ITP 2025

GOL in GOL in HOL

Magnus O. Myreen, Mario Carneiro

Chalmers

GOL in GOL in HOL
A

[Conway’s Game of Life J

GOL in GOL in HOL
A |

[Conway’s Game of Life J

4)
... simulated in Conway’s

Game of Life
g J

GOL in GOL in HOL
A | \ \

, and this is verified
[Conway’s Game of Life J n the HOL prover.

- Y,

4)
... simulated in Conway’s

Game of Life

This talk:

What is Conway’s Game of Life (GOL)?

rules, gliders, space ships, useful collisions,
circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

rules, gliders, space ships, useful collisions,
circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

Rules of Conway’s Game of Life

We define a GOL state as a set S C Z?, where
(z,7) € S means that (i, j) is alive in state S.

Rules of Conway’s Game of Life

We define a GOL state as a set S C Z?, where
(z,7) € S means that (i, j) is alive in state S.

GOL’s next-state function

step S = { (4.j) | if (i,5) € S then live_adj S 7 j € {2,3}
else live_adj S 7 j = 3}

Rules of Conway’s Game of Life

We define a GOL state as a set S C Z?, where
(z,7) € S means that (i, j) is alive in state S.

GOL’s next-state function

step S = { (4.j) | if (i,5) € S then live_adj S 7 j € {2,3}
else live_adj S 7 j = 3}

where

def

adjij = (', ") [max(|i" =i, |5" = j[) = 1}

live_adj S 7 j = card (S Nadjij) —7//

/4

|
[(4, 5) f[adj 7 j)

Demos

GOL rules, gliders, space ships, useful collisions

Blog posts

WRITING

Improved Logic Gates on Conway's
Game of Life - Part 3
by Nicholas Carlini 2021-03-23

This is the third in a series of posts ([1], [2], [4], [5])
implementing digital logic gates on top of Conway's
Game of Life, with the final goal of designing a fully

functional CPU. link to blog

https://nicholas.carlini.com/writing/2021/improved-logic-gates-game-of-life.html

GOL in GOL!?

Can we build a “mega cell” circuit in GOL such that:

if the entire space is tiled with these mega cells,
the joint behaviour is to simulate GOL!?

Yes!

Each mega cell needs be a circuit that behaves like
a GOL cell. How do we build such a circuit?

-

--ﬂ-'—l.'—l.'—l.'—l.'—l.'—l.'—l--ﬁ

®
&

|

H-A

Our mega
cell design

| 50x 150
GOL cells

Each

This talk:

What is Conway’s Game of Life (GOL)?

rules, gliders, space ships, useful collisions,
circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

rules, gliders, space ships, useful collisions,
circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

rules, gliders, space ships, useful collisions,
circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

Compositional reasoning about GOL

Intuition:

Patterns that are far from each other do not affect each other.

In the ITP:

Define area of influence:

inflS = {(¢/,5') [3ij. (i,4) € S Amax(|i' —il,|j/ —j|) <1}
Prove:
Finfl S Ninfl 8" =0 = step (S U S’) =step S U step S’

What about communication?

Intuition:

A logic gate hands over signals to the next gate.

configuration]

In the ITP:

specifies owned area J

io_step ¢ 51 53 = GOL next-state function J
355.

infl 51 C c.area A step 51 = 52 A /[assertions J

So M c.assert__area = c.assert__content A

S3 = c.insertions U (52 — c.deletions)

T insertion of input JT deletion of output]

Runs of GOL with I/O

We can run many steps:

io_stepsOcn Sy 5 = 51 =5

io_steps (Suc k) ¢ n S1 53 = I55. io_step (¢ n) S1 So A

io_steps k /C\ (n 4+ 1) S5 S3

[an infinite stream of configurations J

A successful run is:

def

runcS = Vk. 35 . io _stepskc0S 5

A

[can run any number of steps without error J

19

Circuits

We build the notion of circuit on top ‘run’:

. . . e . def
circuit_run area 1ns outs 1nmit =

run (circ_mod area ins outs) init N
circ_mod__wf area ins outs

L‘an infinite stream of booleans]

Example gate specification: ——
(another infinite stream]

V V
~ circuit_run {(0,0)} {((—1,0),E, a), ((0,1),N,b)}

{((1,0), E, al®l A b[5]} and__gate_pattern
A

4)
the pointwise conjunction of the two

streams, delayed by 5 steps

AND gate example

[
r-
.'-.I A T
— I=:-'.'r_. '
l.': ="

= circuit_run {(0,0)} {((—1,0),E,a),((0,1),N,b)}
{((17 0)7 E, @[5] A 5[5]} and__gate__pattern

AND gate example

How is a theorem like this proved in HOL?

= circuit_run {(0,0)} {((—=1,0),E,a),((0,1),N,b)}
{((1,0), E, al®l A 6[5]} and_gate_pattern

Answer:
|. We define a symbolic simulator that runs circuit io_step.
2. We use an external program to find a symbolic fixed-point.

3. We run the symbolic simulator for 60 GOL steps in logic
to confirm that the given symbolic state is a fixed point.

Composing two circuits

(circuit | J [circuit 2 J
V V
- circuit_run aq ins; outsy init1 A circuit_run ao insSe outss inito A a; Nas = 0 A
(Vpdr.
((p,d,r) € insy Ap—d € az = (p,d,r) € outsa) A
((p,d,r) € outsy A p+d € ag = (p,d,r) € insa) A
))
)

((p,d,r) € insa Ap—d € a3 = (p,d,r) € outsy) A
((p,d,r) € outss AN p+d € a1 = (p,d,r) € insy)) =
circuit_run (a1 U ag) (insy U insg) (outsy U outss) (inity U inits)

A

[result is the union of their components J

A

[area, inputs, outputs, initial states J

23

Composition example

24

(a) (b) (c)
e] - @
R
1 | 7]
1. Fcircuit_run {(0,0)} {((—1,0),E,a),((0,1),N,b)}
{((1,0), E, al® A b1} and_gate_pattern
2. F circuit_run {(0,0)} {((—1,0),E,a)} {((1,0),E,al®} ¢
3. Fcircuit_run {(2,0)} {((1,0),E a)} {((3,0),E,al®} 0
4. F circuit_run {(2 0)} {((1 O) 51 A B8}
{((3,0),E, (aB A BB} o
5. Fcircuit_run {(0,0),(2,0)}
((=1,0),E) ((1);N,)»((170) Lal® A bR}
1((1,0),E bel), ((3,0),E, (al A BB}
and_gate_pattern
6. F circuit_run {(0,0),(2,0)} {((—1,0),E,a),((0,1),N,b)}

{((3,0), E, al'® A b191Y and_gate_pattern
25

> >

>>>>>>>>

AND gate spec

wire spec
translate (2)
substitute (3)

compose (1,4)

internalize (5)

Problem

The GOL “mega cell” circuit uses half-adders:

Z input | >
Z input 2 >

\

<(xor of inputl and input 2)

<(and of input| and input 2 j

Too precise specification:

= circuit_run {(0,0), (2.0}, (0, , —1.0) E a) ((—1, 3
{((3,0), EQ(al™ A (a2 A =Bl v (=l A BB A —pl181))) v (maltS] A (al12) v bl19]))
((37 2)7 E7 a A O A
half_adder__gate__pattern [sor of aand b ? J
A

(kind of if you squint very very hard....]

Mario to the rescue

Mario developed a layer on top that talks about stable signals:

- circuit_run’ £(0_0 0).(0,2),(2,2)} {((—1,0),E, A), ((—1,2),E, B)}
{((3,0),€, A%l @ BI8)) ¥(3,2), E, AT A BISI

half_adder__gate__pattern
Y this is the stable output]

Too precise specification:

= circuit_run {(0,.0), (2.0}, (Q , —1.0) E a) ((—1, 3
{((3,0), EQ(al™ A (a2 A =Bl v (=l A BB A —pl181))) v (maltS] A (al12) v bl19]))
((37 2)7 E7 a A O A
half_adder__gate__pattern [sor of aand b ? J
A

(kind of if you squint very very hard....]

- - —-—

T
[P ==
AU g b G-

=== SARRRRRR
i RERRERER i
(IR RRRRERR

T S |
L U
IgsipesE ERER R R am
I R R A e
S

A_]:IIH_ B s L'

We proved:

Top-level correctness theorem:

=V n S. step™ S = read_mega_cells (step”™*%9%°80 (build_mega_cells S))

A | ” A

[For any initial state S ... }

[... we can build a mega cell tiling ... }
[| |

[... such that a run of the mega cells ...]
[

[... results in state from which we can read ... J

[... what a direct run of the GOL steps would have produced.]

29

The End — Questions?

6 Conclusion, Related Work and Future Work

In this paper, we have demonstrated that it is possible to formally verify circuits built in
GOL and we have verified a circuit that implements GOL itself inside GOL. To the best of
our knowledge, this is the first work to formally verify, in an interactive theorem prover (ITP),
constructions in a cellular automata. The formalization is roughly 9500 LOC.

There has been significant prior work on formalizing more traditional models of com-
putation in I'TPs, e.g., Turing machines [11, 2, 20, 6], register machines [12, 3|, A-calculus
116, 13, 10, 9], p-recursive functions [5] and more [17]. We refer to Forster [8] for more in
depth discussions on computability in I'TPs. Rule 110 |7] is another simple universal CA.

In future work, it would be interesting to explore I'TP proofs connecting GOL with more
traditional forms of computability. Also, the tools used here could be generalized to prove
other GOL circuits, other cellular automata, as well as low level hardware correctness proofs.

