Abstract, Compositional Consistency:

Isabelle/HOL Locales for Completeness a la Fitting

ITP '25

Asta Halkjaer Boserup, University of Copenhagen
Anders Schlichtkrull, Aalborg University Copenhagen

Model existence for Natural Deduction (ND)

* We have a concrete calculus (natural deduction) for FOL
with concrete proof rules:

QPEPAssm | I) FI—?,D/\I

'k ' Ay
F'Fp— I‘I—cp_)E I‘I—Vx.gp(a:)VE

' T'Fp(t)

« A formula set I" is consistent wrt. = when we cannot derive a
contradiction from it (i.e. =(I" + 1)).
» The model existence theorem (for natural deduction):
* Any ND-consistent set has a model.
e \I'+1)—>aIM.MkT

* From this follows completeness: Valid formulas are provable 5

Model existence for Natural Deduction (ND)

» We have a concrete calculus (natural deduction) for FOL
with concrete proof rules:

pel ke THY .

Assm
'k oAy
'y —vY I‘I—go_)E I‘I—‘v’x.cp(x)VE
'y T'Fp(t)

» A formula set I is consistent wrt. — when we cannot derive a
contradiction from it (i.e. ~(I" -~ 1)).
» The model existence theorem (for natural deduction):
» Any ND-consistent set has a mode Understood
e T+ 1)—>3aM. MkT) i
» From this follows completeness: Valid fc conjunctively |8

3

This can be formalized!

* Model existence for natural deduction and other proof
systems have been formalized in proof assistants using
deep embeddings of FOL syntax.

* E.g. Berghofer 2007 in Isabelle/HOL.
Follows Melvin Fitting's 1996 textbook
"First-order Logic and Automated Theorem Proving".

* Many other fantastic results in this direction.

* Model existence theorems for other logics have also been
formalized.

* In this work we provide a general framework for such
model existence proofs (and more).

The plan for the talk

[show you a concrete model existence proof for natural
deduction and first-order logic.

* Follows Melvin Fitting's 1996 textbook
"First-order Logic and Automated Theorem Proving"

* [show you our generalization.

* | show you some instances.

A first generalization: Smullyan’s uniform notation

 Characterize first-order logic with:
» Conjunctive, disjunctive, universal and existential kinds.

» Already generalizes from concrete FOL syntax actually.
a prYpia=pa =9 Ao P) o =@,ay =Y
B o—Y:f="0B=0% —(prp):p =9~
yovx.p(x) 2 y(0) = @(t) —(3Ax. p(x)) = y(t) = ~(t)
6 3x. p(x) : 8(t) = @(t) ~(vx. p(x)) : 8(t) = ~g(t)

A first generalization: Smullyan’s uniform notation

 Characterize first-order logic with:
» Conjunctive, disjunctive, universal and existential kinds.

» Already generalizes from concrete FOL syntax actually.
a prYpia=pa =9 Ao P) o =@,ay =Y
B o—Y:f="0B=0% —(prp):p =9~
yovx.p(x) 2 y(0) = @(t) —(3Ax. p(x)) = y(t) = ~(t)
6 3x. p(x) : 8(t) = @(t) ~(vx. p(x)) : 8(t) = ~g(t)

R ™ Q
w << < >

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
* Why are maximal consistent set also Hintikka sets?
* How can we extend S to a maximal consistent set S' ?

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
» What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
* Why are maximal consistent set also Hintikka sets?
* How can we extend S to a maximal consistent set S' ? 10

Why do Hintikka sets have models?

» A formula set S is a Hintikka set when:

conflict for all p, notboth pe Sand —pe S

banned L ¢S (and =T ¢ S)

double neg. if —¢p € Sthenp € S

alpha if a € Sthen {a, a,} € S

betaif e SthenB,eSorp,eS

gamma if y € S then y(t) € S for every (closed term) £ (...)
deltag if § € S then 8(a) € S for some a (...)

Hintikka's lemma:
Any Hintikka set has a model.

(Why? Brief and vague explanation:
We can think of "is member of S" as "is true in the model we want to
find". Then S will provide us with a Herbrand model.)

R ™ K
w << < >

1

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
» What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
* Why are maximal consistent set also Hintikka sets?
* How can we extend S to a maximal consistent set .S’ ? 12

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
» What is a maximal consistent set?
* Why are maximal consistent set also Hintikka sets?
* How can we extend S to a maximal consistent set S’ ? 3

What is a maximal consistent set?

e Cap={S| ~(S+ L)} --setofall ND-consistent sets
S e Cnpmeans "S 1s ND-consistent"

e mesS —SeCnpA(VS'eCrap. SCS'—S5=9

14

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
» What is a maximal consistent set?
* Why are maximal consistent sets also Hintikka sets?
* How can we extend S to a maximal consistent set S' ? 15

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
 Why are maximal consistent sets also Hintikka sets?
* How can we extend S to a maximal consistent set S' ? 16

Why are maximal consistent sets also Hintikka sets?

e Some ND-consistency lemmas
e Generally they claim the existence of a
bigger consistent set
For any S € Cyp

conflict for all p,
notbothpe Sand —pe S
banned L ¢ S (and =T ¢ S)
double neg. if —p e S
then {p} u S € Cnp
alpha if x € Sthen {a,, a,} uS e Cnp
beta if 8 € Sthen {,} uS e Cnp
or {f,} uSeCwp
gamma if y € S then {y(£)} uS e Cwp
for every (closed term) ¢ (...)
deltag if § € S then {8(a)} u S € Cnp
for some a (...)

R ™K

w << < >

17

Why are maximal consistent sets also Hintikka sets?

e Some ND-consistency lemmas
e Generally they claim the existence of a
bigger consistent set
For any S € Cyp

conflict for all p,
notbothpe Sand —pe S

banned L ¢ S (and =T ¢ S)
double neg. if —p e S

then {p} u S € Cnp
alpha if x € Sthen {a,, a,} uS e Cnp
beta if 8 € Sthen {,} uS e Cnp

or {f,} uSeCwp
gamma if y € S then {y(£)} uS e Cwp
for every (closed term) ¢ (...)

deltag if § € S then {8(a)} u S € Cnp

for some a (...)

o A formula set S is Hintikka when:

conflict for all p,
not both pe Sand —p e S
banned L ¢ S (and ~T ¢ S)
double neg. if —p e S
then p € S
alpha ifx € Sthen {a,, a,} C S
betaif e Sthen 3, € S
orp,eS
gamma ify € Sthen y(¢f) € S
for every (closed term) ¢ (...)
deltag if 5 € S then 8(a) € S

for some a (...)

18

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
 Why are maximal consistent sets also Hintikka sets?
* How can we extend S to a maximal consistent set .S’ ? 19

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
1. Extend S to a maximal consistent set .S".
2. 5"1s a Hintikka set.
3. Therefore S’ has a model M.
4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
* Why are maximal consistent sets also Hintikka sets?
» How can we extend S to a maximal consistent set S’ ? 0

How can we extend S to a maximal consistent set .S’ ?

* Informally:
» Take S.
* Enumerate through the universe of formulas, and add
those to S that do not introduce inconsistency.

21

How can we extend S to a maximal consistent set .S’ ?

* Informally:
» Take S.
* Enumerate through the universe of formulas, and add
those to S that do not introduce inconsistency.

* (This slide is a very simplified account of how and why this
works.)

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
e 1. Extend S to a maximal consistent set S".
e 2.S5'is a Hintikka set.
» 3. Therefore S’ has a model M.
e 4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
Why do these have models?
What is a maximal consistent set?
Why are maximal consistent sets also Hintikka sets?
» How can we extend S to a maximal consistent set S’ ? 3

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.
* Proofidea
e 1. Extend S to a maximal consistent set S".
e 2.S5'is a Hintikka set.
» 3. Therefore S’ has a model M.
e 4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
Why do these have models?
What is a maximal consistent set?
Why are maximal consistent sets also Hintikka sets?
* How can we extend S to a maximal consistent set S’ ? oa

Model existence for natural deduction for FOL

* Model existence
o If S is consistent then S has a model.

* Proofidea
e 1. Extend S to a maximal consistent set S".
e 2.S5'is a Hintikka set. =
» 3. Therefore S’ has a model M.
e 4. M 1s also a model of S.

» Obvious questions the audience is asking itself:
* What is a Hintikka set?
* Why do these have models?
* What is a maximal consistent set?
* Why are maximal consistent sets also Hintikka sets?
* How can we extend S to a maximal consistent set S’ ? o5

Why are maximal consistent sets also Hintikka sets?

e Some ND-consistency lemmas
e Generally they claim the existence of a
bigger consistent set
For any S € Cyp

conflict for all p,
notbothpe Sand —pe S

banned L ¢ S (and =T ¢ S)
double neg. if —p e S

then {p} u S € Cnp
alpha if x € Sthen {a,, a,} uS e Cnp
beta if 8 € Sthen {,} uS e Cnp

or {f,} uSeCwp
gamma if y € S then {y(£)} uS e Cwp
for every (closed term) ¢ (...)

deltag if § € S then {8(a)} u S € Cnp

for some a (...)

o A formula set S is Hintikka when:

conflict for all p,
not both pe Sand —p e S
banned L ¢ S (and ~T ¢ S)
double neg. if —p e S
then p € S
alpha ifx € Sthen {a,, a,} C S
betaif e Sthen 3, € S
orp,eS
gamma ify € Sthen y(¢f) € S
for every (closed term) ¢ (...)
deltag if 5 € S then 8(a) € S

for some a (...)

26

Fantastic!
We have now seen model
existence for natural deduction!

27

A generalization by Smullyan

Actually the properties on the previous slide
do not only hold for Cyp
If we replace Cnp with one of the following then all the
properties still hold:
Caxs={S| =(S axs L)} where AxS is axiomatic system.

» So we can get model existence for axiomatic system.
Ceomp = {S | all finite subsets of S are satisfiable}

» So we can get compactness

There are more examples.
* E.g. we can also get a weak downward Lowenheim-
Skolem and Craig's interpolation theorem.

A generalization by Smullyan

» A useful concept:
» We call any set C a consistency property if it has the
properties!

C is a consistency property if:
Forany Se C

conflict for all p,
notbothpe Sand —pe S

banned L ¢ S (and =T ¢ S)

double neg. if —¢ € Sthen {p} uSeC

alpha if @ € Sthen {a,a,} uSeC

betaif e Sthen {3,} uSe Cor {B,} uSeC

gamma ify € Sthen {y(¢)} u S € Cfor every (closed term) ¢ (...)
deltag if § € S then {&(a)} u S € C for some a(...)

R ® K
w << < >

Abstract model existence theorem

» If Cis a consistency property and S € C then S has a model.

Abstract model existence theorem

» If Cis a consistency property and S € C then S has a model.

* Nice! To show that some property C ensures models of its
members we only need to show that it is a consistency
property!

31

Questions

Does this idea work for other logics than FOL?
Yes. (E.g. Fitting used it for modal logic and intuitionistic logic)

Are the applications of the idea similar enough that we can make
a general framework?
Yes. (This work)

Can such framework be expressed with locales in
Isabelle/HOL?
Yes. (This work)

Can the locales really help prove formalize existence theorems
for some concrete logics?
Yes, bounded FOL, SOL, very recent modal logic. (This work) D

The main idea: This slide is sliced into kinds

e C is a consistency property if
ForanySe C

conflict for all p,
notbothpe Sand —pe S
banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S
then {p} uSe C
alpha ifa e Sthen {a,, a,} uSe C
beta if 3 € Sthen {5,} uSeC
or{f,}uSeC
gamma ify € Sthen {y(t)} uSeC
for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C

for some a (...)

e A formula set S is Hintikka when:

conflict for all p,
not both pe Sand —p e S
banned L ¢ S (and ~T ¢ S)
double neg. if —p e S
then p € S
alpha ifx € Sthen {a,, a,} C S
betaif e Sthen 3, € S
orp,eS
gamma ify € Sthen y(¢f) € S
for every (closed term) ¢ (...)
deltag if 5 € S then 8(a) € S

for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if

ula set S is Hintikka when:

Forany S € C Conflict kind

conflict for all p,

conflict for all p,

banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S
then {p} uSe C
alpha ifa e Sthen {a,, a,} uSe C
beta if 3 € Sthen {5,} uSeC
or{f,}uSeC

gamma ify € Sthen {y(t)} uSe C

for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C

for some a (...)

not both p € S and —
banned L ¢ S (and —T ¢ S)
double neg. if —p e S
then p € S
alpha ifa e Sthen {a,, a,} € S
betaif e Sthen 3, € S
orp,eS
gamma ify € Stheny(t) e S
for every (closed term) ¢ (...)
deltag if 6 € S then 6(a) € S
for some a (...)

The main idea: This slide is sliced into kinds

o C is a consistency property if e A formula set S is Hintikka when:
Forany Se C
conflict for all p, . for all p,
notbotl; pe Sand— Banned klnd notbogl peSand—peS
banned L ¢ S banned L ¢ S (and —T ¢ S)
double neg. if —p € S double neg. if —p e S
then {p} uSe C then p € S
alpha ifa e Sthen {a,, a,} uSe C alpha ifa e Sthen {a,, a,} € S
beta if 3 € Sthen {5,} uSeC betaif e Sthen 3, € S
or{f,}uSeC orp,eS
gamma ify € Sthen {y(t)} uSe C gamma ify € Sthen y(¢f) € S
for every (closed term) ¢ (...) for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C deltag if 5 € S then 8(a) € S
for some a (...) for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if
Forany Se C

conflict for all p,

e A formula set S is Hintikka when:

conflict for all p,

not both p € S and
banned | ¢ S an

Double neg kind

bothpe Sand pe S
S and -7 ¢ S

double neg. if —¢p € S
then uSeC
alpha ifa e Sthen {a,, a,} USe C
beta if 3 € Sthen {5,} uSeC
or{f,}uSeC

gamma ify € Sthen {y(t)} uSe C

for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C

for some a (...)

double neg. if —p e S
then ¢ € S
alpha ifa e Sthen {a,, a,} € S
betaif e Sthen 3, € S
orp,eS
gamma ify € Stheny(t) e S
for every (closed term) ¢ (...)
deltag if 6 € S then 6(a) € S
for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if e A formula set S is Hintikka when:
Forany Se C
conflict for all p, conflict for all p,
notbothpe Sand —pe S notbothpe Sand pe S
banned L ¢ S (and —T ¢ S) banned L ¢S (and =T ¢ S)
double neg. if —¢p € S Alpha kind neg. if —¢pe S

then {pl uSeC thenp € S

alpha ifx € Sthen {a, a,} uSe C alpha ifa e Sthen {a,, a,} € S

beta if € Sthen {5,} uSeC betaif e Sthen 3, € S
or{f,}uSeC orp,eS
gamma ify € Sthen {y(t)} uSe C gamma ify € Stheny(t) e S
for every (closed term) ¢ (...) for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C deltag if 5 € S then 8(a) € S
for some a (...) for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if
Forany Se C

conflict for all p,

notboth pe Sand ~p e S
banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S

e A formula set S is Hintikka when:

conflict for all p,

notbothpe Sand—pe S
banned L ¢ S (and =T ¢ S)
double neg. if —p e S

then {p} uSe C
alpha ifx € Sthen {a,, a,} US ¢
betaif € Sthen {5,} uSeC

Beta

. thenp € S
kind

ifa € Sthen {a,, a,} €S
betaif 5 € Sthen 3, € S

or{,tuSeC

gamma ify € Sthen {y(t)} uSe C
for every (closed term) ¢ (...)
deltag if 6 € S then {8(a)} uSe C

for some a (...)

orB3,eS
gamma ify € Sthen y(t) € S
for every (closed term) ¢ (...)
deltag if 6 € S then 6(a) € S

for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if
Forany Se C

conflict for all p,
notboth pe Sand ~p e S
banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S
then {p} uSe C
alpha ifa e Sthen {a,, a,} uSe C

e A formula set S is Hintikka when:

conflict for all p,
notbothpe Sand—pe S
banned L ¢ S (and =T ¢ S)
double neg. if —p e S
then p € S
alpha ifa e Sthen {a,, a,} € S

beta if 3 € Sthen {5,} uSeC

or 6, us < @Gamma kind

gamma if y € Sthen {y(t)} uSe C

for every (closed term) ¢ (...)

Y4 %e Sthen 3, € S
orp,eS
gamma ify € Sthen y(t) € S

deltag 1f 0 € S then {o(a)} uSe C

for some a (...)

for every (closed term) ¢ (...)
deltag if 0 € Sthen o(a) € S
for some a (...)

The main idea: This slide is sliced into kinds

e C is a consistency property if
Forany Se C

conflict for all p,
notboth pe Sand ~p e S

banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S

then {p} uSe C
alpha ifa e Sthen {a,, a,} uSe C
beta if 3 € Sthen {5,} uSeC

or{f,}uSeC

e A formula set S is Hintikka when:

conflict for all p,
notbothpe Sand—pe S
banned L ¢ S (and =T ¢ S)
double neg. if —p e S
then p € S
alpha ifa e Sthen {a,, a,} € S
betaif e Sthen 3, € S

orp,eS

deltag if 6 € S then {6(a)} uSe C deltag if 6 € S then 8(a) € S
for some a (... for some a (...

The main idea: This slide is sliced into kinds

e C is a consistency property if
Forany Se C

conflict for all p,
notboth pe Sand ~p e S

banned L ¢ S (and =T ¢ S)
double neg. if —¢p € S

then {p} uSe C
alpha ifa e Sthen {a,, a,} uSe C
beta if 3 € Sthen {5,} uSeC

or{f,}uSeC

e A formula set S is Hintikka when:

conflict for all p,
notbothpe Sand—pe S
banned L ¢ S (and =T ¢ S)
double neg. if —p e S
then p € S
alpha ifa e Sthen {a,, a,} € S
betaif e Sthen 3, € S

orp,eS

deltag if 6 € Sthen {§(a)} uSeC
for some a (...

deltag if 6 € S then 6(a) € S

for some a (.. A

The framework

datatype ('x, 'fm) kind
= Cond <'fm list = ('fm set set = 'fm set = bool) = bool> <'fm set = bool>

The framework .
A corresponding

part of the Hintikka
An | [gplelelaizaie . property definition.
datatype ('x, 'fm) kind l l

= Cond <'fm list = ('fm set set = 'fm set = bool) = bool> <'fm set = bool>

43

The framework .
A corresponding

part of the Hintikka
An | [gglelelaiziaie . property definition.
datatype ('x, 'fm) kind l l

= Cond <'fm list = ('fm set set = 'fm set = bool) = bool> <'fm set = bool>

“5| | Alpha kind ©&

alpha if @ € S then {a,, a,} uS € Cnp |‘ alpha if ¢ € S then {a;, a,} € S

The framework

datatype ('x, 'fm) kind
= Cond <'fm list = ('fm set set = 'fm set = bool) = bool> <'fm set = bool>

| Wits <'fm = 'x = 'fm list> \

One more constructor actually
-- essentially for d formulas.

This needs to be handled differently
in the mcs construction.
I skipped this in my simplified explanation. ,

A locale for Kinds!

Now we introduce locale for Consistency Kinds

locale Consistency Kind = Params map fm params fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params fm :: <'fm = 'x set> +
fixes K :: <('x, 'fm) kind»

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

46

A locale for Kinds! locale for parameter substitutions.

Now we introduce locale for Consistejicy Kinds

locale Consistency Kind = Params map fm params fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params fm :: <'fm = 'x set> +
fixes K :: <('x, 'fm) kind»

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

47

A locale for Kinds!

Now we introduce locale for Consistency Kinds

locale Consistency Kind = Params map fm params fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params fm :: <'fm = 'x set> +
fixes K :: <('x, 'fm) kind»

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

48

A locale for Kinds!

Now we introduce locale for Consistency Kinds

locale Consistency Kind = Params map fm params fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params_fm :: <'fm = 'x set> +
fixes K :: «<('x, 'fm) kind>

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

This essentially says that e.g.
alpha ifx € Sthen {a,,a,} uSeC
ensures
alpha ifa € Sthen {a,,a,} €S ON maximality_
But! We are here talking about only one kind
(e.g. alpha).

A locale for Kinds!

Now we introduce locale for Consistency Kinds

locale Consistency Kind = Params map fm params fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params fm :: <'fm = 'x set> +
fixes K :: <('x, 'fm) kind»

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

50

A locale for Kinds!

Now we introduce locale for Consistency Kinds

locale Consistency Kind = Params map fm params_fm

for map fm :: <('x = 'x) = '"fm = "fm>»
and params _fm :: <'fm = 'x set> +
fixes K :: «<('x, 'fm) kind>

assumes hintikka:
<\NACS. sate KC = S € C = maximal C S = saty K S>

and respects close:
<\C. sate K C = sate K (close (C)>

and respects alt:
</\C. sate K C = subset closed C = sata K
(mk_alt consistency C)»
and respects fin:

</\C. subset closed C = saty K C = sata K
(mk finite char C)»

Important for the MCS construction

51

More locales

* We have defined locales for alpha, beta, gamma, delta etc.
* We have shown them to specialize the
Consistency Kind locale.

52

Pre-Defined Kinds

» For a user-given predicate ~ we can define the following:
» (Under some natural conditions on each ~.)
Alpha <ps ~, gs = cond, ps
(AMCS. setqgsuS€C(C)»
Beta <ps ~; qs = cond; ps
(AC S. dg € set gs. {gq} uS € C)>»
Gamma <ps ~, (F, gqs) = cond, ps
(MCS. Vt €EFS. set (gs t) uS € C(C)>

* Likewise we can define hint,, hintg, hint,,...
¢ And then we have kinds:

e Cond cond, hint,

« Cond condg hintg

e Cond cond, hint, 53

Combining Kinds

* We have seen kinds.

 But to get a definition of consistency property and
Hintikka set we need to combine them.

* We have a locale for that.

locale Consistency Kinds = Params map fm params_ fm
for

map_fm :: <('x = 'x) = 'fm = 'fm> and
params fm :: <'fm = 'x set> +
fixes Ks :: <('x, 'fm) kind list>

assumes all kinds: <AK. K € set Ks —

Consistency Kind map fm params_ fm K>

54

Combining Kinds

* The main theorem:
» Consistent sets of formulas can be extended to
maximal consistent sets, and these are Hintikka.

lemma mk mcs_hintikka:
assumes <prope Ks C> <S € C> <enough new S>
shows <propus Ks (mk mcs C S)»

* Here we have combined the individual consistency
requirements into an "is consistency property set" definition
(prope Ks)

* We have combined the individual Hintikka requirements into
an "is Hintikka set" definition (propu Ks)

* And, shown that your formula set can be extended to be
Hintikka. 55

Application:
“Bounded” First-Order Logic

56

Restricted Instantiation

 Consider first-order logic with the following rule:

' Vz. p(x) tisasub-term of T’
['F (i)

’SD\VIE

» Make use of the ability to bound our gamma kind:
<[L] ~1[11

<[= (P ts)] ~ [P ts]»
<[=(p—a)] ~[p, =ql
<«lp—al~[l=-p qgl

<[Vp] = (AS. terms S, At. [(t)p 1)>
<6 (= ¥p) x =1[= (+x)p >

vV v v Vv Vv Vv

Application:
Second-Order Logic

58

Scaling Up

* Quantify over functions and predicates besides terms.

« gammas for different quantifiers at different types:
» <[Vp] ~ (At. [(t/0)p I)>
» <[Yo p]l ~ (As. [(s/0)e p])>
» <[YVep]l ~e (As. [(s/0)e p])>

* Each gamma can only instantiate with one type of term
» compose our consistency property of multiple gammas.

* Mechanized completeness as before.

59

Application: Prior’s Ideal Language
A very recent modal logic

60

A very recent modal logic

 Based on work by Blackburn, Bratiner and Kofod.

A very recent modal logic with Kripke semantics, and
propositional quantification.

 See our paper, our formalization and the paper by
Blackburn, Braiiner and Kofod.

61

Conclusion

62

Conclusion

 Consistency properties provide an interface for building
MCSs.

* An advantage of our framework is modularity and locality:

* You prove correspondence between maximality and
Hintikka "locally" for each Kind.

 For the alpha, beta, gamma, delta we did it already.

* So you can focus on the the syntax that makes your
logic special!

* [hope you will prove model existence and completeness
for your favorite logic with our framework :-D

63

Thank you!

64

Bonus slide!

65

Concrete Maximal Consistency

* A consistent set I' is a maximally consistent set (MCS)
when it contains every formula consistent with it:

if I' € A and A consistent, then I' = A

* We can build an MCS by trying to add every formula and
taking the union A= U; A; (Lindenbaum-Tarski):
A, =T
A, =1{p; P(a)}UA,; if consistent and ¢; = Jx. p(x)
A, =19} UA; otherwise if consistent

otherwise
Aiy1 = Ai

Maximal Element?

* Set theory: under the axiom of choice, finite character of a
family of sets C guarantees a maximal member wrt. C:

<finite char C =
VS. S €C « (VS' ¢ S. finite S' — S' € C)>»

* Problem: imposing finite character might break deltag.
» Exercise for the reader.

 Solution: interpret it universally rather than existentially.

delta, if § € S then {0(a)} u S € C for every new a (...)

» How do we recover deltag? Manually!
» As earlier in the Lindenbaum-Tarski construction.

