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The overaching goal

A full-fledged ITP for separation logic

embedded in an off-the-shelf ITP
Why separation logic?
▶ A form of substructural logic (no contraction)
▶ Widely used in program verification

Why an embedding?
▶ Prove soundness of the embedded ITP (reduces TCB to host ITP)
▶ Reuse infrastructure of the host ITP
▶ Users do not need to learn new tool
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The goal of this paper

Support for inductive predicates

I will explain:
▶ Why you need inductive predicates in separation logic
▶ Why you do not get them for free from the host ITP
▶ How to encode them using a least fixpoint theorem
▶ How to automate this process using Iris Proof Mode (IPM) and Rocq-Elpi
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Separation logic and Iris Proof Mode 101

Lemma demo {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".
iDestruct "H2" as (x) "H2".
iSplitL "H3".
- iAssumption.
- iExists x.

iFrame.
Qed.

lemma in separation logic
instead of abstract P, Q, Φ we could also use concrete assertions:
▶ ℓ 7→ v : location ℓ contains value v
▶ wp e {Φ}: program e is safe and has postcondition Φ

∗ means: resources should be split

the hypotheses for the left conjunct
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This paper in a nutshell

Iris Inductive is_del_list : loc → list val → iProp :=
| is_del_list_nil l :

l 7→ NIL −∗ is_del_list l [ ]
| is_del_list_cons l l ' v vs :

l 7→ CONS (#l ' ,v) −∗ is_del_list l ' vs −∗ is_del_list l (v : : vs)
| is_del_list_del l l ' vs :

l 7→ DEL #l ' −∗ is_del_list l ' vs −∗ is_del_list l vs .

Add the Iris keyword to define an inductive predicate in separation logic
You can do iInduction on the derivation
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Ways to define inductive predicates in separation logic

Method Restriction Ease of use
Rocq’s Fixpoint Structural recursion , Trivial
Banach fixpoint Guarded by ▷ , Prove Contractive
Least and greatest fixpoint Monotonicity/positivity / Prior to this paper

Least and greatest fixpoint:
Prior to this paper, the following needs to be done manually:
▶ Define fixpoint function as disjunction of cases
▶ Curry/uncurry
▶ Prove monotonicity
▶ Lift folding/unfolding lemmas
▶ Lift constructors and induction principle

Finally, applying the induction principle is aweful



6

Ways to define inductive predicates in separation logic

Method Restriction Ease of use
Rocq’s Fixpoint Structural recursion , Trivial
Banach fixpoint Guarded by ▷ , Prove Contractive
Least and greatest fixpoint Monotonicity/positivity / Prior to this paper

Least and greatest fixpoint:
Prior to this paper, the following needs to be done manually:
▶ Define fixpoint function as disjunction of cases
▶ Curry/uncurry
▶ Prove monotonicity
▶ Lift folding/unfolding lemmas
▶ Lift constructors and induction principle

Finally, applying the induction principle is aweful



7

Least fixpoints in separation logic
[Folklore result, akin to Baelde/Miller 2007 in linear logic, mechanized in Iris by Jung/Krebbers 2017]

Theorem
Given a pre-fixpoint function F : (A → iProp) → (A → iProp) that is monotone:

∀(Φ1, Φ2 : A → iProp). �(∀x : A. Φ1 x −∗ Φ2 x) −∗ ∀x : A. F Φ1 x −∗ F Φ2 x

There exists a least fixpoint µ F : A → iProp with:
1. (Fixpoint equations) ∀x . F (µ F ) x ∗−∗ µ F x
2. (Iteration principle) �(∀x . F Φ x −∗ Φ x) −∗ ∀x . µ F x −∗ Φ x

Proof.
Define µ F ≜ λx . ∀(Φ : A → iProp). �(∀y . F Φ y −∗ Φ y) −∗ Φ x

� P means P can be used multiple times (akin to “bang” ! in linear logic)
▶ � P ∗−∗ � P ∗ � P
▶ � P −∗ P holds unconditionally
▶ P −∗ � P holds only for specific Pneeds higher-order impredicative separation logic (Iris gets that for free from Rocq)

Greatest fixpoints are dual:

ν F ≜ λx . ∃(Φ : A → iProp). �(∀y . Φ y −∗ F Φ y) ∗ Φ x
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Example 1: The simplest list predicate

Iris Inductive is_list : loc → list val → iProp :=
| is_list_nil l :

l 7→ NIL -∗
is_list_with l []

| is_list_cons v vs l l' :
l 7→ CONS (v,#l') -∗
is_list l' vs -∗
is_list l (v :: vs).

FisList : (loc × list val → iProp) → loc × list val → iProp
FisList rec (ℓ, v⃗) ≜ (ℓ 7→ NIL ∗ v⃗ = [ ]) ∨

(∃ℓ′, w , w⃗ . ℓ 7→ CONS (w , ℓ′) ∗ rec (ℓ′, w⃗) ∗ v⃗ = w :: w⃗)
isList ℓ v⃗ ≜ µ FisList (ℓ, v⃗)

Iteration:

and induction:

�(∀ℓ. ℓ 7→ NIL −∗ Φ ℓ [ ]) ∗
�(∀ℓ, ℓ′, w , w⃗ . ℓ 7→ CONS (w , ℓ′) −∗

(

Φ ℓ′ w⃗

∧ isList ℓ′ w⃗)

−∗ Φ ℓ (w :: w⃗))
∀ℓ, v⃗ . isList ℓ v⃗ −∗ Φ ℓ v⃗

iProp is a complicated Σ-type (i.e., not a sort), so
ordinary Rocq Inductive would not accept this

decreasing argument, so Fixpoint would have worked too
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Example 2: No decreasing argument
Iris Inductive is_list_with_tl (tl : loc) : loc → list val → iProp :=

| is_list_with_tl_nil :
tl 7→ NIL -∗
is_list_with_tl tl tl []

| is_list_with_tl_cons v vs l l' :
l 7→ CONS (v,#l') -∗
is_list_with_tl tl l' vs -∗
is_list_with_tl tl l (v :: vs)

| is_list_with_tl_del vs l l' :
l 7→ DEL #l' -∗
is_list_with_tl tl l' vs -∗
is_list_with_tl tl l vs.

FisListWithTl : loc → (loc × list val → iProp) → loc × list val → iProp
FisListWithTl tl rec (ℓ, v⃗) ≜ (ℓ 7→ NIL ∗ v⃗ = [ ] ∗ tl = ℓ) ∨

(∃ℓ′. ℓ 7→ DEL ℓ′ ∗ rec (ℓ′, v⃗)) ∨
(∃ℓ′, w , w⃗ . ℓ 7→ CONS (w , ℓ′) ∗ rec (ℓ′, w⃗) ∗ v⃗ = w :: w⃗)

isListWithTl tl ℓ v⃗ ≜ µ (FisListWithTl tl) (ℓ, v⃗)

Iteration and induction:

�( tl 7→ NIL −∗ Φ tl [ ]) ∗
�(∀ℓ, ℓ′, w⃗ . ℓ 7→ DEL ℓ′ −∗ (Φ ℓ′ w⃗ ∧ isListWithTl tl ℓ′ w⃗) −∗ Φ ℓ w⃗) ∗
�(∀ℓ, ℓ′, w , w⃗ . ℓ 7→ CONS (w , ℓ′) −∗ (Φ ℓ′ w⃗ ∧ isListWithTl tl ℓ′ w⃗) −∗ Φ ℓ (w :: w⃗))

∀ℓ, v⃗ . isListWithTl tl ℓ v⃗ −∗ Φ ℓ v⃗

node marked as ‘deleted’, common in concurrent data structures

no decreasing argument, Fixpoint would not work

parameters are supported similarly to Rocq
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Example 3: Multiple recursion
Iris Inductive is_search_tree : loc → gset Z → iProp :=

| is_search_tree_empty l :
l 7→ LEAF -∗
is_search_tree l ∅

| is_search_tree_node l n ll lr Xl Xr :
l 7→ NODE (#n, #ll, #lr) -∗
is_search_tree ll Xl -∗
is_search_tree lr Xr -∗
⌜ set_Forall (λ n', n' < n) Xl ⌝ -∗
⌜ set_Forall (λ n', n < n') Xr ⌝ -∗
is_search_tree l ({[ n ]} ∪ Xl ∪ Xr)

To prove monotonicity (the premise of the fixpoint theorem), we really need the
persistence modality in the definition of monotonicity:

∀(Φ1, Φ2 : A → iProp). �(∀x : A. Φ1 x −∗ Φ2 x) −∗ ∀x : A. F Φ1 x −∗ F Φ2 x

Fixpoint would not recognize the sets Xl and Xr are smaller
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Example 4: Higher-order representation predicates [Charguéraud, 2015]

Iris Inductive is_ho_list {A} (Φ : val → A → iProp) : loc → list A → iProp :=
| is_ho_list_nil l :

l 7→ NIL -∗
is_ho_list Φ l []

| is_ho_list_cons v x xs l l' :
l 7→ CONS (v,#l') -∗
Φ v x -∗
is_ho_list Φ l' xs -∗
is_ho_list Φ l (x :: xs)

| is_ho_list_del xs l l' :
l 7→ DEL #l' -∗
is_ho_list Φ l' xs -∗
is_ho_list Φ l xs.

parameters can be higher-order
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Example 5: Nested recursion

Inductive rose_tree :=
| Node : list rose_tree → rose_tree.

Definition is_ho_list_loc {A} (Φ : loc → A → iProp) : loc → list A → iProp :=
is_ho_list (λ v x, ∃ l : loc, ⌜ v = #l ⌝ ∗ Φ l x).

Iris Inductive is_rose_tree : loc → rose_tree → iProp :=
| is_tree_node l ts :

is_ho_list_loc is_rose_tree l ts -∗
is_rose_tree l (Node ts).

nested recursion

is_rose_tree is well-defined because is_ho_list_loc is monotone in Φ
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Example 6: Total weakest precondition

wp e [ Φ ] ≜ “e terminates and postcondition Φ holds for all results”


|⇛ Φ e if e ∈ val
∀h. S h −∗ |⇛ reducible(e, h) ∗

∀e2, h2.
(
(e, h) −→ (e2, h2)

) −∗
|⇛ S h2 ∗ wp e2 [ Φ ]

if e /∈ val

compared to vanilla/partial Iris, no ▷ here

well-defined as least fixpoint because recursion is positive

, As expressive as other program logics for total correctness (e.g., CFML)
▶ Weaker “stepping rules” than vanilla/partial Iris, so you cannot use Löb induction
▶ Prove termination by induction on Rocq type or Iris Inductive

/ Limited support for concurrency and Iris-style invariants
▶ Only open timeless invariants
▶ Termination for every scheduling (including unfair ones)
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▶ Prove termination by induction on Rocq type or Iris Inductive

/ Limited support for concurrency and Iris-style invariants
▶ Only open timeless invariants
▶ Termination for every scheduling (including unfair ones)
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Example 6: Total weakest precondition in Rocq
With concurrency and other bells and whistles

Iris Inductive twp (s : stuckness) : coPset → expr → (val -d> iProp) -n> iProp :=
| twp_some E v e1 Φ :

(|={E}=> Φ v) -∗
⌜ to_val e1 = Some v ⌝ -∗
twp s E e1 Φ

| twp_none E e1 Φ :
(∀ σ1 ns κs nt,

state_interp σ1 ns κs nt ={E,∅}=∗
⌜ if s is NotStuck then reducible_no_obs e1 σ1 else True ⌝ ∗

∀ κ e2 σ2 efs, ⌜ prim_step e1 σ1 κ e2 σ2 efs ⌝ ={∅,E}=∗
⌜ κ = [] ⌝ ∗
state_interp σ2 (S ns) κs (length efs + nt) ∗
twp s E e2 Φ ∗
[∗ list] ef ∈ efs, twp s ⊤ ef fork_post) -∗

⌜ to_val e1 = None ⌝ -∗
twp s E e1 Φ.
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Now let us discuss the implementation
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Rocq-Elpi command

Steps:
1. Generate the pre-fixpoint function and fixpoint

, Rocq-Elpi allows to use Rocq’s Inductive syntax
, Rocq-Elpi has good support to manipulate untyped terms involving binders
/ Making the fixpoint theorem variadic is tricky, we specialize the theorem

2. Prove that the pre-fixpoint function is monotone

, Port Rocq’s Proper mechanism to Iris to specify variadic monotonicity
/ Interfacing between Rocq-Elpi and Ltac is no good

Need to port some Iris Proof Mode (IPM) tactics to Rocq-Elpi

3. Generate fixpoint equations, constructors, induction principle
4. Hook for iInduction tactic

, Databases in Rocq-Elpi are great

What is Rocq-Elpi anyway?

▶ Modern meta-programming language for Rocq
▶ Based on λ-Prolog
▶ HOAS for manipulating binders
▶ Many bindings to the Rocq API
▶ Actively developed
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Step 1: Generate the pre-fixpoint function and fixpoint

Iris Inductive is_list_with_tl (tl : loc) :
loc → list val → iProp :=

| is_list_with_tl_nil :
tl 7→ NIL -∗
is_list_with_tl tl tl []

| is_list_with_tl_cons v vs l l' :
l 7→ CONS (v,#l') -∗
is_list_with_tl tl l' vs -∗
is_list_with_tl tl l (v :: vs)

| is_list_with_tl_del vs l l' :
l 7→ DEL #l' -∗
is_list_with_tl tl l' vs -∗
is_list_with_tl tl l vs.

Definition is_list_with_tl_pre (tl : loc) :=
λ (rec : loc → list val → iProp),

λ (l : loc) (vs : list val),
tl 7→ NIL ∗ ⌜ vs = [] ⌝ ∗ ⌜ l = tl ⌝

∨ (∃ (v : val) (vs' : list val) (l' : loc),
l 7→ CONS (v, #l') ∗ rec l' vs ∗ ⌜ vs = v :: vs' ⌝ )

∨ ∃ (l' : loc), l 7→ DEL #l' ∗ rec l' vs.
Definition is_list_with_tl (tl l : loc) (vs : list val) :=

∀ Φ : loc → list val → iProp,
2 (∀ l' vs', is_list_with_tl_pre tl Φ l' vs' -∗ Φ l' vs') -∗
Φ l vs.

specialized for variadic case to avoid currying/telescopes

▶ The Iris command takes the Inductive as an argument
▶ The Inductive is not type checked/elaborated, Rocq-Elpi gives an untyped AST
▶ Rocq-Elpi allows processing that AST and controlling when to type check
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Step 2: Prove that the pre-fixpoint function is monotone

Goal: Specify and prove that a variadic function is monotone

We port Proper [Sozeau, 2009] to separation logic:

Type Signature
∗ iProp → iProp → iProp (−∗) =⇒ (−∗) =⇒ (−∗)
−∗ iProp → iProp → iProp flip (−∗) =⇒ (−∗) =⇒ (−∗)
� iProp → iProp � (−∗) =⇒ (−∗)
∃ (A → iProp) → iProp

(
(=)A =⇒ (−∗)

)
=⇒ (−∗)

Proving that pre-fixpoint functions are monotone is done by goal-directed proof search,
similar to std++’s solve_proper (but without non-determinism)



18

Step 2: Prove that the pre-fixpoint function is monotone

Goal: Specify and prove that a variadic function is monotone

We port Proper [Sozeau, 2009] to separation logic:

Type Signature
∗ iProp → iProp → iProp (−∗) =⇒ (−∗) =⇒ (−∗)
−∗ iProp → iProp → iProp flip (−∗) =⇒ (−∗) =⇒ (−∗)
� iProp → iProp � (−∗) =⇒ (−∗)
∃ (A → iProp) → iProp

(
(=)A =⇒ (−∗)

)
=⇒ (−∗)

Proving that pre-fixpoint functions are monotone is done by goal-directed proof search,
similar to std++’s solve_proper (but without non-determinism)



19

Interlude: Porting IPM tactics to Rocq-Elpi

To generate the proofs of monotonicity, fixpoint equations, constructors, induction
principles, etc. we need to generate proofs in Iris Proof Mode (IPM)
Problem: Interfacing between Rocq-Elpi and Ltac1 is brittle
Solution: Port selected IPM tactics to Rocq-Elpi

pred eiIntro-ident i:ident, i:igoal, o:igoal.
eiIntro-ident ID GOAL (igoal IType IProof) :-

ident->term ID T, % data conversion
(@no-tc! ==> % refine H disabling TC resolution

refine-igoal-with
{{ tac_wand_intro _ lp:T _ _ _ lp:FromWand lp:IProof }} GOAL),

tc-solve-term FromWand, !, % run TC resolution on FromWand
coq.typecheck IProof IType' ok, % inspect subgoal
pm-reduce IType' IType, % normalize subgoal
std.assert! (not (IType = {{ False }})) "eiIntro: not fresh".
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Step 4: Hook for iInduction tactic

To perform iInduction we need to lookup the right induction principle
Solution: Define Rocq-Elpi database to register information about inductives:
Elpi Db induction.db lp:{{

pred inductive-ind o:gref, o:gref.
(* more predicate signatures *)

}}.

Add entries as Prolog-style clauses:
inductive-ind (const "is_list_with_tl") (const "is_list_with_tl_ind").
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least/greatest fixpoints in higher-order
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▶ Many examples
▶ The Iris total weakest precondition (which
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▶ A prototype Iris Inductive command
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Abstract
Inductive predicates play a key role in program verification using separation logic. There are many
methods for defining such predicates in separation logic, which all have different conditions and thus
support different classes of predicates. The most common methods are: (1) through a structurally-
recursive definition (commonly used to define representation predicates for the verification of data
structures), and (2) through step-indexing (commonly used to give a semantics of Hoare triples for
partial program correctness). A lesser-known method is to define such inductive predicates internally
in higher-order separation logic through a least fixpoint of a monotone function.

The contributions of this paper are fourfold. First, we present the folklore result (from the Iris
library) that one can define least (and greatest) fixpoints internally in separation logic by extending
the standard second-order impredicative encoding with some modalities. Second, we show that these
fixpoints are useful to define representation predicates where the mathematical and in-memory data
structures do not correspond. Third, we show that these fixpoints can be used to define Hoare triples
and weakest preconditions for total program correctness in Iris. Fourth, we present a prototype
command (akin to Rocq’s Inductive), written in Rocq-Elpi, to generate the least fixpoint and its
reasoning principles (constructors and induction principles) from a high-level specification.
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1 Introduction

Separation logic [54, 59] and its extension concurrent separation logic [52, 11] are widely
used methods for the verification of imperative and concurrent programs. A key ingredient
of separation logic is the use of representation predicates to specify data structures. Consider
the following (slightly adapted) example from the seminal paper by Reynolds [59]:

isList ℓ [ ] ≜ ℓ 7→ NIL isList ℓ (v :: v⃗) ≜ ∃ℓ′. ℓ 7→ CONS (ℓ′, v) ∗ isList ℓ′ v⃗
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No more need for such footnotes ,

Program Logics à la Carte 11:25

from this ITree trace. The latter step is entirely modular and reusable: in our Coq formalization,
we provide a number of composable trace lemmata that allow the user to construct relational
interpretations from ITree traces.

6.4 Evaluation of the Program Logic
Having established a new program logic for HeapLang, we now turn to comparing it to the existing
program logic for HeapLang and evaluating the usefulness of our approach.

Expressive power of the logic. We obtain for our program logic nearly the same rules as
HeapLang’s existing program logic. The only significant difference is the fact that in our logic,
invariants can be opened around any block of code, at the expense of the bind rule HlWpBind
needing the full mask ⊤; cf. §4.2. Furthermore, while we still use the Iris proof mode [25, 23], we
have only reimplemented some of the additional proof mode integration and automation available
in the existing HeapLang implementation. We have also omitted support for the more recent
extension of HeapLang introducing prophecy variables [22].

In particular, our total weakest precondition corresponds to the existing total weakest precondi-
tion of Iris10 and thus shares its expressive power. Concretely, it can be used to show termination,
but not liveness, of concurrent programs and can use first-order invariants (thanks to Iris’ “timeless”
mechanism [21, §5.7]) such as sharing a points-to assertion between threads, but not higher-order
invariants (due to the lack of step-indexing).
To exemplify that our (partial) program logic gives the same expressive power as the original

HeapLang program logic, we have ported the proof of a join primitive and of a higher-order lock
with an impredicative invariant [39] from the original HeapLang to our logic.

Comparison of proof effort. There is a number of qualitative advantages in terms of proof
effort for establishing the HeapLang program logic using our ITree-based approach compared to
the standard Iris approach. For one, in the original HeapLang logic, it was necessary to state every
rule twice, once for partial correctness and once for total correctness, whereas we state and prove
the rules in a way that is parametric in partiality/totality (i.e., whether later modalities are emitted).

Furthermore, ITrees enable reuse of abstractions in the definition of the semantics, which in turn
leads to more compositional proofs. For example, the definition of J_K relies on helper functions
load and store, and their specifications can be reused in establishing the program logic. As we
discussed in the compare-and-swap example in §4.1, this kind of reuse is typically not available in
the setting of operational semantics.

Overall, our proofs have about the same size as the original, highly optimized proofs but require
less specialized proof engineering and have reasoning that is higher-level and compositional
(namely application of wpi lemmata rather than inverting the small-step relation).

7 Case Study: Islaris
As our second large case study, we redefine the program logic used by Islaris [32] using the approach
presented in this paper. Islaris provides an Iris-based program logic for traces that describe the
semantics of assembly programs based on authoritative models of real-world assembly languages
like Armv8 and RISC-V.

These traces are formally described by the Isla trace language (ITL) shown in Figure 14. An ITL
“program” is given by a trace 𝑡 , which correspond to the SMTLIB-traces generated by the Isla tool [3]
from partially evaluating the ISA models. Traces consist of events 𝑗 (not to be confused with the

10This part of Iris was never described in a paper; it can be found at https://gitlab.mpi-sws.org/iris/iris/-/blob/iris-4.2.0/iris/
program_logic/total_weakestpre.v.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 11. Publication date: January 2025.
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we provide a number of composable trace lemmata that allow the user to construct relational
interpretations from ITree traces.

6.4 Evaluation of the Program Logic
Having established a new program logic for HeapLang, we now turn to comparing it to the existing
program logic for HeapLang and evaluating the usefulness of our approach.

Expressive power of the logic. We obtain for our program logic nearly the same rules as
HeapLang’s existing program logic. The only significant difference is the fact that in our logic,
invariants can be opened around any block of code, at the expense of the bind rule HlWpBind
needing the full mask ⊤; cf. §4.2. Furthermore, while we still use the Iris proof mode [25, 23], we
have only reimplemented some of the additional proof mode integration and automation available
in the existing HeapLang implementation. We have also omitted support for the more recent
extension of HeapLang introducing prophecy variables [22].

In particular, our total weakest precondition corresponds to the existing total weakest precondi-
tion of Iris10 and thus shares its expressive power. Concretely, it can be used to show termination,
but not liveness, of concurrent programs and can use first-order invariants (thanks to Iris’ “timeless”
mechanism [21, §5.7]) such as sharing a points-to assertion between threads, but not higher-order
invariants (due to the lack of step-indexing).
To exemplify that our (partial) program logic gives the same expressive power as the original

HeapLang program logic, we have ported the proof of a join primitive and of a higher-order lock
with an impredicative invariant [39] from the original HeapLang to our logic.

Comparison of proof effort. There is a number of qualitative advantages in terms of proof
effort for establishing the HeapLang program logic using our ITree-based approach compared to
the standard Iris approach. For one, in the original HeapLang logic, it was necessary to state every
rule twice, once for partial correctness and once for total correctness, whereas we state and prove
the rules in a way that is parametric in partiality/totality (i.e., whether later modalities are emitted).

Furthermore, ITrees enable reuse of abstractions in the definition of the semantics, which in turn
leads to more compositional proofs. For example, the definition of J_K relies on helper functions
load and store, and their specifications can be reused in establishing the program logic. As we
discussed in the compare-and-swap example in §4.1, this kind of reuse is typically not available in
the setting of operational semantics.

Overall, our proofs have about the same size as the original, highly optimized proofs but require
less specialized proof engineering and have reasoning that is higher-level and compositional
(namely application of wpi lemmata rather than inverting the small-step relation).

7 Case Study: Islaris
As our second large case study, we redefine the program logic used by Islaris [32] using the approach
presented in this paper. Islaris provides an Iris-based program logic for traces that describe the
semantics of assembly programs based on authoritative models of real-world assembly languages
like Armv8 and RISC-V.

These traces are formally described by the Isla trace language (ITL) shown in Figure 14. An ITL
“program” is given by a trace 𝑡 , which correspond to the SMTLIB-traces generated by the Isla tool [3]
from partially evaluating the ISA models. Traces consist of events 𝑗 (not to be confused with the

10This part of Iris was never described in a paper; it can be found at https://gitlab.mpi-sws.org/iris/iris/-/blob/iris-4.2.0/iris/
program_logic/total_weakestpre.v.
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Ltac versus Rocq-Elpi

▶ Ltac1 will remain the primary language for users to write interactive Rocq proofs
(between Proof and Qed)

▶ Rocq-Elpi is much better for meta programming
▶ Maintaining a version of each IPM tactic in Rocq-Elpi and Ltac1 is awful
▶ Not clear what is the best way forward

The elephant in the room: what about Ltac2?
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Future work

▶ (easy) Support for greatest fixpoints, i.e., Iris CoInductive
▶ (engineering) Improve quality of life (e.g., sealing, error messages, simplify code)
▶ (hard) Investigate how to interface between Ltac1 and Rocq-Elpi, needed to

upstream Iris Inductive into Iris


