
Taming floating-point rounding errors with
proofs

Laura Titolo
Code Metal, USA

16th International Conference on Interactive Theorem Proving - ITP 2025
Reykjavík, 28th September 2025

Outline

2

💻🔍 application of
 ITP + other formal methods
 for floating-point program
 analysis

🚀󰥗 ITP at NASA

🤖🧠 ITP for AI and AI for ITP in
 industry

Representing Real Numbers in Digital Computers

33

Credits by XKCD

44

Credits by illinois.edu

Floating-Point Numbers and Rounding errors
💻 Floating-point (FP) = finite
 representation of real numbers

FP ⊂ Reals
Example: 0.1 is not a FP
(rounded to 3602879701896397 /
 36028797018963968)

⚠ Round-off error = | r - round(r) |

Writing Floating-Point Code is hard!

5

Writing Floating-Point Code is hard!

6

Result is 0 if evaluated in
exact real number
arithmetic

Writing Floating-Point Code is hard!

Result is 0 if evaluated in
exact real number
arithmetic

7

Writing Floating-Point Code is hard!

The Boolean guard is evaluated to
false in real arithmetic and to true in
floating-point arithmetic

8

Result is 0 if evaluated in
exact real number
arithmetic

Writing Floating-Point Code is hard!

9

Accumulated
round-off error = 99

😥

Floating-point behavior is difficult to predict!

10

🌍 Floating-point numbers are ubiquitous

󰳕“Many developers do not understand core
floating point behavior particularly well, yet
believe they do.”

❗Reals arithmetic ≠ FP arithmetic
 (associativity, commutativity, …)

⚠ Rounding errors, overflows, underflows…

Floating-point errors may be dangerous and costly

Patriot missile failure (1991)

Picture: Bernd vdB, Public domain, via Wikimedia Commons

11

Ariane V (1996)

Photographs credits: 1996 © ESA/CNES; 1996 © ESA; 1996 © ESA.

64 bits
floating-point to
16 bits integer

overflow
Accumulated round-off
error in the time window

calculation (1/10
constant used)

🪖28 soldiers
were killed and
100 injured

💸 US$370
 million loss

Automatic Dependent Surveillance - Broadcast (ADS-B)

● NextGen (Next generation of air
traffic management systems) to
enhance radar technologies

● Aircraft periodically broadcasts
surveillance information

● Automatic — no pilot intervention

● Mandatory from Jan 1, 2020 (in USA
and Europe)

● Thousands of aircraft currently
equipped with ADS-B

12

❌ Cons: Makes use of existing hardware

📡 TCAS transponders

📏 35 bits for position in the
 broadcast message (lat + lon)

🌐 Too coarse granularity (~300 mt)
 for raw positions

ADS-B: Pro and Cons

✅ Pros: Broadcast vs. radar

🎯 More precise
🌍 More coverage

13Credits by Fiver, der Hellseher, CC BY-SA 4.0 via Wikimedia Commons

Radar coverage

ADS-B CPR: Compact Position Reporting Algorithm
🌍 Divide the globe into 59 (odd) or 60 (even) equally sized zones
➗ Divide each zone in 2^17 bins
📍 Zone number + Bin number = Position ± ≈ 5.1mt

14

CPR Encoding

🔢 The encoding computes the bin number

📤 Only the bin numbers and encoding type are transmitted

🚫 Not the zone!

15

CPR Decoding
● Both zone and bin number are

necessary to recover the
position

● CPR needs a reference position
or an odd and an even message
sent sufficiently close to each
other to compute the decoded
zone

● Zone offset number determines
the zone number

16

ADS-B Compact Position Reporting
Algorithm - CPR (2016)

📡 Situation as reported by Airservices
Australia 🛫

📍🌐 | actual position - decoded position
|
 = 241 nautical miles
 = 446 km
 = 277 miles

17

CPR issues

What was the issue with CPR?
Requirements were not enough to guarantee the intended
precision even assuming exact real-number arithmetic.

We proposed a slightly tightened set of requirements and
formally proved the algorithm correct in PVS assuming exact arithmetic

What about finite-precision implementations?

⚠ Heavy use of modulus and floor ⇒ huge accumulated round-off error

❌ Using single-precision floating-point, the recovered position of
 was off by approx 1500 nautical miles!

Dutle A., Moscato M.,
Titolo L., Muñoz C. A
Formal Analysis of the
Compact Position
Reporting Algorithm.
VSTTE 2017.

18

| original_position📍 - recovered_position 💻 | ≤ 5.1mt = algorithm accuracy ✅

Formally verified finite-precision implementation of CPR

● Propose simpler formulation reducing numerical complexity (CPR*)

● Use a suite of existing formal methods tools to provide a verified and correct

implementation of CPR* with finite precision arithmetic:

Titolo L., Moscato M., Muñoz
C., Dutle A., Bobot F. A
Formally Verified
Floating-Point Implementation
of the Compact Position
Reporting Algorithm. FM 2018.

19

+ +

19

CPR floating-point implementation verification

Alt-Ergo

Gappa

ADB-S
Standard

Correctness
statements +
hints for solvers

Improved
real-valued
specification

Improved
Floating-Point
implementation

Frama-C +
WP plugin

PVS
Validated

verification
conditions

Equivalence Proof:
A iff B

ACSL C code ACSL

Original
real-valued
specification

PVS
Improved
real-valued
specification

PVS

Natural
language

description

Prover for
numerical
expressions

A B

Overall result:
The C floating-point
implementation is
verified to encode and
decode correctly for all
possible input.

Proven
correct
in PVS

SMT solver

20

Why PVS?

21

⚙ NASA PVS Library has
been developed for about 4
decades and contains 79
libraries and 40K theorems

🎬 PVS is the only theorem
prover featured in a Hollywood
movie

🚀 PVS actually used to verify
Mars Rovers’ plans (PLEXIL-V)

Credit 20th Century Fox

CPR*

✅ CPR* = Formally verified C
implementation of CPR

● double-precision floating-point
● 32 bits unsigned integers

📄 Reference implementation in the
revised ADS-B standard document (RTCA
DO-260B/Eurocae ED-102A)

🏆 NASA group achievement award 2020

22

Available at https://github.com/nasa/cpr

https://github.com/nasa/cpr

🚀 Successful combination of different formal methods tools

🛑 The CPR verification pipeline required a lot of expertise and manual effort!
📝 Manual annotation of the C code

 💡 Gappa needs hints to verify a tight rounding error
 ⏳ A lot of time and effort spend in writing proofs in PVS
 🎓 Expertise in floating-point arithmetic and ITP

🎯 Goal: Make this process fully automatic 🤖

CPR* Verification approach

23

✅ Formally verified and sound

🔀 Sound treatment of conditionals

🔍 Accurate

Automatic floating-point rounding error analysis

24

Gappa

Fluctuat VCFloat VCFloat2

PRECiSA Daisy

FPTaylor

Satire

HOL4

HOL light

2006 2011 2016 2017 2018 2024 2025

Now many tools are
available for
floating-point

round-off error
analysis

25

Moscato M., Titolo L.,
Dutle A., Muñoz C.
Automatic Estimation of
Verified Floating-Point
Round-Off Errors via Static
Analysis. SAFECOMP
2017.

Titolo L., Feliú M.,
Moscato M., Muñoz C.
An Abstract Interpretation
Framework for the
Round-Off Error Analysis
of Floating-Point
Programs. VMCAI 2018.

Titolo L., Moscato M., Feliú
M., Masci P., Muñoz C.
Rigorous Floating-Point
Round-Off Error Analysis in
PRECiSA 4.0. FM 2024.

round-off error bounds
+ PVS proof certificates

PRECiSA static analyzer

Floating-point
program

25

PRECiSA Workflow

26

Floating-point
Program

Static
Analysis

Input Variable
Ranges

Symbolic Error
Expressions

Round-off error
bounds

Certificate
Generator

PVS Proof
Certificates

✅ Automatic proof
strategies

PRECiSA - Step I: Static Analysis

For each function declaration PRECiSA computes a set of conditional error
bounds

Everything is symbolic! Compositional analysis

27

PRECiSA - Step I: Static Analysis

For each function declaration PRECiSA computes a set of conditional error
bounds

Everything is symbolic! Compositional analysis

28

The analysis has to
soundly take into

account the
conditional instability ‼ Abstractions are

used to mitigate the
state explosion

problem

PRECiSA - Step II: Global Optimization

29

e_x + e_y +
1/2ulp(x+y)

1.03E-10

PVS formalization of the
branch-and-bound

algorithm

C++
implementation

29

Maximization via
branch-and-bound
parametric to max

depth and precision

30

PRECiSA strategies
https://github.com/nasa/PRECi
SA/tree/master/PVS/PRECiSA

IEEE 745 and 854 + round-off error formalization
https://github.com/nasa/pvslib/blob/master/float

Accumulated round-off error

Rounding of the result
30

PRECiSA Step III: Proof certificate generation

https://github.com/nasa/PRECiSA/tree/master/PVS/PRECiSA
https://github.com/nasa/PRECiSA/tree/master/PVS/PRECiSA
https://github.com/nasa/pvslib/blob/master/float

Initial ranges

Rounding error

Automatic
strategy

PRECiSA Step III: Proof certificate generation

31

VSCode-PRECiSA: Round-off Error Analysis GUI

32

- Interval Analysis
- Sensitivity Analysis
- Comparative Analysis

VSCode-PRECiSA: Instability Analysis GUI

33

Visualize the values that
may cause divergences in

the control flow using
Kodiak’s paving

functionality

Check that no
conditional instability

occurs

34

✅

Real-valued
Specification

Properties
assuming real

number
arithmetic

Real number ≠ Floating-point arithmetic

✅
3535

Real-valued
Specification

Floating-point
implementation

Properties
assuming real

number
arithmetic

Properties
assuming FP

number
arithmetic

❌

Rounding errors

Overflows

Runtime exceptions

Real number ≠ Floating-point arithmetic

Idea: automatically extracting FP code with formal
guarantees on the rounding error

Automatic code extraction

36

Real-valued
Specification

Floating-point
implementation

ReFlow automatically generates a C floating-point
implementation from a PVS real number specification

37

Real-valued
Specification

Floating-point
implementation

ReFlow workflow

38

Round-off error
bounds

Real-valued
Specification

Input Variable
Ranges

Annotated
floating-point

implementation

ACSL annotations model
the discrepancies between

real specification and
floating-point

implementation

Example: eps_line code extraction

39

RTCA/FAA Minimum
Operational Performance

Standards (MOPS) DO365
for detect and avoid of

unmanned aircraft systems
(UAS)

Example: eps_line code extraction

Axiomatic real-valued program

40

Axiomatic real-valued program

Floating-point implementation

Example: eps_line code extraction

41

Axiomatic real-valued program

Initial ranges

Floating-point implementation

Example: eps_line code extraction

42

Axiomatic real-valued program

Initial ranges

Vars are round-to the nearest

Floating-point implementation

Example: eps_line code extraction

43

Axiomatic real-valued program

Floating-point implementation

Initial ranges

Vars are round-to the nearest

Maximum round-off error

44

Example: eps_line code extraction

Example: Unstable conditional instrumentation

45

Instrumented program

Code instrumentation to
detect unstable

conditionals
(real ≠ fp control flow)

Titolo L., Muñoz C.,
Feliú M., Moscato M.,
Eliminating unstable tests in
floating-point programs.
LOPSTR 2018.

Example: Unstable conditional instrumentation

46

C code automatically verified in Frama-C and PVS

Verification
Conditions

47

Titolo L., Moscato M.,
Muñoz C.
Automatic generation and
verification of test-stable
floating-point code. iFM 2020.

Round-off error
bounds

Real-valued
Specification

Input Variable
Ranges

Annotated
floating-point

implementation

✅ Automatic proof
strategies

DAIDALUS - Detect-and-avoid

POLYCARP - Geofencing

Applications of

48

Moscato M., Titolo L., Feliú
M., Muñoz C.
Provably Correct
Floating-Point
Implementation of a
Point-in-Polygon
Algorithm. FM 2019

Bernardes N., Moscato
M., Titolo L., Ayala M.
A provably correct
floating-point
implementation of Well
Clear Avionics Concepts.
FMCAD 2023

48

Interactive Theorem Proving at NASA

49

● Static Analysis
● Global optimization
● Hybrid Systems Verification (dDL)

● Requirements elicitation (FRET)

● Some applications:

● Unmanned Aerial Vehicles

● Detect-and-avoid

● Mars Rovers (PLEXIL V)

Proofs for LLM-guided transpilation in industry

50

Proofs for LLM-guided transpilation in industry

❗LLMs are Black Boxes!
🌀 LLMs can “hallucinate”

⁉Semantic discrepancies
⁉Code vulnerabilities
⁉Specification violation

51

Proofs for LLM-guided transpilation in industry

✅ Semantic equivalence
🛡 No code vulnerabilities
📘 Standard compliance (ex MISRA)

💻✅ LLM generated code must
be validated and verified

52

❗LLMs are Black Boxes!
🌀 LLMs can “hallucinate”

Source program
Target

program
LLM-guided
transpilation

Differential testing
+ coverage

Static Analysis
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our

specification!

53

Source program
Target

program
LLM-guided
transpilation

Differential testing
+ coverage

Static Analysis
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our

specification!
Detected vulnerabilities / Warnings / Violations

Failed tests

Failed proofs/VCs

54

Source program
Target

program
LLM-guided
transpilation

Differential testing
+ coverage

Static Analysis
Tools Portfolio

Formal Verification

LLM-generated code must be validated and verified!
This is our

specification!
Detected vulnerabilities / Warnings / Violations

Failed tests

💡LLMs can help alleviate the
burden of writing proofs and
formal specifications
automating some
labor-intensive tasks typical of
formal verification techniques

Failed proofs/VCs

55

Conclusion

🚀 Interactive theorem provers are heavily used at NASA for safety critical
applications

💻 ITP for AI - LLM-guided code generation greatly benefits from formal proofs

🤖AI for ITP

🔄 Proof translation for importing/exporting libraries across different ITP platforms
🛠 Proof repair and simplification
🪄 Proof generation/automation

📝🌟 Exciting research and topics to explores at the intersection of ITP and AI

56

Thanks for your attention!

57

Aaron Dutle
NASA

Cesar Muñoz
NASA

Mariano Moscato
NASA/AMA

Paolo Masci
x-NASA

Marco A. Feliu
NASA/AMA

laura@codemetal.ai
https://lauratitolo.github.io/

mailto:laura@codemetal.ai
https://lauratitolo.github.io/

Backup slides

58

Instrumented program

ACSL contract

Example: Unstable conditional instrumentation

sy
m

bo
lic

59

instrumented program

ACSL contract

sy
m

bo
lic

Example: Unstable conditional instrumentation

function call to
instrumented tcoa_fp

60

Instrumented program

ACSL contract

ACSL contract

function call to
instrumented tcoa_fp

sy
m

bo
lic

Example: Unstable conditional instrumentation

nu
m

er
ic

61

Function calls abstract analysis

62

Before:

Unfolded error
expression

Function calls abstract analysis

63

Before:

Now:

Unfolded error
expression

Error expression
with error functions

at each call site

Error expression
with error constant

at each call site

1. Compute the ranges of the actual
parameters + enlarge them with their

round-off errors
2. Optimize the error function using these

ranges

Function calls abstract analysis experiments

64

se
co

nd
s

What’s next for PRECiSA and Reflow?

65

Example: detect-and-avoid coordination

eps_line(vx, vy, sx, sy) =

if (sx*vx + sy*vy) * (sx*vx - sy*vy) > 0 then

1 // right turn

else

-1 // left turn

66

Instrumentation to detect instability

eps_line’(vx, vy, sx, sy) =

if (sx*vx + sy*vy) * (sx*vx - sy*vy) > ε then

 1 // right turn

elsif (sx*vx + sy*vy) * (sx*vx - sy*vy) ≤ -ε then

-1 // left turn

else ω // warning!

Titolo L., Muñoz C.,
Feliú M., Moscato M.,
Eliminating unstable tests in
floating-point programs.
LOPSTR 2018.

Strengthen the guards

ε is a sound overestimation
of the error of the expression

Cases in which the rounding error may
affect the evaluation of the guard

67

Tool comparison

68

Tool comparison

69

Experimental results for absolute round-off error bounds.

Tool comparison

70

Times in seconds for the generation of round-off error bounds.

