LeanLTL: A Unifying Framework
for Linear Temporal Logics in
Lean

Eric Vin, Kyle A. Miller, Daniel J. Fremont

gk UNIVERSITY OF CALIFORNIA

Motivations

e Learning enabled cyber-physical
systems are prevalent and often
safety-critical.

e Suchsystems can be tested, but are
difficult to verify.

e Linear temporal logic (LTL) is a modal
temporal logic that has long been used in
the verification community to reason
about system properties over time.

LeanLTL

e LeanLTL is aunified framework for reasoning about linear temporal properties of
systems in Lean 4 with convenient syntax and automation.

e Applied in upcoming work as part of a larger verification framework to verify
simplified but non-trivial automatic emergency braking system (700+ line proofs,
available in LeanLTL repo).

example : =" LLTL[((+n) =5 A G ((X (+n)) = (+mn) ~ 2)) = G (6 < (+n))] := by
rw [TraceSet.sem_entail_inf_ iff]
rintro t hinf (h1, h2)
apply TraceSet.globally_induction <;> simp_all [push_1tl, hinf]
intros; nlinarith

Example: A short proof in LeanLTL that for all infinite traces with a natural number variable n, the
LTL-with-nonlinear-arithmetic formulan=5 A G((X n) = n?) — G(5 < n) holds.

O_utline

1.

LoD

Motivations

Background

Core Library

Embeddings and Applications
Future Work

Linear Temporal Logic

e Linear Temporal Logic[1]:
o Finite set of propositional variables P
o Includes the standard logical operators (-, V, A, —)
o Timeisdiscrete and over an infinite horizon.
o Includes two temporal operators:
m XW:Wmustholdinthe next timestep
B YUOD:Y musthold until ® holds. If ® never holds, WY must hold forever.
Additional operators can be defined using the above:
B GY:WY mustholdin this and all future timesteps.
m FWY:W¥Y musteventually hold.
e Examples:
o LightYellow— X LightRed:If thelightis currently yellow, it will be red in the next timestep.
o GF LightGreen: The light must always eventually turn green (i.e. the light always turns green
at some point in the future).

o

[1] Pnueli, “The Temporal Logic of Programs.”

Linear Temporal Logic Extensions

e Finite Linear Temporal Logic (LTLf) [2]:
o Defined over a finite instead of infinite time horizon.
o Next operator (X) split into two operators: weak and strong next.
m Weak Next: If last timestep, vacuously true. Else X.
m Strong Next: If last timestep, vacuously false. Else X.

e Linear Temporal Logic Modulo Theories (LTLMT) [3]:
o Adds support for SMT-style theories.
Next operator extended to also apply to values in theories.
Also has a finite extension (LTLfMT).
Example:
B (@a=00AG((Xa)=a+1)—>F(a>10)

o O O

[2] De Giacomo and Vardi, “Linear Temporal Logic and Linear Dynamic Logic on Finite Traces.’

[3] Geatti et al., “Linear Temporal Logic Modulo Theories over Finite Traces.”

Why Interactive Theorem Provers?

e LTL and LTLf are decidable and there are known efficient decision procedures

e Adding theories increases complexity, but recent work [4] has shown decidability for
some theories.

e Usingundecidable theories is often essential to prove useful things, but cannot be
solved automatically in all cases.

e Example: Nonlinear arithmetic

(1) =5 A G (X (¢+m)) = (+mn) = 2)) = G (6 < (+mn))

e Solution: Interactive theorem provers!

[4] Geatti et al., “Decidable Fragments of LTLf Modulo Theories”

Project Overview

LeanLTL is a framework and Lean4 library that:

O

O

Can to be used to reason about linear temporal properties of systems.

Has core types for modeling temporal properties across both infinite and finite
traces.

Has support for arbitrary Lean expressions inside formulas (i.e. theories)
Includes convenient macro syntax for creating LeanLTL formulas.

Supports automation to simplify reasoning.

O_utline

oL DdE

Motivations

Background

Core Library

Embeddings and Applications
Future Work

Traces

e Traces model properties across time:
o Can have finite or infinite length.
o Next operator enabled by shift operator which drop terms from the beginning
of the sequence.

e Example:

o LightlGreen : Trace Prop :=[True, True, False, True,...]
o Light1Queue : Trace Nat :=[1,2,3,2,2,..]

structure Trace (o : Type*) where
toFun? : N — Option o

length
nempty
defined

Noo
0 < length
Vi: N, i < length <> (toFun? i).isSome

10

Traces Sets and Functions

e Trace Sets represent a formula by its set of satisfying traces extensionally
o Aligns with the definition of “Set " in Lean’s Mathlib
e Trace Functions are functions from a given trace domainto an ‘Option" type.
o Represent operators over traces
o None values indicate exceptional behavior, such as querying a value past the
end of a trace. Extracting a value is done with weak or strong get operator.

e Example:
o TraceSet.or (f1 f2 : TraceSet o) : TraceSet o := TraceSet.map. (- V) f1 f2
O TraceFun.add [Add k] (f1 fz : TraceFun o k) : TraceFun o k := TraceFun.mapz (- + -) f1 f2

structure TraceSet (o : Type*) where
sat : Trace o0 — Prop structure TraceFun (o a : Type*) where
eval : Trace o — Option «

notation t " | " p => TraceSet.sat p t
11

Tools and Automation

e Toaidinwriting LeanLTL formulas, we offeran 'LLTL[. ..] macro.
o Example Macro Transformation:

t |= LLTL[G ((¢s f) < 10)] =>
't |= TraceSet.globally (TraceFun.sget f fun x => TraceSet.const (x < 10))"

e Preliminary automation is centered on simp sets, which can be used by simp to
transform LeanLTL formulas.
o Example: push_1t1" “pushes” the LTL “satisfies” operation as deep as possible,
translating LTL operations into their first-order logic semantics
o Transformed formulas can often be directly solved by existing Lean tactics like
“linarith or omega'.

12

O_utline

Lok owbdpR

Motivations

Background

Core Library

Embeddings and Applications
Future Work

Worked Example (Definitions)

abbrev TL1ToTL2Green
abbrev TL2ToTL1Green
abbrev TL1StayGreen
abbrev TL2StayGreen

abbrev TL1GreenDeparts
abbrev TL1RedDeparts
abbrev TL2GreenDeparts
abbrev TL2RedDeparts

abbrev TL1ArrivesBounds

abbrev TL2ArrivesBounds :

:= LLTLIG ((TL1Green A
:= LLTLIG ((TL2Green A
:= LLTLIG ((TL1Green A ((« TL1Queue)
:= LLTLIG ((TL2Green A

((« TL1Queue)
((« TL2Queue)

0)) -» (Xs (=TL1Green A TL2Green)))]
0)) (Xs (TL1Green A - TL2Green)))]
0)) - (Xs (TL1Green A - TL2Green)))]
0)) -» (Xs (= TL1Green A TL2Green)))]

{

W

((« TL2Queue)

:= LLTL[G (TL1Green - ((« TL1Departs) = max_departs))]
i= LLTLIG (-TL1Green - ((« TL1Departs) = 0))]
:= LLTL[G (TL2Green - ((« TL2Departs) = max_departs))]
:= LLTLIG (-TL2Green - ((~ TL2Departs) = 0))]

A

:= LLTLIG (0 = (« TL1Arrives) A (« TL1lArrives) = max_arrives)]

LLTLIG (@ = (« TL2Arrives) A (< TL2Arrives)

IA

max_arrives)]

—— Note: Queues are defined as naturals, and so won't go negative if departures exceed queue size + arrivals

abbrev TL1QueueNext
abbrev TL2QueueNext

—— Goal Properties
abbrev G_OnelLightGreen

LLTLIG ((X (< TL1Queue)) = (« TL1Queue) + (« TL1Arrives) - (« TL1Departs))]
LLTLIG ((X (« TL2Queue)) = (« TL2Queue) + (« TL2Arrives) - (« TL2Departs))]

:= LLTL[G (TL1Green « -TL2Green)]

14

Worked Example (Proof)

theorem Satisfies_G_OneLightGreen : =i LLTL[TLBaseProperties - G_OneLightGreen] := by

simp [TLBaseProperties, TraceSet.sem_imp_inf_iff, TraceSet.sat_imp_iff]
intro t h_t_inf h

simp [TraceSet.

sat_and_iff] at h

rcases h with (hl1, h2, h3, h4, h5, h6, h7, h8, h9, hl@, hll, h12, h13, hl4)

apply TraceSet.

globally_induction

. simp [push_1tl] at hl h2 +

tauto

. simp [push_1tl, h_t_inf, TraceFun.eval_of_eql at h3 h4 h5 h6 +

intro n hn

by_cases h :

+ specialize
specialize
tauto

- specialize
specialize
tauto

t.shift n (Trace.coe_lt_length_of_infinite h_t_inf n) = LLTL[TL1Green]
h3 n h
h5 n h

h4 n
h6é n

15

Embeddings and Applications

e Weshow that LTL and LTLf can be directly embedded into LeanLTL.

e We have applied LeanLTL as part of example verifying a simplified Automatic
Emergency Braking System.
o Many proofs, some quite complicated (700+ lines).
o Uses undecidable theories, so could not have been accomplished without manual
proving effort.

e Actively working on incorporating LeanLTL into other verification tools, to hopefully be
applied to aid in verifying real world systems.

16

LeanLTL

LeanLTL is a unified framework for reasoning about
linear temporal properties of systems in Lean 4
with convenient syntax and automation.

Future Work:

e More automation, including incorporating
best-effort solver for some decidable
fragments as Lean tactics.

e Show embeddability of LTLMT and LTLfMT.

e Support for other LTL variants, such as
past-time and bounded-time operators

/ LeanLTL Repo: \

https://github.com/
UCSCFormalMethods/LeanLTL

[m] z2% | [=]

17

