
LeanLTL: A Unifying Framework
for Linear Temporal Logics in

Lean
Eric Vin, Kyle A. Miller, Daniel J. Fremont

Motivations

● Learning enabled cyber-physical
systems are prevalent and often
safety-critical.

● Such systems can be tested, but are
difficult to verify.

● Linear temporal logic (LTL) is a modal
temporal logic that has long been used in

the verification community to reason
about system properties over time.

2

LeanLTL

● LeanLTL is a unified framework for reasoning about linear temporal properties of

systems in Lean 4 with convenient syntax and automation.

● Applied in upcoming work as part of a larger verification framework to verify
simplified but non-trivial automatic emergency braking system (700+ line proofs,

available in LeanLTL repo).

3

Example: A short proof in LeanLTL that for all infinite traces with a natural number variable n, the
LTL-with-nonlinear-arithmetic formula n = 5 ∧ G((X n) = n2) → G(5 ≤ n) holds.

Outline
1. Motivations

2. Background
3. Core Library

4. Embeddings and Applications

5. Future Work

Linear Temporal Logic

● Linear Temporal Logic [1]:
○ Finite set of propositional variables P
○ Includes the standard logical operators (¬, ∨, ∧, →)

○ Time is discrete and over an infinite horizon.

○ Includes two temporal operators:

■ X Ψ : Ψ must hold in the next timestep

■ Ψ U Φ : Ψ must hold until Φ holds. If Φ never holds, Ψ must hold forever.

○ Additional operators can be defined using the above:

■ G Ψ: Ψ must hold in this and all future timesteps.

■ F Ψ: Ψ must eventually hold.

● Examples:

○ LightYellow→ X LightRed : If the light is currently yellow, it will be red in the next timestep.

○ G F LightGreen: The light must always eventually turn green (i.e. the light always turns green

at some point in the future).

5
[1] Pnueli, “The Temporal Logic of Programs.”

Linear Temporal Logic Extensions

● Finite Linear Temporal Logic (LTLf) [2]:
○ Defined over a finite instead of infinite time horizon.
○ Next operator (X) split into two operators: weak and strong next.

■ Weak Next: If last timestep, vacuously true. Else X.
■ Strong Next: If last timestep, vacuously false. Else X.

● Linear Temporal Logic Modulo Theories (LTLMT) [3]:
○ Adds support for SMT-style theories.
○ Next operator extended to also apply to values in theories.
○ Also has a finite extension (LTLfMT).
○ Example:

■ (a = 0) ∧ G ((X a) = a + 1) → F (a > 10)

6

[2] De Giacomo and Vardi, “Linear Temporal Logic and Linear Dynamic Logic on Finite Traces.”

[3] Geatti et al., “Linear Temporal Logic Modulo Theories over Finite Traces.”

Why Interactive Theorem Provers?

● LTL and LTLf are decidable and there are known efficient decision procedures
● Adding theories increases complexity, but recent work [4] has shown decidability for

some theories.

● Using undecidable theories is often essential to prove useful things, but cannot be

solved automatically in all cases.

● Example: Nonlinear arithmetic

7
[4] Geatti et al., “Decidable Fragments of LTLf Modulo Theories”

● Solution: Interactive theorem provers!

Project Overview

● LeanLTL is a framework and Lean4 library that:

○ Can to be used to reason about linear temporal properties of systems.

○ Has core types for modeling temporal properties across both infinite and finite

traces.

○ Has support for arbitrary Lean expressions inside formulas (i.e. theories)

○ Includes convenient macro syntax for creating LeanLTL formulas.

○ Supports automation to simplify reasoning.

8

Outline
1. Motivations

2. Background

3. Core Library
4. Embeddings and Applications

5. Future Work

Traces

● Traces model properties across time:
○ Can have finite or infinite length.
○ Next operator enabled by shift operator which drop terms from the beginning

of the sequence.
● Example:

○ Light1Green : Trace Prop := [True, True, False, True, …]
○ Light1Queue : Trace Nat := [1, 2, 3, 2, 2, …]

10

Traces Sets and Functions

● Trace Sets represent a formula by its set of satisfying traces extensionally

○ Aligns with the definition of `Set` in Lean’s Mathlib

● Trace Functions are functions from a given trace domain to an `Option` type.

○ Represent operators over traces

○ None values indicate exceptional behavior, such as querying a value past the

end of a trace. Extracting a value is done with weak or strong get operator.
● Example:

○ TraceSet.or (f₁ f₂ : TraceSet σ) : TraceSet σ := TraceSet.map₂ (· ∨ ·) f₁ f₂

○ TraceFun.add [Add 𝕜] (f₁ f₂ : TraceFun σ 𝕜) : TraceFun σ 𝕜 := TraceFun.map₂ (· + ·) f₁ f₂

11

Tools and Automation

● To aid in writing LeanLTL formulas, we offer an `LLTL[...]` macro.

○ Example Macro Transformation:

`t |= LLTL[G ((←s f) < 10)]` =>

`t |= TraceSet.globally (TraceFun.sget f fun x => TraceSet.const (x < 10))`

● Preliminary automation is centered on simp sets, which can be used by simp to

transform LeanLTL formulas.

○ Example: `push_ltl` “pushes” the LTL “satisfies” operation as deep as possible,

translating LTL operations into their first-order logic semantics

○ Transformed formulas can often be directly solved by existing Lean tactics like

`linarith` or `omega`.

12

Outline
1. Motivations

2. Background

3. Core Library

4. Embeddings and Applications
5. Future Work

Worked Example (Definitions)

14

Worked Example (Proof)

15

Embeddings and Applications

● We show that LTL and LTLf can be directly embedded into LeanLTL.

● We have applied LeanLTL as part of example verifying a simplified Automatic
Emergency Braking System.

○ Many proofs, some quite complicated (700+ lines).

○ Uses undecidable theories, so could not have been accomplished without manual
proving effort.

● Actively working on incorporating LeanLTL into other verification tools, to hopefully be

applied to aid in verifying real world systems.

16

LeanLTL

LeanLTL is a unified framework for reasoning about

linear temporal properties of systems in Lean 4

with convenient syntax and automation.

Future Work:
● More automation, including incorporating

best-effort solver for some decidable
fragments as Lean tactics.

● Show embeddability of LTLMT and LTLfMT.

● Support for other LTL variants, such as

past-time and bounded-time operators

https://github.com/
UCSCFormalMethods/LeanLTL

LeanLTL Repo:

17

