Finiteness of Symbolic Derivatives in Lean
Ekaterina Zhuchko!®, Hendrik Maarand?,
Margus Veanes?, Gabriel Ebner?

1Tallinn University of Technology, Estonia
2Microsoft Research, USA

ITP, October 2025

1/18

Introduction

» Brzozowski derivatives of regular expressions

L(der(c,R)) :={weX*|c-weL(R)}
null(R) := e € L(R)

2/18

Introduction

» Brzozowski derivatives of regular expressions

L(der(c,R)) :={weX*|c-weL(R)}
null(R) := e € L(R)

» (Brzozowski, 64): finiteness of all iterated derivatives
Der(R) = {der;(R) | w € 6*}/~
quotiented by a relation called AC/-similarity:

(LUR)US = LU(RUS) Associativity
LU(RUL)=ZLUR Commutativity
RUR=R Idempotence

2/18

This work

» We prove finiteness of symbolic derivatives:

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters

3/18

This work

» We prove finiteness of symbolic derivatives:

1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated

derivatives

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated
derivatives
» We consider symbolic regular expressions with lookarounds

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated
derivatives
» We consider symbolic regular expressions with lookarounds
» The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (X, a,F, L, T,1U,M,)

3/18

This work

» We prove finiteness of symbolic derivatives:

1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated

derivatives
» We consider symbolic regular expressions with lookarounds
» The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (X, a,F, L, T,1U,M,)
» We do not assume commutativity of union

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated
derivatives
» We consider symbolic regular expressions with lookarounds
» The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (X, a,F, L, T,1U,M,)
» We do not assume commutativity of union
» PCRE (leftmost-greedy) vs POSIX (leftmost-longest)

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated
derivatives
» We consider symbolic regular expressions with lookarounds
» The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (X, a,F, L, T,1U,M,)
» We do not assume commutativity of union
» PCRE (leftmost-greedy) vs POSIX (leftmost-longest)
> LetR = (a U ab)* and s = "abab"

3/18

This work

» We prove finiteness of symbolic derivatives:
1. Derivatives do not take concrete characters
2. Derivatives return a transition term (instead of a regex)
3. We build an overapproximation for the set of all iterated
derivatives
» We consider symbolic regular expressions with lookarounds
» The alphabet is symbolic and represented by an Effective
Boolean Algebra A = (X, a,F, L, T,1U,M,)
» We do not assume commutativity of union
> PCRE (leftmost-greedy) vs POSIX (leftmost-longest)
> LetR = (a U ab)* and s = "abab"
> "abab" vs "abab"

3/18

Regular Expressions with Lookarounds

R,S :=¢yea | e|] RUS| RAS| R-S| R*| "R
| (?=R) | (7<=R) | (?!R) | (?<!R)

» We work modulo an alphabet theory
A=, a,F, L T,U,MN°)
For example, ¥ ypper € @ and [Yypper] = [A — Z]

4/18

Regular Expressions with Lookarounds

R,S :=¢yea | e|] RUS| RAS| R-S| R*| "R
| (?=R) | (7<=R) | (?!R) | (?<!R)

» We work modulo an alphabet theory
A=, a,F, L T,U,MN°)
For example, ¥ ypper € @ and [Yypper] = [A — Z]

» Positive lookahead (?=R) and lookbehind (?<=R)
Negative lookahead (7! R) and lookbehind (7<!R)

4/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear

5/18

Regular Expressions with Lookarounds
» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear
» Given a word "aAbc"

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear
» Given a word "aAbc"
» A location is of the form ("aAb","c")

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters
» They describe a context in which a match should appear

» Given a word "aAbc"

» A location is of the form ("aAb","c")
> In our setting, both the derivative and nullability functions
take a location rather than a character

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear
» Given a word "aAbc"

» A location is of the form ("aAb","c")

> In our setting, both the derivative and nullability functions

take a location rather than a character
» A span is of the form ("a","Ab","c")

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear
» Given a word "aAbc"

» A location is of the form ("aAb","c")

> In our setting, both the derivative and nullability functions

take a location rather than a character
» A span is of the form ("a","Ab","c")

5/18

Regular Expressions with Lookarounds

» Lookaround conditions do not consume any characters

» They describe a context in which a match should appear
» Given a word "aAbc"

» A location is of the form ("aAb","c")

> In our setting, both the derivative and nullability functions
take a location rather than a character

» A span is of the form ("a","Ab","c")

Semantics
(xs,ys,z5) = (7=R) <= ys=¢e A (xs,z5,e) =R-Tx

Example: R = (7=t pper) and s = "aAbc"
Then ("a",e,"Abc") = (?=typper)
since ("a","Abc",€) = Yypper - T* is a valid future match

5/18

Transition terms and symbolic derivatives

A symbolic derivative is a transition term i.e. trees of regexes

inductive TTerm (o : Type) : Type where
| Leaf : RE @« — TTerm «
| Node : RE @« — TTerm o — TTerm o« — TTerm «

6/18

Transition terms and symbolic derivatives

A symbolic derivative is a transition term i.e. trees of regexes

inductive TTerm (o : Type) : Type where
| Leaf : RE @« — TTerm «
| Node : RE @« — TTerm o — TTerm o« — TTerm «

Example
Let ¢, and v, be atomic predicates.

0 (YaWp) : TTerm o :=

6/18

Transition terms and symbolic derivatives

A symbolic derivative is a transition term i.e. trees of regexes

inductive TTerm (o : Type) : Type where
| Leaf : RE @« — TTerm «
| Node : RE @« — TTerm o — TTerm o« — TTerm «

Example
Let ¢, and ¢; be atomic predicates.

0 (PpaWp) : TTerm o :=

eve) Cewl) Ceul @

6/18

Semantics of transition terms

» Transition term =~ a function from locations to regexes
» ... but it postpones all the nullability tests

» We define the evaluation function of type
Loc 0 »+ TTerm o + RE «

f[x], if null R x;

Lix]:=L (R,f,g)[x]:= {g[x] otherwise.

7/18

Symbolic derivatives

Let £ € LA, ¢ € o then ¢ :

de:=1

0 = ((7=),e, L)
S(LMR):=6Lmé R
S(LUR):=6 LUS R

RE v »+ TTerm «

5 ("
(

50
5(LR)
R

) =

0 (R*) :

(L,6 LRUJ R, L-R)

”(

R)
0 R-Rx

8/18

Symbolic derivatives

Let /€ LA, € athend : RE « = TTerm «

de:=1 0¢:=1

0 Y= ((7=¢p),e, L) 0 (LR):=(L,6 LRUJ R,6 L-R)
S(LMR):=6Lmé R 0("R):="(0 R)
0(LUR): =6 LU R 0 (Rx):=9 R- Rx

We show the equivalence of symbolic and location-based

derivatives:

Theorem 1. Vx € Loc, R € RE o : (6 R)[x] = der R x

8/18

Symbolic derivatives

Let /€ LA, € athend : RE « = TTerm «

de:=1 0¢:=1

0 Y= ((7=¢p),e, L) 0 (LR):=(L,6 LRUJ R,6 L-R)
S(LAR):=6LASR 6 ("R):="(0 R)
0(LUR): =6 LU R 0 (Rx):=9 R- Rx

We show the equivalence of symbolic and location-based
derivatives:

Theorem 1. Vx € Loc, R € RE o : (6 R)[x] = der R x

— from now on, we can just work with the symbolic definition.

8/18

lterated derivatives

» We can now compute the immediate derivatives of R:
lvs : TTerm o »+ RE «
step (R : RE @) : List (RE) :=Ivs (0 R)

9/18

lterated derivatives

» We can now compute the immediate derivatives of R:
lvs : TTerm o »+ RE «

step (R : RE @) : List (RE) :=Ivs (0 R)

» The step function is well-behaved wrt operations on RE a:

step (LM R) = step L Mstep R

step (LU R) = step L Ustep R

step(R) = ~(step R)

step (L- R) =step L- RUstep R ++ step L- R
step (R*) =step R - Rx

9/18

lterated derivatives

» We can now compute the immediate derivatives of R:
lvs : TTerm o »+ RE «

step (R : RE @) : List (RE) :=Ivs (0 R)

» The step function is well-behaved wrt operations on RE a:

step (LM R) = step L Mstep R

step (LU R) = step L Ustep R

step(R) = ~(step R)

step (L- R) =step L- RUstep R ++ step L- R
step (R*) =step R - Rx

» We compute the n-th derivatives (words of length n):
steps : RE « = Nat - List (RE a)

9/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)
» Derivative function returns a set of expressions

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)

» Derivative function returns a set of expressions
» Proving finiteness is more straightforward but hard to deal
with intersection and complement

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)

» Derivative function returns a set of expressions
» Proving finiteness is more straightforward but hard to deal
with intersection and complement

» QOur approach

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)

» Derivative function returns a set of expressions
» Proving finiteness is more straightforward but hard to deal
with intersection and complement

» QOur approach
> Follow Antimirov's strategy for finiteness

10/18

Finiteness of the state space

» Classical approach (Brzozowski/DFA construction)
» Der(R) = {der,(R) | w € X*}/~
> = js the equivalence induced by ACI for union U

» Antimirov (partial) derivatives (NFA construction)

» Derivative function returns a set of expressions
» Proving finiteness is more straightforward but hard to deal
with intersection and complement

» QOur approach

> Follow Antimirov's strategy for finiteness
P> While dealing with the extended class of expressions

10/18

Similarity

We define helpers to reason up-to a relation R

» List membership
x €[R] ys:=dy,RxyAyE€Eys
» List inclusion
xs CLR] ys=Vxe€xs, x €[LR] ys

» List equality
xs =[R] ys:=xs C[R] ys Ays C[LR] xs

11/18

Similarity

We define helpers to reason up-to a relation R

» List membership
x €[R] ys:=dy,RxyAyE€Eys
» List inclusion
xs CLR] ys=Vxe€xs, x €[LR] ys

» List equality
xs =[R] ys:=xs C[R] ys Ays C[LR] xs

Our relation: the ADI-similarity relation used for quotienting:

(LUR)US=LU(RUS) Associativity
LU(RUL)=LUR right Deduplication
RURZR Idempotence

11/18

Finiteness of Antimirov derivatives

» Why is proving finiteness easy for Antimirov derivatives?

support(L) = 0
support(e) = ()
support(c) = {e} withc € X
support(LU R) := support(L) U support(R)
support(L-R) = support(L)-RU support(R)
support(R*) := support(R)-R

12/18

Finiteness of Antimirov derivatives

» Why is proving finiteness easy for Antimirov derivatives?

support(L)
support(e)
support(c)
support(L U R)
support(L-R)
support(R*)

0

0

{e} withc € X
support(L) U support(R)
support(L) - RU support(R)
support(R) - R

» All Antimirov derivatives are contained in the set:

{R} U support(R)

12/18

Finiteness of Antimirov derivatives

» Why is proving finiteness easy for Antimirov derivatives?

support(L)
support(e)
support(c)
support(L U R)
support(L-R)
support(R*)

0

0

{e} withc € X
support(L) U support(R)
support(L) - RU support(R)
support(R) - R

» All Antimirov derivatives are contained in the set:

{R} U support(R)

» ACI is built into the set representation

12/18

Finiteness of Antimirov derivatives

» Why is proving finiteness easy for Antimirov derivatives?

support(L)
support(e)
support(c)
support(L U R)
support(L-R)
support(R*)

0

0

{e} withc € X
support(L) U support(R)
support(L) - RU support(R)
support(R) - R

» All Antimirov derivatives are contained in the set:

{R} U support(R)

» ACI is built into the set representation

» Can we use a similar strategy for Brzozowski-style

derivatives?

12/18

Constructing the overapproximation

» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R

13/18

Constructing the overapproximation

» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R

» We have to show finiteness of this set

13/18

Constructing the overapproximation

» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R
» We have to show finiteness of this set

» Solution: finite overapproximation (modulo ADI)

13/18

Constructing the overapproximation
» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R
» We have to show finiteness of this set

» Solution: finite overapproximation (modulo ADI)

der,

auUb-c eUl-c

pieces

2

[L,e,a] ++ [L,e,c, L -c,e-c,b- (]

13/18

Constructing the overapproximation
» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R
» We have to show finiteness of this set

» Solution: finite overapproximation (modulo ADI)

der,

auUb-c eUl-c

pieces

2

[L,e,a] H [L,e,c,L-c,e-c,b- (]

» One step: € and L - ¢ are contained in pieces (aU b - c)

13/18

Constructing the overapproximation
» What we have: a way to reason about derivatives and their
iterated forms to describe all states reachable from R
» We have to show finiteness of this set

» Solution: finite overapproximation (modulo ADI)

der,

auUb-c eUl-c

pieces

2

[L,e,a] H [L,e,c,L-c,e-c,b- (]

» One step: € and L - ¢ are contained in pieces (aU b - c)

» Key idea: all derivatives can be given as union of pieces

13/18

Pieces

» We don't have commutativity of union so we have to consider
all permutations of a list:
@®[a, b] = [a, a U b, b U a, bl

14 /18

Pieces

» We don't have commutativity of union so we have to consider
all permutations of a list:

®la, b] = [a, aU b, b U a, b]
» For intersection we use the Cartesian product:
productWith (. + .) [1,2] [3,4,5] = [4,5,6,5,6,7]

14 /18

Pieces

» We don't have commutativity of union so we have to consider
all permutations of a list:

®la, b] = [a, aU b, b U a, b]
» For intersection we use the Cartesian product:
productWith (. + .) [1,2] [3,4,5] = [4,5,6,5,6,7]

14 /18

Pieces

We don't have commutativity of union so we have to consider
all permutations of a list:
®la, b] = [a, a U b, b U a, b]

For intersection we use the Cartesian product:
productWith (. + .) [1,2] [3,4,5] = [4,5,6,5,6,7]

pieces : RE @ — List (RE «)

15 => [e, Pred 1]

Pred ¢ => [Pred ¢, ¢, Pred 1]

?7=r => [?=1, ¢, Pred 1] |

1 Ur =>pieces 1 ++ pieces r

1 mr =>productWith (- M -) @®(pieces 1) @®(pieces r)

r => map (7 -) @(pieces r)
l1.r =>map (- - r) ®(pieces 1) ++ pieces r
T* => r* :: map (- - r*) @(pieces r)

14 /18

Main theorem
1. Reflexivity:
Vr,
3 xs, toSum xs = r A xs € neSublists (pieces r)

2. Transitivity:
e € pieces f
+ f € pieces g

~

+ecl[(- = .)] pieces g

3. One-step reconstruction:
Vrd, d € stepr

~

3 xs, toSum xs = d A xs € neSubsets (pieces r)

15/18

Main theorem
1. Reflexivity:
Vr,
3 xs, toSum xs = r A xs € neSublists (pieces r)

2. Transitivity:
e € pieces f
+ f € pieces g

+ecl[(- = .)] pieces g

3. One-step reconstruction:
Vrd, d € stepr

~

3 xs, toSum xs = d A xs € neSubsets (pieces r)

» Main result: every iterated derivative of R can be
reconstructed as a sum of regexes from pieces R

15/18

Main theorem
1. Reflexivity:
Vr,
3 xs, toSum xs = r A xs € neSublists (pieces r)
2. Transitivity:
e € pieces f
+ f € pieces g
+e €l (- =)] pieces g
3. One-step reconstruction:
Vrd, d € stepr
3 xs, toSum xs = d A xs € neSubsets (pieces r)

» Main result: every iterated derivative of R can be
reconstructed as a sum of regexes from pieces R

theorem finiteness [DecidableEq a] {r : RE o} :
3 (xs : List (RE o)),
V {n : N}, steps rn C[(- &)] xs

15/18

Main theorem
1. Reflexivity:
Vr,
3 xs, toSum xs = r A xs € neSublists (pieces r)

2. Transitivity:
e € pieces f
+ f € pieces g

+ecl[(- = .)] pieces g

3. One-step reconstruction:
Vrd, d € stepr

~

3 xs, toSum xs = d A xs € neSubsets (pieces r)
» Main result: every iterated derivative of R can be
reconstructed as a sum of regexes from pieces R

theorem finiteness [DecidableEq a] {r : RE o} :
3 (xs : List (RE o)),
V {n : N}, steps rn C[(- &)] xs

» The witness is xs := @(pieces R)

15/18

Previous work

» Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical /normal forms

16/18

Previous work

» Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical /normal forms

> Two versions of the normalisation function: one that only
implements ACI and one which implements more
aggressive simplifications

16/18

Previous work

» Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical /normal forms
> Two versions of the normalisation function: one that only
implements ACI and one which implements more
aggressive simplifications
» We instead compute a finite overapproximation of all
reachable derivatives

16/18

Previous work

» Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical /normal forms

> Two versions of the normalisation function: one that only
implements ACI and one which implements more
aggressive simplifications
» We instead compute a finite overapproximation of all
reachable derivatives

» (Moreira et al., 2012) avoid the need for normalisation
modulo ACI by using Antimirov derivatives

16/18

Previous work

» Coquand & Siles (2011), Nipkow & Traytel (2014) use
canonical /normal forms

> Two versions of the normalisation function: one that only
implements ACI and one which implements more
aggressive simplifications

» We instead compute a finite overapproximation of all
reachable derivatives

» (Moreira et al., 2012) avoid the need for normalisation
modulo ACI by using Antimirov derivatives

> We take inspiration from the Antimirov finiteness proof,
but adapt it to handle intersection and negation

16/18

Simplifications

Which simplifications preserve the finiteness result?

17/18

Simplifications

Which simplifications preserve the finiteness result?

def NonIncreasing (f : RE @ — RE a) : Prop :=
V r, pieces (f r) C pieces r

17/18

Simplifications

Which simplifications preserve the finiteness result?
def NonIncreasing (f : RE @ — RE a) : Prop :=

V r, pieces (f r) C pieces r

V (f : REa — RE o) T,
NonIncreasing f
— map £ (step r) C[(- =)] ®(pieces r)

17/18

Simplifications

Which simplifications preserve the finiteness result?

def NonIncreasing (f : RE o« — RE «) : Prop :=
V r, pieces (f r) C pieces r

V (f : REa — RE o) T,
NonIncreasing f
— map f (step r) C[(

IR

)] ®(pieces r)
Allowed simplifications
Ll Us~»s "L WUs~»"L ¢e-8~s8
rY L ~r U7 L~»"1L 11~ 1
(rUs)-t~r-tUs-: -t

> r.s ~ sandr U s ~ r are allowed

17/18

Simplifications

Which simplifications preserve the finiteness result?

def NonIncreasing (f : RE o« — RE «) : Prop :=
V r, pieces (f r) C pieces r

V (f : REa — RE o) T,
NonIncreasing f
— map f (step r) C[(

IR

)] ®(pieces r)
Allowed simplifications

1l U s ~ s "1l Us ~ "L € + 8 ~ 8
ry 1L ~~r ry “1L ~ "L r- 1l ~ L

(rUs) -t ~r-tWUs-t

> r.s ~ sandr U s ~ r are allowed

> r - s ~ ris not allowed

17/18

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

18/18

github.com/ezhuchko/finiteness-derivatives

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

» We show which simplifications can be applied to
derivatives, preserving finiteness

18/18

github.com/ezhuchko/finiteness-derivatives

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

» We show which simplifications can be applied to
derivatives, preserving finiteness

» No assumption that the alphabet is finite; the alphabet
algebra can even be undecidable or semidecidable

18/18

github.com/ezhuchko/finiteness-derivatives

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

» We show which simplifications can be applied to
derivatives, preserving finiteness

» No assumption that the alphabet is finite; the alphabet
algebra can even be undecidable or semidecidable

» How to make this into a reusable framework for finiteness?
(e.g. for other regex classes/logics)

18/18

github.com/ezhuchko/finiteness-derivatives

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

» We show which simplifications can be applied to
derivatives, preserving finiteness

» No assumption that the alphabet is finite; the alphabet
algebra can even be undecidable or semidecidable

» How to make this into a reusable framework for finiteness?
(e.g. for other regex classes/logics)

18/18

github.com/ezhuchko/finiteness-derivatives

Conclusion

We formally prove in Lean that the set of symbolic derivatives
of regexes with lookarounds is finite modulo ADI

» Almost 2000 loc of Lean, modularly reusing previous work

» We show which simplifications can be applied to
derivatives, preserving finiteness

» No assumption that the alphabet is finite; the alphabet
algebra can even be undecidable or semidecidable

» How to make this into a reusable framework for finiteness?
(e.g. for other regex classes/logics)

Thank you!

github.com/ezhuchko/finiteness-derivatives

18/18

github.com/ezhuchko/finiteness-derivatives

