Abstract, Compositional Consistency:

Isabelle/HOL Locales for Completeness à la Fitting

ITP '25

Asta Halkjær Boserup, University of Copenhagen Anders Schlichtkrull, Aalborg University Copenhagen

Model existence for Natural Deduction (ND)

• We have a concrete calculus (natural deduction) for FOL with concrete proof rules:

$$\frac{\varphi \in \Gamma}{\Gamma \vdash \varphi} \text{Assm} \qquad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land I$$

$$\frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \rightarrow E \qquad \frac{\Gamma \vdash \forall x. \ \varphi(x)}{\Gamma \vdash \varphi(t)} \forall E$$
...

- A formula set Γ is consistent wrt. \vdash when we cannot derive a contradiction from it (i.e. $\neg(\Gamma \vdash \bot)$).
- The model existence theorem (for natural deduction):
 - Any ND-consistent set has a model.
 - $\neg(\Gamma \vdash \bot) \rightarrow \exists M. M \models \Gamma$
- From this follows completeness: Valid formulas are provable

Model existence for Natural Deduction (ND)

• We have a concrete calculus (natural deduction) for FOL with concrete proof rules:

$$\frac{\varphi \in \Gamma}{\Gamma \vdash \varphi} \mathbf{Assm} \qquad \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \land \mathbf{I}$$

$$\frac{\Gamma \vdash \varphi \rightarrow \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \rightarrow \mathbf{E} \qquad \frac{\Gamma \vdash \forall x. \ \varphi(x)}{\Gamma \vdash \varphi(t)} \forall \mathbf{E}$$
...

- A formula set Γ is consistent wrt. \vdash when we cannot derive a contradiction from it (i.e. $\neg(\Gamma \vdash \bot)$).
- The model existence theorem (for natural deduction):
 - Any ND-consistent set has a model Understood
 - $\neg(\Gamma \vdash \bot) \rightarrow \exists M. M \models \Gamma$
- From this follows completeness: Valid fo

This can be formalized!

- Model existence for natural deduction and other proof systems have been formalized in proof assistants using deep embeddings of FOL syntax.
 - E.g. Berghofer 2007 in Isabelle/HOL.
 Follows Melvin Fitting's 1996 textbook
 "First-order Logic and Automated Theorem Proving".
 - Many other fantastic results in this direction.
- Model existence theorems for other logics have also been formalized.
- In this work we provide a general framework for such model existence proofs (and more).

The plan for the talk

- I show you a concrete model existence proof for natural deduction and first-order logic.
 - Follows Melvin Fitting's 1996 textbook
 "First-order Logic and Automated Theorem Proving"
- I show you our generalization.
- I show you some instances.

A first generalization: Smullyan's uniform notation

- Characterize first-order logic with:
 - ► Conjunctive, disjunctive, universal and existential kinds.
 - ▶ Already generalizes from concrete FOL syntax actually.

$$\alpha \quad \varphi \wedge \psi : \alpha_1 = \varphi, \alpha_2 = \psi \qquad \neg(\varphi \rightarrow \psi) : \alpha_1 = \varphi, \alpha_2 = \neg \psi$$

$$\beta \quad \varphi \rightarrow \psi : \beta_1 = \neg \varphi, \beta_2 = \psi \qquad \neg (\varphi \land \psi) : \beta_1 = \neg \varphi, \beta_2 = \neg \psi$$

$$\gamma \quad \forall x. \ \varphi(x) : \gamma(t) = \varphi(t) \qquad \neg(\exists x. \ \varphi(x)) : \gamma(t) = \neg \varphi(t)$$

$$\delta \exists x. \varphi(x) : \delta(t) = \varphi(t)$$
 $\neg (\forall x. \varphi(x)) : \delta(t) = \neg \varphi(t)$

A first generalization: Smullyan's uniform notation

- Characterize first-order logic with:
 - Conjunctive, disjunctive, universal and existential kinds.
 - ► Already generalizes from concrete FOL syntax actually.

$$\alpha \quad \varphi \wedge \psi : \alpha_1 = \varphi, \alpha_2 = \psi \qquad \neg(\varphi \rightarrow \psi) : \alpha_1 = \varphi, \alpha_2 = \neg \psi$$

$$\beta \quad \varphi \rightarrow \psi : \beta_1 = \neg \varphi, \beta_2 = \psi \qquad \neg (\varphi \land \psi) : \beta_1 = \neg \varphi, \beta_2 = \neg \psi$$

$$\gamma \quad \forall x. \ \varphi(x) : \gamma(t) = \varphi(t) \qquad \neg(\exists x. \ \varphi(x)) : \gamma(t) = \neg \varphi(t)$$

$$\delta \exists x. \varphi(x) : \delta(t) = \varphi(t)$$
 $\neg (\forall x. \varphi(x)) : \delta(t) = \neg \varphi(t)$

δ·∃

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent set also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent set also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

Why do Hintikka sets have models?

• A formula set *S* is a Hintikka set when:

conflict for all
$$p$$
, not both $p \in S$ and $\neg p \in S$

banned
$$\bot \notin S$$
 (and $\neg \top \notin S$)

double neg. if
$$\neg \neg \varphi \in S$$
 then $\varphi \in S$ alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

beta if
$$\beta \in S$$
 then $\beta_1 \in S$ or $\beta_2 \in S$

gamma if
$$\gamma \in S$$
 then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if
$$\delta \in S$$
 then $\delta(a) \in S$ for *some* $a (...)$

find". Then S will provide us with a Herbrand model.)

Hintikka's lemma:

Any Hintikka set has a model.

(Why? Brief and vague explanation:

We can think of "is member of S" as "is true in the model we want to

α: Λ β: ∨

β: ∨ γ: ∀

δ:∃

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent set also Hintikka sets?
 - How can we extend *S* to a maximal consistent set *S'*?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent set also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

What is a maximal consistent set?

- $C_{ND} = \{S \mid \neg(S \vdash \bot)\}$ -- set of all ND-consistent sets $S \in C_{ND}$ means "S is ND-consistent"
- $\operatorname{mcs} S \longleftrightarrow S \in C_{ND} \land (\forall S' \in C_{ND}. S \subseteq S' \to S = S')$

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

$\alpha : \Lambda$ Some ND-consistency lemmas B: V • Generally they claim the existence of a

Why are maximal consistent sets also Hintikka sets?

bigger consistent set For any $S \in C_{ND}$

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\bot \notin S$ (and $\neg \top \notin S$) **double neg.** if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C_{ND}$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C_{ND}$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C_{ND}$ or $\{\beta_2\} \cup S \in C_{ND}$

for some a(...)

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C_{ND}$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\{\delta(\alpha)\} \cup S \in C_{ND}$

 γ : \forall

δ·∃

Why are maximal consistent sets also Hintikka sets?

• Some ND-consistency lemmas

For any $S \in C_{ND}$

• Generally they claim the existence of a bigger consistent set

conflict for all p, not both $p \in S$ and $\neg p \in S$ banned $\perp \notin S$ (and $\neg \top \notin S$) **double neg.** if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C_{ND}$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C_{ND}$ **beta** if $\beta \in S$ then $\{\beta_1\} \cup S \in C_{ND}$ or $\{\beta_2\} \cup S \in C_{ND}$ **gamma** if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C_{ND}$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\{\delta(\alpha)\} \cup S \in C_{ND}$

for some a(...)

not both $p \in S$ and $\neg p \in S$ **banned** $\perp \not\in S$ (and $\neg \top \notin S$) then $\varphi \in S$ **beta** if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$ **gamma** if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\delta(a) \in S$ for some a(...)

double neg. if
$$\neg \varphi \in S$$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

or
$$\beta_2 \in S$$

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend *S* to a maximal consistent set *S'*?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend *S* to a maximal consistent set *S'*?

How can we extend S to a maximal consistent set S'?

- Informally:
 - Take S.
 - Enumerate through the universe of formulas, and add those to *S* that do not introduce inconsistency.

How can we extend S to a maximal consistent set S'?

- Informally:
 - Take S.
 - Enumerate through the universe of formulas, and add those to *S* that do not introduce inconsistency.

• (This slide is a *very* simplified account of how and why this works.)

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend *S* to a maximal consistent set *S'*?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

- Model existence
 - If S is consistent then S has a model.
- Proof idea
 - 1. Extend S to a maximal consistent set S'.
 - 2. S' is a Hintikka set.
 - 3. Therefore S' has a model M.
 - 4. *M* is also a model of *S*.
- Obvious questions the audience is asking itself:
 - What is a Hintikka set?
 - Why do these have models?
 - What is a maximal consistent set?
 - Why are maximal consistent sets also Hintikka sets?
 - How can we extend S to a maximal consistent set S'?

Why are maximal consistent sets also Hintikka sets?

- Some ND-consistency lemmas
- Generally they claim the existence of a bigger consistent set

For any $S \in C_{ND}$

Important!

conflict for all p,

not both $p \in S$ and $\neg p \in S$

banned $\bot \notin S$ (and $\neg \top \notin S$)

double neg. if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C_{ND}$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C_{ND}$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C_{ND}$

or $\{\beta_2\} \cup S \in C_{ND}$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C_{ND}$ for every (closed term) t(...)

delta_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C_{ND}$

for some a(...)

 \bullet A formula set *S* is Hintikka when:

conflict for all p,

not both $p \in S$ and $\neg p \in S$ banned $\bot \notin S$ (and $\neg \top \notin S$)

double neg. if $\neg \neg \varphi \in S$

then $\varphi \in S$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$ **beta** if $\beta \in S$ then $\beta_1 \in S$

or
$$\beta_2 \in S$$

gamma if $\gamma \in S$ then $\gamma(t) \in S$

delta_E if $\delta \in S$ then $\delta(a) \in S$ for some a(...)

for every (closed term) t (...)

20

Fantastic!
We have now seen model existence for natural deduction!

A generalization by Smullyan

- Actually the do not only hold for C_{ND} properties on the previous slide
- If we replace C_{ND} with one of the following then all the properties still hold:
- $C_{AxS} = \{S \mid \neg(S \vdash_{AxS} \bot)\}$ where AxS is axiomatic system.
 - So we can get model existence for axiomatic system.
- $C_{comp} = \{S \mid all finite subsets of S are satisfiable\}$
 - So we can get compactness
- ...
- There are more examples.
 - E.g. we can also get a weak downward Löwenheim-Skolem and Craig's interpolation theorem.

A generalization by Smullyan

 $\alpha: \Lambda$

 γ : \forall

- A useful concept:
 - We call any set C a consistency property if it has the properties! Important!

C is a consistency property if: For any $S \in C$

```
conflict for all p,
             not both p \in S and \neg p \in S
banned \perp \notin S
                                    (and \neg \top \not\in S)
double neg. if \neg \neg \varphi \in S then \{\varphi\} \cup S \in C
```

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for some a(...)

δ ⋅ ∃

Abstract model existence theorem

• If C is a consistency property and $S \in C$ then S has a model.

Abstract model existence theorem

• If C is a consistency property and $S \in C$ then S has a model.

• Nice! To show that some property *C* ensures models of its members we only need to show that it is a consistency property!

Questions

- Does this idea work for other logics than FOL?
- Yes. (E.g. Fitting used it for modal logic and intuitionistic logic)
- Are the applications of the idea similar enough that we can make a general framework?
- Yes. (This work)
- Can such framework be expressed with locales in Isabelle/HOL?
- Yes. (This work)
- Can the locales really help prove formalize existence theorems for some concrete logics?
- Yes, bounded FOL, SOL, very recent modal logic. (This work)

• C is a consistency property if For any $S \in C$

```
conflict for all p,
             not both p \in S and \neg p \in S
                                    (and \neg \top \notin S)
banned \perp \notin S
double neg. if \neg \neg \varphi \in S
                    then \{\varphi\} \cup S \in C
alpha if \alpha \in S then \{\alpha_1, \alpha_2\} \cup S \in C
beta if \beta \in S then \{\beta_1\} \cup S \in C
                           or \{\beta_2\} \cup S \in C
gamma if \gamma \in S then \{\gamma(t)\} \cup S \in C
         for every (closed term) t (...)
delta<sub>E</sub> if \delta \in S then \{\delta(a)\} \cup S \in C
                              for some a(...)
```

• A formula set S is Hintikka when:

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\perp \notin S$ (and $\neg \top \notin S$) **double neg.** if $\neg \neg \varphi \in S$ then $\varphi \in S$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$ **beta** if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$ **gamma** if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\delta(a) \in S$

for some a(...)

• C is a consistency property if For any $S \in C$

conflict for all p,

Conflict kind conflict for all p,

nula set S is Hintikka when:

for some a(...)

banned $\bot \not\in S$ (and $\neg \top \not\in S$) **double neg.** if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$ **beta** if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$

delta_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$

for every (closed term) t (...)

for some a(...)

not both $p \in S$ and $\neg p \in S$

not both $p \in S$ and $\neg p \in S$ banned $\bot \not\in S$ (and $\neg \top \not\in S$) double neg. if $\neg \neg \varphi \in S$ then $\varphi \in S$ alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$ beta if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$ gamma if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\delta(a) \in S$

• C is a consistency property if For any $S \in C$

conflict for all p,

• A formula set S is Hintikka when:

banned $\perp \notin S$ (and $\neg \top \notin S$) **double neg.** if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$

or $\{\beta_2\} \cup S \in C$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for some a(...)

not both $p \in S$ and $\neg p$ Banned kind not both $p \in S$ and $\neg p \in S$ (and $\neg \top \notin S$) $\perp \notin S$

> **double neg.** if $\neg \neg \varphi \in S$ then $\varphi \in S$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

for all p,

beta if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$

gamma if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\delta(a) \in S$

for some a(...)

• C is a consistency property if For any $S \in C$

conflict for all p,

not both $p \in S$ and

banned $\perp \notin S$

(and **double neg.** if $\neg \neg \varphi \in S$

then $\{\varphi\} \cup S \in C$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$

or $\{\beta_2\} \cup S \in C$

for some a(...)

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$

double neg. if $\neg \neg \varphi \in S$

conflict for all p,

Double neg kind both $p \in S$ and $\neg p \in S$

then $\varphi \in S$

• A formula set S is Hintikka when:

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

beta if $\beta \in S$ then $\beta_1 \in S$

or $\beta_2 \in S$ **gamma** if $\gamma \in S$ then $\gamma(t) \in S$

for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\delta(a) \in S$

for some a(...)

• C is a consistency property if For any $S \in C$

double neg. if $\neg \neg \varphi \in S$

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$)

then $\{\varphi\} \cup S \in C$ alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$

for some a(...)

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ • A formula set S is Hintikka when:

not both $p \in S$ and $\neg p \in S$

Alpha kind $\bot \notin S$ (and $\neg \top \notin S$)

conflict for all p,

beta if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$ **gamma** if $\gamma \in S$ then $\gamma(t) \in S$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\delta(a) \in S$

for some a(...)

• C is a consistency property if For any $S \in C$

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$) **double neg.** if $\neg \neg \varphi \in S$

then $\{\varphi\} \cup S \in C$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in$ **beta** if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for *some* a (...) • A formula set S is Hintikka when:

not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$) **double neg.** if $\neg \neg \varphi \in S$

Beta kind $\inf \alpha \in S \text{ then } \{\alpha_1, \alpha_2\} \subseteq S$

conflict for all p,

beta if $\beta \in S$ then $\beta_1 \in S$ or $\beta_2 \in S$

gamma if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) $t \dots$

then $\varphi \in S$

delta_E if $\delta \in S$ then $\delta(a) \in S$ for *some* a (...)

• C is a consistency property if For any $S \in C$

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$) **double neg.** if $\neg \neg \varphi \in S$

then $\{\varphi\} \cup S \in C$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in$ Gamma kind

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S \in C$ for every (closed term) t (...) **delta**: if $\delta \in S$ then $\{\delta(\alpha)\} \cup S \in C$

delta_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for some a(...) • A formula set S is Hintikka when:

conflict for all p, not both $p \in S$ and $\neg p \in S$ **banned** $\bot \notin S$ (and $\neg \top \notin S$)

double neg. if $\neg \varphi \in S$ then $\varphi \in S$ alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

kind $\in S \text{ then } \beta_1 \in S$ or $\beta_2 \in S$

gamma if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\delta(a) \in S$ for *some* a (...)

• C is a consistency property if For any $S \in C$

conflict for all p,

not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$) **double neg.** if $\neg \neg \varphi \in S$

then $\{\varphi\} \cup S \in C$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$

beta if $\beta \in S$ then $\{\beta_1\} \cup S \in C$

 $1 \{\beta_1\} \cup S \in C$ or $\{\beta_2\} \cup S \in C$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S$ Delta kind

for every (closed term) t ($S \in S$ then $\{\delta(a)\} \cup S \in C$

• A formula set S is Hintikka when:

not both $p \in S$ and $\neg p \in S$ **banned** $\bot \not\in S$ (and $\neg \top \not\in S$)

conflict for all p,

double neg. if $\neg \varphi \in S$ then $\varphi \in S$

alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$ **beta** if $\beta \in S$ then $\beta_1 \in S$

or $\beta_2 \in S$

ma if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

delta_E if $\delta \in S$ then $\delta(a) \in S$ for *some* a(...)

delta_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for some a(...)

• C is a consistency property if For any $S \in C$

conflict for all p,

banned $\perp \not\in S$

double neg. if $\neg \neg \varphi \in S$ then $\{\varphi\} \cup S \in C$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C$ **beta** if $\beta \in S$ then $\{\beta_1\} \cup S \in C$

not both $p \in S$ and $\neg p \in S$

• A formula set S is Hintikka when:

not both $p \in S$ and $\neg p \in S$ banned $\perp \not\in S$ (and $\neg \top \notin S$) **double neg.** if $\neg \neg \varphi \in S$

conflict for all p,

then $\varphi \in S$ **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$

beta if $\beta \in S$ then $\beta_1 \in S$

or $\beta_2 \in S$

gamma if $\gamma \in S$ then $\{\gamma(t)\} \cup S$ Delta kind **ma** if $\gamma \in S$ then $\gamma(t) \in S$ for every (closed term) t (...)

or $\{\beta_2\} \cup S \in C$

(and $\neg \top \not\in S$)

delta_E if $\delta \in S$ then $\delta(a) \in S$ for some a (.

delta_E if $\delta \in S$ then $\{\delta(a)\} \cup S \in C$ for some a(...)

for every (closed term) t

The framework

```
datatype ('x, 'fm) kind = Cond <'fm list \Rightarrow ('fm set \Rightarrow 'fm set \Rightarrow bool) \Rightarrow bool> <'fm set \Rightarrow bool>
```

The framework

A corresponding part of the Hintikka definition.


```
datatype ('x, 'fm) kind \forall = Cond <'fm list \Rightarrow ('fm set set \Rightarrow 'fm set \Rightarrow bool) \Rightarrow bool> <'fm set \Rightarrow bool>
```

The framework A corresponding part of the Hintikka An Important! property definition datatype ('x, 'fm) kind = Cond <'fm list \Rightarrow ('fm set set \Rightarrow 'fm set \Rightarrow bool) \Rightarrow bool> <'fm set \Rightarrow bool> Alpha kind **alpha** if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \subseteq S$ alpha if $\alpha \in S$ then $\{\alpha_1, \alpha_2\} \cup S \in C_{ND}$

The framework

```
datatype ('x, 'fm) kind
  = Cond <'fm list \Rightarrow ('fm set set \Rightarrow 'fm set \Rightarrow bool) \Rightarrow bool> <'fm set \Rightarrow bool>
   | Wits <'fm ⇒ 'x ⇒ 'fm list>
```


One more constructor actually

-- essentially for δ formulas.

This needs to be handled differently in the mcs construction. I skipped this in my simplified explanation. 45

```
locale Consistency_Kind = Params map_fm params_fm
for map_fm :: ⟨('x ⇒ 'x) ⇒ 'fm ⇒ 'fm⟩
and params_fm :: ⟨'fm ⇒ 'x set⟩ +
fixes K :: ⟨('x, 'fm) kind⟩
assumes hintikka:
⟨⟨C S. sat<sub>E</sub> K C ⇒ S ∈ C ⇒ maximal C S ⇒ sat<sub>H</sub> K S⟩
```

A locale for Kinds! locale for parameter substitutions.

```
locale Consistency_Kind = Params map_fm params_fm
for map_fm :: ⟨('x ⇒ 'x) ⇒ 'fm ⇒ 'fm⟩
and params_fm :: ⟨'fm ⇒ 'x set⟩ +
fixes K :: ⟨('x, 'fm) kind⟩
assumes hintikka:
⟨⟨C S. sat<sub>E</sub> K C ⇒ S ∈ C ⇒ maximal C S ⇒ sat<sub>H</sub> K S⟩
```

```
locale Consistency_Kind = Params map_fm params_fm
for map_fm :: ⟨('x ⇒ 'x) ⇒ 'fm ⇒ 'fm⟩
and params_fm :: ⟨'fm ⇒ 'x set⟩ +
fixes K :: ⟨('x, 'fm) kind⟩
assumes hintikka:
⟨⟨C S. sat<sub>E</sub> K C ⇒ S ∈ C ⇒ maximal C S ⇒ sat<sub>H</sub> K S⟩
```

Now we introduce locale for Consistency Kinds

```
locale Consistency Kind = Params map fm params fm
 for map fm :: \langle (\overline{X} \Rightarrow X) \Rightarrow fm \Rightarrow fm \rangle
 and params fm :: <'fm ⇒ 'x set> +
 fixes K :: <('x, 'fm) kind>
 assumes hintikka:
  \langle \land C S. sat_E K C \implies S \in C \implies maximal C S \implies sat_H K S \rangle
     This essentially says that e.g.
          alpha if \alpha \in S then \{\alpha_1, \alpha_2\} \cup S \in C
     ensures
           alpha if \alpha \in S then \{\alpha_1, \alpha_2\} \subseteq S on maximality.
```

But! We are here talking about only one kind (e.g. alpha).

```
locale Consistency_Kind = Params map_fm params_fm
for map_fm :: ⟨('x ⇒ 'x) ⇒ 'fm ⇒ 'fm⟩
and params_fm :: ⟨'fm ⇒ 'x set⟩ +
fixes K :: ⟨('x, 'fm) kind⟩
assumes hintikka:
⟨⟨C S. sat<sub>E</sub> K C ⇒ S ∈ C ⇒ maximal C S ⇒ sat<sub>H</sub> K S⟩
```

```
locale Consistency Kind = Params map fm params fm
 for map fm :: \langle (\overline{X} \Rightarrow X) \Rightarrow fm \Rightarrow fm \rangle
 and params fm :: <'fm ⇒ 'x set> +
 fixes K :: <('x, 'fm) kind>
 assumes hintikka:
   \langle \land C S. sat_E K C \implies S \in C \implies maximal C S \implies sat_H K S \rangle
 and respects close:
   \langle \land C. \text{ sat}_E \ K \ C \implies \text{sat}_E \ K \ (close \ C) \rangle
 and respects alt:
   \langle AC. \text{ sat}_E \text{ K} C \implies \text{subset closed } C \implies \text{sat}_A \text{ K}
                                  (mk alt consistency C)>
 and respects fin:
   \langle \land C. \text{ subset closed } C \implies \text{sat}_A \ K \ C \implies \text{sat}_A \ K
                                                              (mk finite char C)>
```

More locales

- We have defined locales for alpha, beta, gamma, delta etc.
- We have shown them to specialize the Consistency_Kind locale.

Pre-Defined Kinds

- For a user-given predicate ~ we can define the following:
 - ▶ (Under some natural conditions on each ~.)

```
Alpha \langle ps \curvearrowright_{\alpha} qs \Longrightarrow cond_{\alpha} ps
(\lambda C S. set qs \cup S \in C) \rangle
Beta \langle ps \curvearrowright_{\beta} qs \Longrightarrow cond_{\beta} ps
(\lambda C S. \exists q \in set qs. \{q\} \cup S \in C) \rangle
Gamma \langle ps \curvearrowright_{\gamma} (F, qs) \Longrightarrow cond_{\gamma} ps
(\lambda C S. \forall t \in F S. set (qs t) \cup S \in C) \rangle
```

- •••
- Likewise we can define $hint_{\alpha}$, $hint_{\beta}$, $hint_{\gamma}$,...
- And then we have kinds:
 - Cond cond $_{\alpha}$ hint $_{\alpha}$
 - Cond cond_β hint_β
 - Cond cond, hint, ...

Combining Kinds

- We have seen kinds.
- But to get a definition of consistency property and Hintikka set we need to combine them.
- We have a locale for that.

Combining Kinds

- The main theorem:
 - Consistent sets of formulas can be *extended* to maximal consistent sets, and these are *Hintikka*.

```
lemma mk_mcs_hintikka:
```

```
assumes \langle prop_E \ Ks \ C \rangle \ \langle S \in C \rangle \ \langle enough\_new \ S \rangle shows \langle prop_H \ Ks \ (mk\_mcs \ C \ S) \rangle
```

- Here we have combined the individual consistency requirements into an "is consistency property set" definition (prope Ks)
- We have combined the individual Hintikka requirements into an "is Hintikka set" definition (proph Ks)
- And, shown that your formula set can be extended to be Hintikka.

Application:"Bounded" First-Order Logic

Restricted Instantiation

• Consider first-order logic with the following rule:

$$\frac{\Gamma \vdash \forall x. \ \varphi(x) \quad t \text{ is a sub-term of } \Gamma, \varphi}{\Gamma \vdash \varphi(t)} \forall \mathbf{E}$$

• Make use of the ability to bound our **gamma** kind:

Application: Second-Order Logic

Scaling Up

- Quantify over functions and predicates besides terms.
- gammas for different quantifiers at different types:

```
► \langle [ \forall p ] \sim_{\gamma} (\lambda t. [ \langle t/0 \rangle p ]) \rangle

► \langle [ \forall_{P} p ] \sim_{\gamma P} (\lambda s. [ \langle s/0 \rangle_{P} p ]) \rangle

► \langle [ \forall_{F} p ] \sim_{\gamma F} (\lambda s. [ \langle s/0 \rangle_{F} p ]) \rangle
```

- Each **gamma** can only instantiate with one type of term
 - compose our consistency property of multiple **gamma**s.
- Mechanized completeness as before.

Application: Prior's Ideal Language A very recent modal logic

A very recent modal logic

- Based on work by Blackburn, Braüner and Kofod.
- A very recent modal logic with Kripke semantics, and propositional quantification.
- See our paper, our formalization and the paper by Blackburn, Braüner and Kofod.

Conclusion

Conclusion

- Consistency properties provide an interface for building MCSs.
- An advantage of our framework is *modularity* and *locality*:
 - You prove correspondence between maximality and Hintikka "locally" for each Kind.
 - For the alpha, beta, gamma, delta we did it already.
 - So you can focus on the the syntax that makes your logic special!
- I hope you will prove model existence and completeness for your favorite logic with our framework :-D

Thank you!

Bonus slide!

Concrete Maximal Consistency

• A consistent set Γ is a maximally consistent set (MCS) when it contains every formula consistent with it:

if
$$\Gamma \subseteq \Delta$$
 and Δ consistent, then $\Gamma = \Delta$

• We can build an MCS by trying to add every formula and taking the union $\Delta = \bigcup_i \Delta_i$ (Lindenbaum-Tarski):

$$\Delta_0 = \Gamma$$

$$\Delta_{i+1} = \{\varphi_i, \psi(a)\} \cup \Delta_i$$
 if consistent and $\varphi_i = \exists x. \psi(x)$

$$\Delta_{i+1} = \{\varphi_i\} \cup \Delta_i$$
 otherwise if consistent

 $\Delta_{i+1} = \Delta_i$ otherwise

Maximal Element?

• Set theory: under the axiom of choice, *finite character* of a family of sets *C* guarantees a maximal member wrt. ⊆:

- Problem: imposing finite character might break **delta**_E.
 - Exercise for the reader.
- Solution: interpret it universally rather than existentially.

```
delta<sub>A</sub> if \delta \in S then \{\delta(a)\} \cup S \in C for every new a(...)
```

- How do we recover **delta**_E? Manually!
 - ▶ As earlier in the Lindenbaum-Tarski construction.