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💻🔍 application of 
  ITP + other formal methods
  for floating-point program
  analysis

🚀󰥗 ITP at NASA

🤖🧠 ITP for AI and AI for ITP in
  industry



Representing Real Numbers in Digital Computers
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Floating-Point Numbers and Rounding errors
💻 Floating-point (FP) = finite
     representation of real numbers

FP ⊂ Reals
Example: 0.1 is not a FP
(rounded to 3602879701896397 /    
                      36028797018963968)

⚠ Round-off error = | r - round(r) |



Writing Floating-Point Code is hard!

5



Writing Floating-Point Code is hard!

6

Result is 0 if evaluated in 
exact real number 
arithmetic
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Writing Floating-Point Code is hard!

The Boolean guard is evaluated to 
false in real arithmetic and to true in 
floating-point arithmetic
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Result is 0 if evaluated in 
exact real number 
arithmetic



Writing Floating-Point Code is hard!
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Accumulated 
round-off error = 99 

😥



Floating-point behavior is difficult to predict!
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🌍 Floating-point numbers are ubiquitous 

󰳕“Many developers do not understand core 
floating point behavior particularly well, yet 
believe they do.”

❗Reals arithmetic ≠ FP arithmetic  
   (associativity, commutativity, …)

⚠ Rounding errors, overflows, underflows…



Floating-point errors may be dangerous and costly

Patriot missile failure (1991) 

Picture: Bernd vdB, Public domain, via Wikimedia Commons
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Ariane V (1996)

Photographs credits: 1996 © ESA/CNES; 1996 © ESA; 1996 © ESA.

64 bits 
floating-point to 
16 bits integer 

overflow
Accumulated round-off 
error in the time window 

calculation (1/10 
constant used)

🪖28 soldiers 
were killed and 
100 injured

💸 US$370   
      million loss



Automatic Dependent Surveillance - Broadcast (ADS-B)

● NextGen (Next generation of air 
traffic management systems) to 
enhance radar technologies

● Aircraft periodically broadcasts 
surveillance information 

● Automatic — no pilot intervention

● Mandatory from Jan 1, 2020 (in USA 
and Europe)

● Thousands of aircraft currently 
equipped with ADS-B
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❌ Cons: Makes use of existing hardware

📡 TCAS transponders

📏 35 bits for position in the
             broadcast message (lat + lon)

🌐 Too coarse granularity (~300 mt)
      for raw positions

ADS-B: Pro and Cons

✅ Pros: Broadcast vs. radar

🎯 More precise
🌍 More coverage

13Credits by Fiver, der Hellseher, CC BY-SA 4.0 via Wikimedia Commons

Radar coverage



ADS-B CPR: Compact Position Reporting Algorithm
🌍 Divide the globe into 59 (odd) or 60 (even) equally sized zones
➗   Divide each zone in 2^17 bins
📍 Zone number + Bin number = Position ± ≈ 5.1mt
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CPR Encoding

🔢 The encoding computes the bin number

📤 Only the bin numbers and encoding type are transmitted

🚫 Not the zone!
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CPR Decoding
● Both zone and bin number are 

necessary to recover the 
position 

● CPR needs a reference position 
or an odd and an even message 
sent sufficiently close to each 
other to compute the decoded 
zone

● Zone offset number determines 
the zone number
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ADS-B Compact Position Reporting
Algorithm - CPR (2016)

📡 Situation as reported by Airservices 
Australia 🛫

📍🌐 | actual position - decoded position 
|
           = 241 nautical miles
           = 446 km
           = 277 miles
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CPR issues



What was the issue with CPR?
Requirements were not enough to guarantee the intended
precision even assuming exact real-number arithmetic.

We proposed a slightly tightened set of requirements and
formally proved the algorithm correct in PVS assuming exact arithmetic

What about finite-precision implementations?

⚠ Heavy use of modulus and floor ⇒ huge accumulated round-off error

❌ Using single-precision floating-point, the recovered position of
     was off by approx 1500 nautical miles!

Dutle A., Moscato M., 
Titolo L., Muñoz C. A 
Formal Analysis of the 
Compact Position 
Reporting Algorithm. 
VSTTE 2017.
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| original_position📍 - recovered_position 💻  | ≤ 5.1mt  = algorithm accuracy  ✅ 



Formally verified finite-precision implementation of CPR

● Propose simpler formulation reducing numerical complexity (CPR*)

● Use a suite of existing formal methods tools to provide a verified and correct 

implementation of CPR* with finite precision arithmetic:

Titolo L., Moscato M., Muñoz 
C., Dutle A., Bobot F. A 
Formally Verified 
Floating-Point Implementation 
of the Compact Position 
Reporting Algorithm. FM 2018.
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+ +
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CPR floating-point implementation verification

Alt-Ergo

Gappa

ADB-S
Standard

Correctness 
statements + 
hints for solvers

Improved
real-valued 
specification

Improved 
Floating-Point 
implementation

Frama-C +
WP plugin

PVS
Validated 

verification 
conditions

Equivalence Proof: 
A iff B

ACSL C code ACSL

Original
real-valued 
specification

PVS
Improved
real-valued 
specification

PVS

Natural 
language 

description

Prover for 
numerical 
expressions

A B

Overall result:
The C floating-point 
implementation is 
verified  to encode and 
decode correctly for all 
possible input.

Proven 
correct 
in PVS

SMT solver
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Why PVS?
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⚙ NASA PVS Library has 
been developed for about 4 
decades and contains 79 
libraries and 40K theorems

🎬 PVS is the only theorem 
prover featured in a Hollywood 
movie

🚀 PVS actually used to verify 
Mars Rovers’ plans (PLEXIL-V)

Credit 20th Century Fox



CPR*

✅ CPR* = Formally verified C 
implementation of CPR

● double-precision floating-point
● 32 bits unsigned integers

📄 Reference implementation in the 
revised ADS-B standard document (RTCA 
DO-260B/Eurocae ED-102A)

🏆 NASA group achievement award 2020
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Available at https://github.com/nasa/cpr

https://github.com/nasa/cpr


🚀 Successful combination of different formal methods tools

🛑 The CPR verification pipeline required a lot of expertise and manual effort!
📝 Manual annotation of the C code

         💡 Gappa needs hints to verify a tight rounding error
         ⏳ A lot of time and effort spend in writing proofs in PVS
         🎓 Expertise in floating-point arithmetic and ITP

🎯 Goal: Make this process fully automatic 🤖

CPR* Verification approach
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✅ Formally verified and sound

🔀 Sound treatment of conditionals

🔍 Accurate

Automatic floating-point rounding error analysis
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Gappa

Fluctuat VCFloat VCFloat2

PRECiSA Daisy

FPTaylor

Satire

HOL4

HOL light

2006 2011 2016 2017 2018 2024 2025

Now many tools are 
available for 
floating-point 

round-off error 
analysis
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Moscato M., Titolo L., 
Dutle A., Muñoz C. 
Automatic Estimation of 
Verified Floating-Point 
Round-Off Errors via Static 
Analysis. SAFECOMP 
2017.

Titolo L., Feliú M., 
Moscato M., Muñoz C.  
An Abstract Interpretation 
Framework for the 
Round-Off Error Analysis 
of Floating-Point 
Programs. VMCAI 2018.

Titolo L., Moscato M., Feliú 
M., Masci P., Muñoz C.  
Rigorous Floating-Point 
Round-Off Error Analysis in 
PRECiSA 4.0. FM 2024.

round-off error bounds
+ PVS proof certificates

PRECiSA static analyzer

Floating-point 
program

25



PRECiSA Workflow
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Floating-point
Program

Static 
Analysis

Input Variable 
Ranges

Symbolic Error 
Expressions

Round-off error          
bounds

Certificate 
Generator

PVS Proof 
Certificates

✅ Automatic proof 
strategies



PRECiSA - Step I: Static Analysis

For each function declaration  PRECiSA computes a set of conditional error 
bounds

Everything is symbolic!           Compositional analysis
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PRECiSA - Step I: Static Analysis

For each function declaration  PRECiSA computes a set of conditional error 
bounds

Everything is symbolic!           Compositional analysis
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The analysis has to 
soundly take into 

account the 
conditional instability ‼ Abstractions are 

used to mitigate the 
state explosion 

problem 



PRECiSA - Step II: Global Optimization
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e_x + e_y + 
1/2ulp(x+y)

 

1.03E-10

PVS formalization of the 
branch-and-bound 

algorithm

C++ 
implementation

29

Maximization via 
branch-and-bound
parametric to max 

depth and precision
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PRECiSA strategies
https://github.com/nasa/PRECi
SA/tree/master/PVS/PRECiSA

IEEE 745 and 854 + round-off error formalization 
https://github.com/nasa/pvslib/blob/master/float

Accumulated round-off error

Rounding of the result
30

PRECiSA Step III: Proof certificate generation

https://github.com/nasa/PRECiSA/tree/master/PVS/PRECiSA
https://github.com/nasa/PRECiSA/tree/master/PVS/PRECiSA
https://github.com/nasa/pvslib/blob/master/float


Initial ranges

Rounding error

Automatic 
strategy

PRECiSA Step III: Proof certificate generation
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VSCode-PRECiSA: Round-off Error Analysis GUI
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- Interval Analysis
- Sensitivity Analysis
- Comparative Analysis



VSCode-PRECiSA: Instability Analysis GUI
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Visualize the values that 
may cause divergences in 

the control flow using 
Kodiak’s paving 

functionality

Check that no 
conditional instability 

occurs
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✅

Real-valued
Specification

Properties 
assuming real 

number 
arithmetic

Real number ≠ Floating-point arithmetic



✅
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Real-valued
Specification

Floating-point 
implementation

Properties 
assuming real 

number 
arithmetic

Properties 
assuming FP 

number 
arithmetic

❌

Rounding errors

Overflows

Runtime exceptions

Real number ≠ Floating-point arithmetic



Idea: automatically extracting FP code with formal 
guarantees on the rounding error

Automatic code extraction
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Real-valued
Specification

Floating-point 
implementation



ReFlow automatically generates a C floating-point 
implementation from a PVS real number specification
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Real-valued
Specification

Floating-point 
implementation



ReFlow workflow
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Round-off error          
bounds

Real-valued
Specification

Input Variable 
Ranges

Annotated
floating-point 

implementation

ACSL annotations model 
the discrepancies between 

real specification and 
floating-point 

implementation



Example: eps_line code extraction 
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RTCA/FAA Minimum 
Operational Performance 

Standards (MOPS) DO365 
for detect and avoid of 

unmanned aircraft systems 
(UAS) 



Example: eps_line code extraction 

Axiomatic real-valued program
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Axiomatic real-valued program

Floating-point implementation

Example: eps_line code extraction 
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Axiomatic real-valued program

Initial ranges

Floating-point implementation

Example: eps_line code extraction 
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Axiomatic real-valued program

Initial ranges

Vars are round-to the nearest

Floating-point implementation

Example: eps_line code extraction 
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Axiomatic real-valued program

Floating-point implementation

Initial ranges

Vars are round-to the nearest

Maximum round-off error 
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Example: eps_line code extraction 



Example: Unstable conditional instrumentation
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Instrumented program

Code instrumentation to 
detect unstable 

conditionals
(real ≠ fp control flow)

Titolo L., Muñoz C.,
Feliú M., Moscato M., 
Eliminating unstable tests in 
floating-point programs. 
LOPSTR 2018.

Example: Unstable conditional instrumentation
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C code automatically verified in Frama-C and PVS

Verification
Conditions
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Titolo L., Moscato M., 
Muñoz C.
Automatic generation and 
verification of test-stable 
floating-point code. iFM 2020.

Round-off error          
bounds

Real-valued
Specification

Input Variable 
Ranges

Annotated
floating-point 

implementation

✅ Automatic proof 
strategies



DAIDALUS - Detect-and-avoid

POLYCARP - Geofencing

Applications of 
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Moscato M., Titolo L., Feliú 
M., Muñoz C.
Provably Correct 
Floating-Point 
Implementation of a 
Point-in-Polygon 
Algorithm. FM 2019

Bernardes N., Moscato 
M., Titolo L., Ayala M.
A provably correct 
floating-point 
implementation of Well 
Clear Avionics Concepts. 
FMCAD 2023
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Interactive Theorem Proving at NASA
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● Static Analysis
● Global optimization
● Hybrid Systems Verification (dDL)

● Requirements elicitation (FRET)

● Some applications:

● Unmanned Aerial Vehicles

● Detect-and-avoid 

● Mars Rovers (PLEXIL V)



Proofs for LLM-guided transpilation in industry
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Proofs for LLM-guided transpilation in industry

❗LLMs are Black Boxes!
🌀 LLMs can “hallucinate”

⁉Semantic discrepancies
⁉Code vulnerabilities
⁉Specification violation
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Proofs for LLM-guided transpilation in industry

✅ Semantic equivalence
🛡 No code vulnerabilities
📘 Standard compliance (ex MISRA)

💻✅ LLM generated code must 
be validated and verified
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❗LLMs are Black Boxes!
🌀 LLMs can “hallucinate”



Source program
Target 

program
LLM-guided 
transpilation

Differential testing
+ coverage

Static Analysis 
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our 

specification!
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Source program
Target 

program
LLM-guided 
transpilation

Differential testing
+ coverage

Static Analysis 
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our 

specification!
Detected vulnerabilities / Warnings / Violations

Failed tests

Failed proofs/VCs
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Source program
Target 

program
LLM-guided 
transpilation

Differential testing
+ coverage

Static Analysis 
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our 

specification!
Detected vulnerabilities / Warnings / Violations

Failed tests

💡LLMs can help alleviate the 
burden of writing proofs and 
formal specifications 
automating some 
labor-intensive tasks typical of 
formal verification techniques

Failed proofs/VCs
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Conclusion

🚀 Interactive theorem provers are heavily used at NASA for safety critical 
applications

💻 ITP for AI - LLM-guided code generation greatly benefits from formal proofs 

🤖AI for ITP

🔄 Proof translation for importing/exporting libraries across different ITP platforms
🛠 Proof repair and simplification
🪄 Proof generation/automation

📝🌟 Exciting research and topics to explores at the intersection of ITP and AI
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Thanks for your attention!
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Backup slides

58



Instrumented program

ACSL contract

Example: Unstable conditional instrumentation

sy
m

bo
lic
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instrumented program

ACSL contract

sy
m

bo
lic

Example: Unstable conditional instrumentation

function call to 
instrumented tcoa_fp
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Instrumented program

ACSL contract

ACSL contract

function call to 
instrumented tcoa_fp

sy
m

bo
lic

Example: Unstable conditional instrumentation

nu
m

er
ic
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Function calls abstract analysis 
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Before:

  

Unfolded error 
expression



Function calls abstract analysis 
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Before:

Now:

  

Unfolded error 
expression

Error expression 
with error functions 

at each call site

Error expression 
with error constant 

at each call site

1. Compute the ranges of the actual 
parameters + enlarge them with their 

round-off errors
2. Optimize the error function using these 

ranges



Function calls abstract analysis experiments 
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se
co

nd
s



What’s next for PRECiSA and Reflow?
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Example: detect-and-avoid coordination

eps_line(vx, vy, sx, sy) = 

if (sx*vx + sy*vy) * (sx*vx - sy*vy) > 0 then

1 // right turn

else

-1 // left turn
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Instrumentation to detect instability

eps_line’(vx, vy, sx, sy) = 

if (sx*vx + sy*vy) * (sx*vx - sy*vy) > ε then

      1 // right turn

elsif (sx*vx + sy*vy) * (sx*vx - sy*vy) ≤ -ε then

-1 // left turn

else ω // warning!

Titolo L., Muñoz C.,
Feliú M., Moscato M., 
Eliminating unstable tests in 
floating-point programs. 
LOPSTR 2018.

Strengthen the guards

ε is a sound overestimation
of the error of the expression

Cases in which the rounding error may
affect the evaluation of the guard
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Tool comparison
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Tool comparison
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Experimental results for absolute round-off error bounds.



Tool comparison
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Times in seconds for the generation of round-off error bounds.


