree.Node (split, left, right) ->
let valid split = .. in
let valid children = .. in (* includes recursive calls ¥*)

valid split && valid children

Proof Main Components

y=x
I s
I ‘ 2
I 1
y=0

Farkas lemma Type reduction RelLU splits are
(unsaT direction) soundness covering

38

The Farkas Lemma (Generalized)

Given a polynomial system AX.(p; (x) =0)
AN (g; (x) = 0) exactly one holds:

e There exists a solution.

» There exists a refutation: I € RY, C € R,

Gyula Farkas

39

theorem farkas unsat (s : system) (x : var vect) (c : certificate) =
well formed s x && check cert s c

eval system s x = false

Data Representation

Matrix and vectors System of polynomial equations and
inequalities
v?;'i:t:’[f: : X, by by fq1 f, auxqy aux; Y| mk_SYStem TableaU:
ableau: 2 + — b =0
T 1 10 000 0 o ‘ LT !
_—1 1 0 -1 _0 0 O 0 _0
s g g —01 8 11 (2) —01 g 01 Bounds:
Bounds:ﬂ o o -1 0 1 0 -1 O 1_x120
u=[1 131313 2 5 x1 =0
I=[0 0 0 -1 0 0 0 0 4]

If the system is UNSAT, so is the LP using the matrix and vectors.

lemma soundness check cert composition tableau upper bounds lower bounds x =
let sys = mk system (mk _eq constraints tableau) upper bounds lower bounds in
well formed tableau bounds tableau upper bounds lower bounds &é&
List.length x = List.length (List.hd tableau) &&
not (eval system sys x)

not (is_in kernel tableau x) || not (bounded x upper bounds lower bounds)

Soundness of Leaf Checking

If leaf checking returns true, then there is no
solution to underlying linear query

lemma soundness leaf tableau upper bounds lower bounds relu constraints x
proof tree =

match proof tree with

| Node -> true

| Leaf contradiction ->

well formed tableau bounds tableau upper bounds lower bounds &é&

List. length x = List. length (List.hd tableau) &&

check tree (mk eq constraints tableau) upper bounds lower bounds
relu constraints proof tree

unsat tableau upper bounds lower bounds relu constraints x

Soundness of ReLU Splits

/ Q \
QA(b; = 0O)A(f; = 0) QA(b; = 0)A(f; = b;)
\ J \ |
| |
Q; Qr

If the split corresponds to a ReLU constraint in Q, and both
Q; and Q are UNSAT, so is Q.

theorem soundness relu split matching tableau us ls constraints xs split

let (1b_left, ub left), le_right, ub right) = update bounds from split 1s

us split in
List.length xs = List.length 1s
&& List.length xs = List.length us

match split with

| ReluSplit (b, f,aux) ->
List.mem (Relu (b,f,aux)) constraints
&& sat tableau us ls constraints xs

(sat tableau ub left 1lb left constraints xs
| | sat tableau ub right 1lb right constraints xs)

-> true

Main Result

let rec check tree tableau upper bounds lower bounds constraints
proof node =

match proof node with
| Proof tree.Leaf contradiction ->
check contradiction ..
| Proof tree.Node (split, left, right) ->
let valid split = .. in
let valid children = .. in

valid split && valid children

theorem check tree soundness (tableau: real list list) (upper bounds: real list)
(lower bounds: real list)

(constraints: Constraint.t list) (tree: Proof tree.t) (x: real list) =

valid proof tableau upper bounds lower bounds constraints tree
&& well formed vector tableau x

unsat tableau upper bounds lower bounds constraints x

Performance Evaluation

Robotics Benchmark Coav Benchmark
175 A
250
150
g 125 g 200
M o
= E
g 100 2 150
@ @
E E 100
#* 50 #
50
25 1 - Verification time — Verification time
Native checking Native checking
0 - - |mandra checking 0 - - |mandra checking
0 20 40 60 80 0 50 100 150 200 250
Time (sec) Time (sec)

Evaluation shows a x ~4.7 checking-to-verification delay,
suggesting a clear tradeoff between reliability and scalability.

49

L.o.C. Evaluation

Result Module name L.O.C Aux. Library Dependencies
Lem. (accumulating)

Poly Farkas lemma farkas.iml 194 21 Imandra Standard Libraries:
(Theorem 5) Real, List, Polynomials
Sound application of well_formed_reduction.iml 11 13 farkas.iml, certificate.iml,
DNN polynomial bound_reduction.iml 350 arithmetic.iml, util.iml,
Farkas lemma tableau_reduction.iml 356 tightening.iml, constraint.iml,
(Theorem 7) proof tree.iml, checker.iml,

bound_ reduct_ g.iml,
mk_bound_ poly.iml

Soundness of leaf leaf_soundness.iml 145 10 sat.iml, split.iml
checking bound__reduction.iml,
(Lemma 10) well_formed_ reduction.iml,

tableau_ reduction.iml

Single variable splits single_var_split_soundness.iml 81 10
are covering
(Lemma 12)

ReLU splits are relu_split_soundness.iml 113 18 relu.iml

covering relu_case_1_bounded.iml 337

(Lemma 14) relu_case_2_bounded.iml 338

Soundness of node node_soundness.iml 8 19 relu_split_ soundness.iml, sin-
checking gle_ var_ split_ soundness.iml
Soundness checker_soundness.iml 71 146 leal soundness.iml,
(Theorem 15) node_soundness.iml

Total: 2113 267

Table 2 Summary of the entire formalisation. The Table reads as follows: a result A is proven in
module A_mod, which is N lines long, calls M auxiliary lemmas, and depends on libraries as listed.

Future Work

X

Integrate in a Support certificate Bridge gap between
system verifier optimizations DNN and query

Conclusion

Future
Work

This Work

:

Exists and Simple

Feel free to contact:
omri.isac@mail.huji.ac.il

[m] ¥ [m]
' 3

[=]

paper + code available

	Slide 1: A Certified Proof Checker for Deep Neural Network Verification in Imandra
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: The Model of Trust
	Slide 11: The Model of Trust
	Slide 12: The Model of Trust
	Slide 13: Integration in System Verification
	Slide 14
	Slide 15: Deep Neural Networks
	Slide 16: DNN Verification
	Slide 17: DNN Verification
	Slide 18: Verification Query Example
	Slide 19: Verification Query Example
	Slide 20: DNN Verification Algorithms
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Certificate Production
	Slide 28: The Certificate Tree
	Slide 29: The Farkas Lemma (Variant)
	Slide 30
	Slide 31: The Certificate Tree
	Slide 32
	Slide 33: Imandra
	Slide 34: Data Representation
	Slide 35: Data Representation
	Slide 36: Data Representation
	Slide 37: The Checking Function
	Slide 38: Proof Main Components
	Slide 39: The Farkas Lemma (Generalized)
	Slide 40: The Farkas Lemma (Generalized)
	Slide 41: Data Representation
	Slide 42: Data Representation
	Slide 43: Soundness of Leaf Checking
	Slide 44: Soundness of Leaf Checking
	Slide 45: Soundness of ReLU Splits
	Slide 46: Soundness of ReLU Splits
	Slide 47: Main Result
	Slide 48: Main Result
	Slide 49: Performance Evaluation
	Slide 50: L.o.C. Evaluation
	Slide 51
	Slide 52
	Slide 53

