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Introduction

▶ Brzozowski derivatives of regular expressions

L(der(c ,R)) := {w ∈ Σ∗ | c · w ∈ L(R)}
null(R) := ϵ ∈ L(R)

▶ (Brzozowski, 64): finiteness of all iterated derivatives

Der(R) = {der∗w (R) | w ∈ σ∗}/∼=
quotiented by a relation called ACI-similarity:

(L ⋓ R) ⋓ S ∼= L ⋓ (R ⋓ S) Associativity
L ⋓ (R ⋓ L) ∼= L ⋓ R Commutativity

R ⋓ R ∼= R Idempotence
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This work

▶ We prove finiteness of symbolic derivatives:

1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated

derivatives
▶ We consider symbolic regular expressions with lookarounds

▶ The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (Σ,α,⊨,⊥,⊤,⊔,⊓,c )

▶ We do not assume commutativity of union

▶ PCRE (leftmost-greedy) vs POSIX (leftmost-longest)
▶ Let R = (a ⋓ ab)* and s = "abab"
▶ "abab" vs "abab"
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Regular Expressions with Lookarounds

R,S ::= ψ ∈ α | ε | R ⋓ S | R ⋒ S | R · S | R∗ | ~R

| (?=R) | (?<=R) | (?!R) | (?<!R)

▶ We work modulo an alphabet theory
A = (Σ,α,⊨,⊥,⊤,⊔,⊓,c )
For example, ψupper ∈ α and Jψupper K = [A− Z ]

▶ Positive lookahead (?=R) and lookbehind (?<=R)
Negative lookahead (?!R) and lookbehind (?<!R)
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Regular Expressions with Lookarounds

▶ Lookaround conditions do not consume any characters

▶ They describe a context in which a match should appear
▶ Given a word "aAbc"

▶ A location is of the form ("aAb","c")
▶ In our setting, both the derivative and nullability functions

take a location rather than a character
▶ A span is of the form ("a","Ab","c")

Semantics

(xs, ys, zs) |= (?=R) ⇐⇒ ys = ϵ ∧ (xs, zs, ϵ) |=R·⊤*

Example: R = (?=ψupper) and s = "aAbc"
Then ("a",ϵ,"Abc") |= (?=ψupper)
since ("a","Abc",ϵ) |= ψupper · ⊤* is a valid future match
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Transition terms and symbolic derivatives

A symbolic derivative is a transition term i.e. trees of regexes

inductive TTerm (α : Type) : Type where
| Leaf : RE α → TTerm α
| Node : RE α → TTerm α → TTerm α → TTerm α

Example
Let ψa and ψb be atomic predicates.

δ (ψa ⋓ ψb) : TTerm α :=

(?=ψa)

(?=ψb)

ε ⋓ ε ε ⋓⊥

(?=ψb)

ε ⋓⊥ ⊥ ⋓⊥
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Semantics of transition terms

▶ Transition term ≈ a function from locations to regexes
▶ ... but it postpones all the nullability tests
▶ We define the evaluation function of type

Loc σ → TTerm α → RE α

L[x ] := L (R, f , g)[x ] :=
{
f [x ], if null R x ;
g [x ], otherwise.
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Symbolic derivatives

Let ℓ ∈ LA, ψ ∈ α then δ : RE α → TTerm α

δ ε := ⊥ δ ℓ := ⊥
δ ψ := ((?=ψ), ε,⊥) δ (L·R) := (L, δ L·R ⋓ δ R, δ L·R)

δ (L ⋒ R) := δ L ⋒ δ R δ (~R) := ~(δ R)
δ (L ⋓ R) := δ L ⋓ δ R δ (R*) := δ R · R*

We show the equivalence of symbolic and location-based
derivatives:

Theorem 1. ∀ x ∈ Loc,R ∈ RE α : (δ R)[x ] = der R x

→ from now on, we can just work with the symbolic definition.
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Iterated derivatives

▶ We can now compute the immediate derivatives of R :
lvs : TTerm α → RE α
step (R : RE α) : List (RE α) := lvs (δ R)

▶ The step function is well-behaved wrt operations on RE α:

step (L ⋒ R) = step L ⋒ step R

step (L ⋓ R) = step L ⋓ step R

step (~R) = ~(step R)

step (L · R) = step L · R ⋓ step R ++ step L · R
step (R*) = step R · R*

▶ We compute the n-th derivatives (words of length n):
steps : RE α → Nat → List (RE α)
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Finiteness of the state space

▶ Classical approach (Brzozowski/DFA construction)
▶ Der(R) = {derw (R) | w ∈ Σ∗}/∼=
▶ ∼= is the equivalence induced by ACI for union ⋓

▶ Antimirov (partial) derivatives (NFA construction)

▶ Derivative function returns a set of expressions
▶ Proving finiteness is more straightforward but hard to deal

with intersection and complement

▶ Our approach

▶ Follow Antimirov’s strategy for finiteness
▶ While dealing with the extended class of expressions
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Similarity

We define helpers to reason up-to a relation R

▶ List membership
x ∈[ R ] ys := ∃ y, R x y ∧ y ∈ ys

▶ List inclusion
xs ⊆[ R ] ys := ∀ x ∈ xs, x ∈[ R ] ys

▶ List equality
xs =[ R ] ys := xs ⊆[ R ] ys ∧ ys ⊆[ R ] xs

Our relation: the ADI-similarity relation used for quotienting:

(L ⋓ R) ⋓ S ∼= L ⋓ (R ⋓ S) Associativity
L ⋓ (R ⋓ L) ∼= L ⋓ R right Deduplication

R ⋓ R ∼= R Idempotence
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Finiteness of Antimirov derivatives

▶ Why is proving finiteness easy for Antimirov derivatives?

support(⊥) := ∅
support(ε) := ∅
support(c) := {ε} with c ∈ Σ

support(L ⋓ R) := support(L) ∪ support(R)
support(L·R) := support(L) · R ∪ support(R)
support(R*) := support(R) · R*

▶ All Antimirov derivatives are contained in the set:
{R} ∪ support(R)

▶ ACI is built into the set representation
▶ Can we use a similar strategy for Brzozowski-style

derivatives?
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Constructing the overapproximation
▶ What we have: a way to reason about derivatives and their

iterated forms to describe all states reachable from R

▶ We have to show finiteness of this set
▶ Solution: finite overapproximation (modulo ADI)

a ⋓ b · c ε ⋓⊥ · c

[⊥, ε, a] ++ [⊥, ε, c ,⊥ · c , ε · c , b · c]

dera

pieces ∋

▶ One step: ε and ⊥ · c are contained in pieces (a ⋓ b · c)
▶ Key idea: all derivatives can be given as union of pieces
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Pieces

▶ We don’t have commutativity of union so we have to consider
all permutations of a list:
⊕[a, b] = [a, a ⋓ b, b ⋓ a, b]

▶ For intersection we use the Cartesian product:
productWith (· + ·) [1,2] [3,4,5] = [4,5,6,5,6,7]

def pieces : RE α → List (RE α)
| ε => [ε, Pred ⊥]
| Pred φ => [Pred φ, ε, Pred ⊥]
| ?= r => [?= r, ε, Pred ⊥] | . . .
| l ⋓ r => pieces l ++ pieces r
| l ⋒ r => productWith (· ⋒ ·) ⊕(pieces l) ⊕(pieces r)
| ~r => map (~ ·) ⊕(pieces r)
| l · r => map (· · r) ⊕(pieces l) ++ pieces r
| r* => r* :: map (· · r*) ⊕(pieces r)
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Main theorem
1. Reflexivity:

∀ r,
∃ xs, toSum xs ∼= r ∧ xs ∈ neSublists (pieces r)

2. Transitivity:
e ∈ pieces f

→ f ∈ pieces g
→ e ∈[ (· ∼= ·) ] pieces g

3. One-step reconstruction:
∀ r d, d ∈ step r
∃ xs, toSum xs ∼= d ∧ xs ∈ neSubsets (pieces r)

▶ Main result: every iterated derivative of R can be
reconstructed as a sum of regexes from pieces R

theorem finiteness [DecidableEq α] {r : RE α} :
∃ (xs : List (RE α)),

∀ {n : N}, steps r n ⊆[ (· ∼= ·) ] xs

▶ The witness is xs := ⊕(pieces R)
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Previous work

▶ Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical/normal forms

▶ Two versions of the normalisation function: one that only
implements ACI and one which implements more
aggressive simplifications

▶ We instead compute a finite overapproximation of all
reachable derivatives

▶ (Moreira et al., 2012) avoid the need for normalisation
modulo ACI by using Antimirov derivatives

▶ We take inspiration from the Antimirov finiteness proof,
but adapt it to handle intersection and negation
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Simplifications

Which simplifications preserve the finiteness result?

def NonIncreasing (f : RE α → RE α) : Prop :=
∀ r, pieces (f r) ⊆ pieces r

∀ (f : RE α → RE α) r,
NonIncreasing f

→ map f (step r) ⊆[ (· ∼= ·) ] ⊕(pieces r)

Allowed simplifications
⊥ ⋓ s ⇝ s ~⊥ ⋓ s ⇝ ~⊥ ε · s ⇝ s
r ⋓ ⊥ ⇝ r r ⋓ ~⊥ ⇝ ~⊥ r · ⊥ ⇝ ⊥

(r ⋓ s) · t ⇝ r · t ⋓ s · t

▶ r · s ⇝ s and r ⋓ s ⇝ r are allowed
▶ r · s ⇝ r is not allowed
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Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

▶ Almost 2000 loc of Lean, modularly reusing previous work

▶ We show which simplifications can be applied to
derivatives, preserving finiteness

▶ No assumption that the alphabet is finite; the alphabet
algebra can even be undecidable or semidecidable

▶ How to make this into a reusable framework for finiteness?
(e.g. for other regex classes/logics)

Thank you!

github.com/ezhuchko/finiteness-derivatives
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