Magnus O. Myreen, Mario Carneiro Chalmers

Conway's Game of Life

Conway's Game of Life

... simulated in Conway's Game of Life

Conway's Game of Life

... and this is verified in the HOL prover.

... simulated in Conway's Game of Life

What is Conway's Game of Life (GOL)?

rules, gliders, space ships, useful collisions, circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates, compositional reasoning about (circuits in) GOL

What is Conway's Game of Life (GOL)?

rules, gliders, space ships, useful collisions, circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates, compositional reasoning about (circuits in) GOL

Rules of Conway's Game of Life

We define a GOL state as a set $S \subseteq \mathbb{Z}^2$, where $(i,j) \in S$ means that (i,j) is alive in state S.

Rules of Conway's Game of Life

We define a GOL state as a set $S \subseteq \mathbb{Z}^2$, where $(i,j) \in S$ means that (i,j) is alive in state S.

GOL's next-state function

$$\text{step } S \stackrel{\text{\tiny def}}{=} \ \{ \ (i,j) \mid \text{if } (i,j) \in S \ \text{then live_adj} \ S \ i \ j \in \{2,3\} \\ \text{else live_adj} \ S \ i \ j = 3 \}$$

Rules of Conway's Game of Life

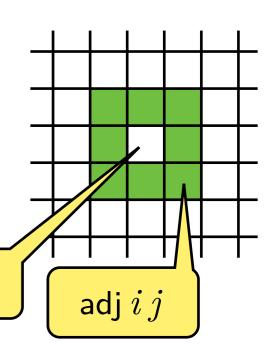
We define a GOL state as a set $S \subseteq \mathbb{Z}^2$, where $(i,j) \in S$ means that (i,j) is alive in state S.

GOL's next-state function

$$\text{step } S \stackrel{\text{\tiny def}}{=} \ \{ \ (i,j) \mid \text{if } (i,j) \in S \ \text{then live_adj} \ S \ i \ j \in \{2,3\} \\ \text{else live_adj} \ S \ i \ j = 3 \}$$

where

$$\begin{aligned} \operatorname{adj} i \, j &\stackrel{\text{\tiny def}}{=} \{(i',j') \mid \max{(|i'-i|,|j'-j|)} = 1 \} \\ \operatorname{live_adj} S \ i \ j &\stackrel{\text{\tiny def}}{=} \ \operatorname{card} \ (S \cap \operatorname{adj} \ i \ j) \end{aligned}$$



(i,j)

Demos

GOL rules, gliders, space ships, useful collisions

Blog posts

Writing

Improved Logic Gates on Conway's Game of Life - Part 3

by Nicholas Carlini 2021-03-23

This is the third in a series of posts ([1], [2], [4], [5]) implementing digital logic gates on top of Conway's Game of Life, with the final goal of designing a fully functional CPU.

link to blog

GOL in GOL?

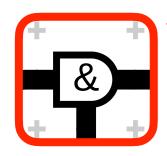
Can we build a "mega cell" circuit in GOL such that: if the entire space is tiled with these mega cells, the joint behaviour is to simulate GOL?

Yes!

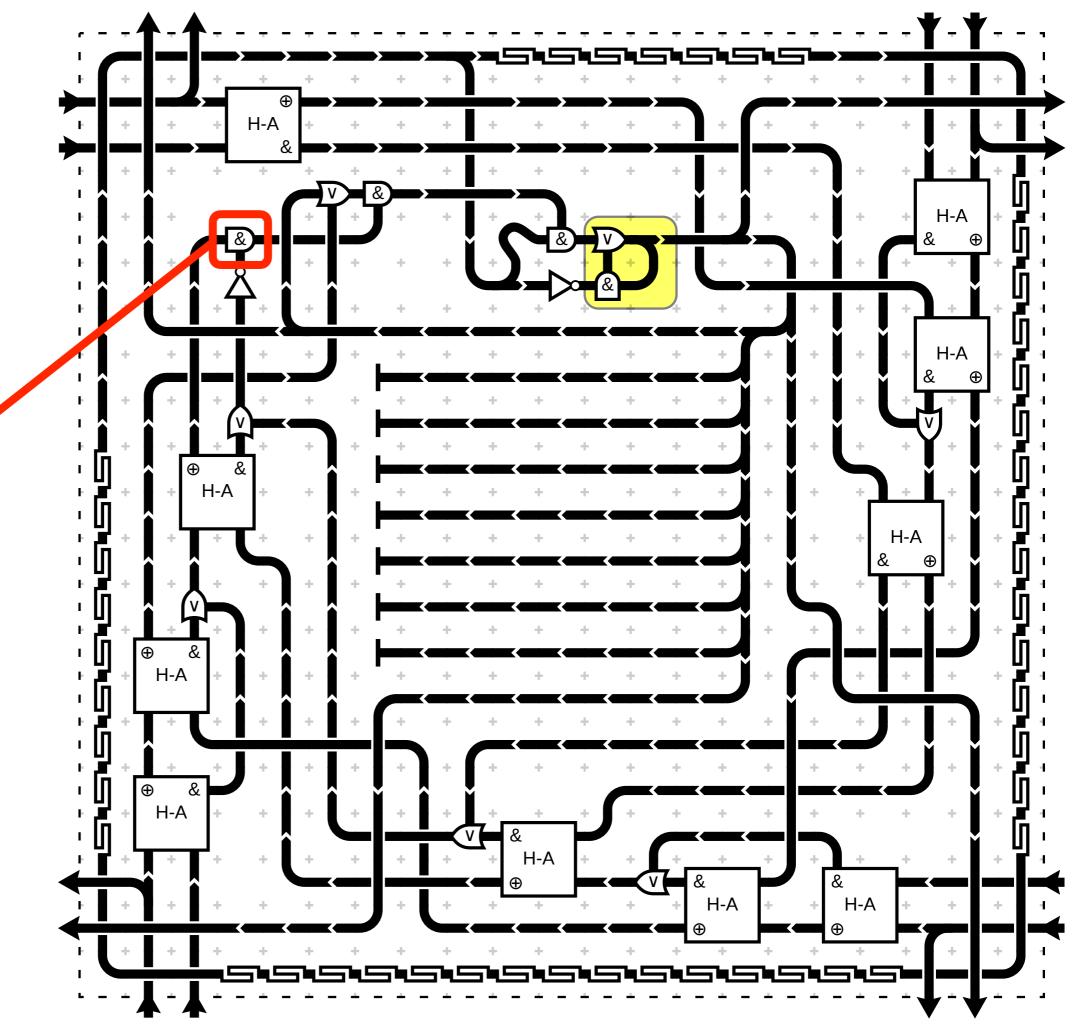
Each mega cell needs be a circuit that behaves like a GOL cell. How do we build such a circuit?

Our mega cell design

Each mini-tile is a gate:



Mini-tile: 150x150 GOL cells



What is Conway's Game of Life (GOL)?

rules, gliders, space ships, useful collisions, circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates, compositional reasoning about (circuits in) GOL

What is Conway's Game of Life (GOL)?

rules, gliders, space ships, useful collisions, circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

What is Conway's Game of Life (GOL)?

rules, gliders, space ships, useful collisions, circuits in GOL, GOL in GOL

Formal verification of circuits in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

Compositional reasoning about GOL

Intuition:

Patterns that are far from each other do not affect each other.

In the ITP:

Define area of influence:

$$\inf S \stackrel{\text{\tiny def}}{=} \big\{ \left(i',j' \right) \mid \exists \, i \, j. \, (i,j) \in S \wedge \max \left(|i'-i|,|j'-j| \right) \leq 1 \, \big\}$$

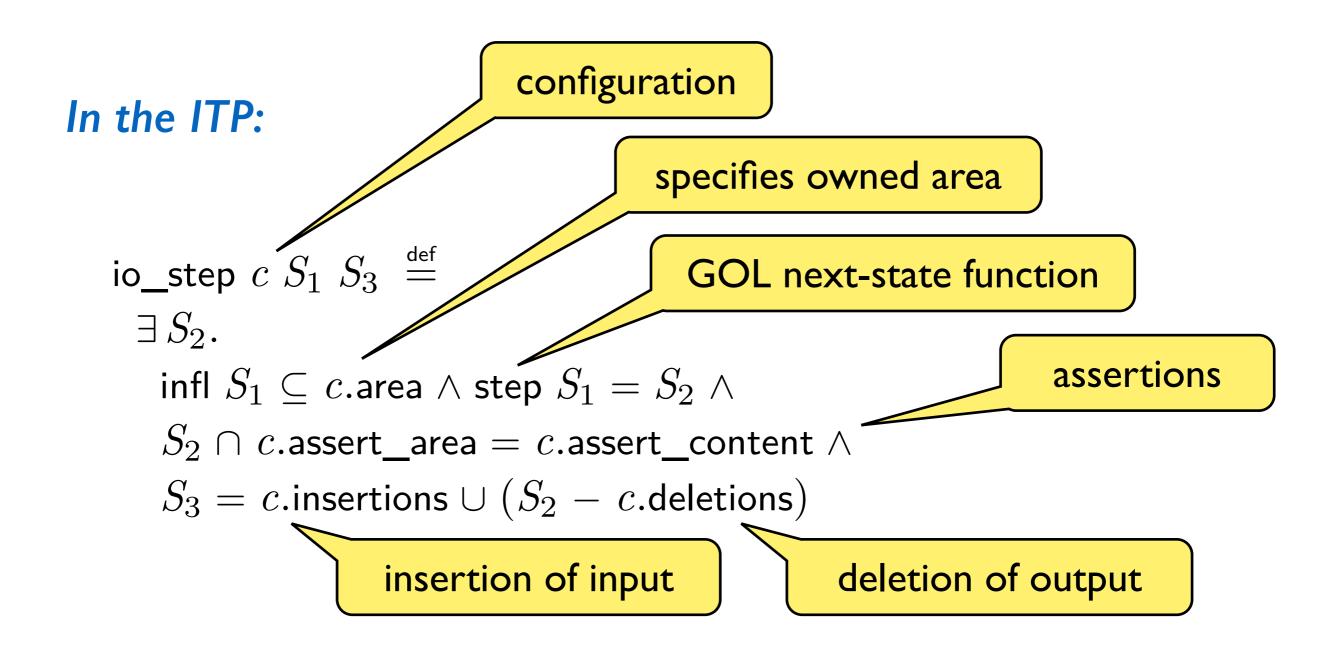
Prove:

$$\vdash \inf S \cap \inf S' = \emptyset \Rightarrow \operatorname{step} (S \cup S') = \operatorname{step} S \cup \operatorname{step} S'$$

What about communication?

Intuition:

A logic gate hands over signals to the next gate.



Runs of GOL with I/O

We can run many steps:

io_steps
$$0$$
 c n S_1 S_2 $\stackrel{\mathsf{def}}{=}$ $S_1 = S_2$ io_steps (Suc k) c n S_1 S_3 $\stackrel{\mathsf{def}}{=}$ \exists S_2 . io_steps k c $(n+1)$ S_2 S_3 io_steps k c $(n+1)$ S_2 S_3

an infinite stream of configurations

A successful run is:

run
$$c \ S \stackrel{\text{def}}{=} \ \forall \ k. \ \exists \ S'. \ \text{io_steps} \ k \ c \ 0 \ S \ S'$$
 can run any number of steps without error

Circuits

We build the notion of circuit on top 'run':

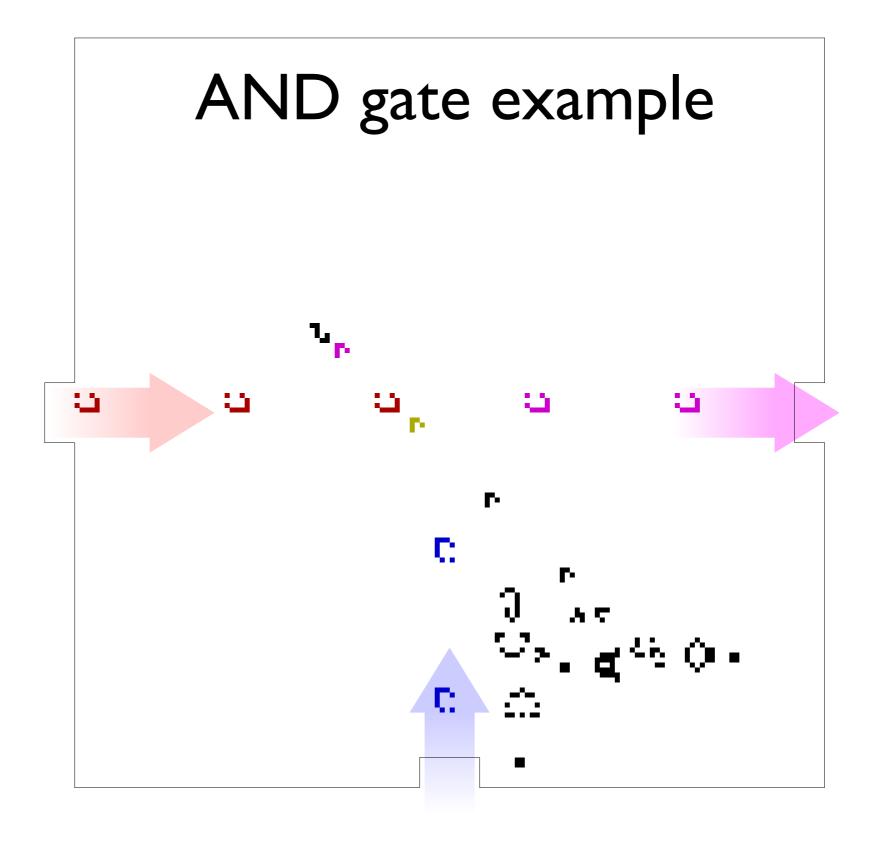
```
circuit_run area\ ins\ outs\ init \stackrel{\text{def}}{=}
run (circ_mod area\ ins\ outs)\ init \land
circ_mod_wf area\ ins\ outs
```

Example gate specification:

an infinite stream of booleans

another infinite stream

the pointwise conjunction of the two streams, delayed by 5 steps



$$\begin{split} \vdash \mathsf{circuit_run} \ \{(0,0)\} \ \{((-1,0), \mathsf{E}, \textcolor{red}{a}), ((0,1), \mathsf{N}, \textcolor{red}{b})\} \\ \{((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]} \land \textcolor{red}{b}^{[5]}\} \ \mathsf{and_gate_pattern} \end{split}$$

AND gate example

How is a theorem like this proved in HOL?

```
 \begin{split} \vdash \mathsf{circuit\_run} \ \{ (0,0) \} \ \{ ((-1,0), \mathsf{E}, \textcolor{red}{a}), ((0,1), \mathsf{N}, \textcolor{red}{b}) \} \\ \{ ((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]} \land \textcolor{red}{b}^{[5]} \} \ \mathsf{and\_gate\_pattern} \end{split}
```

Answer:

- I. We define a symbolic simulator that runs circuit io_step.
- 2. We use an external program to find a symbolic fixed-point.
- 3. We run the symbolic simulator for 60 GOL steps in logic to confirm that the given symbolic state is a fixed point.

Composing two circuits

circuit I

circuit 2

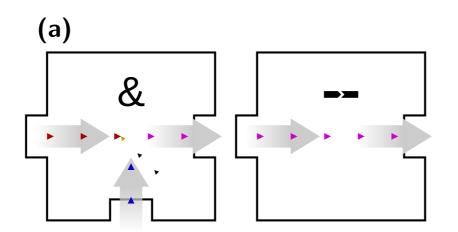
 \vdash circuit_run $a_1 \ ins_1 \ outs_1 \ init_1 \land$ circuit_run $a_2 \ ins_2 \ outs_2 \ init_2 \land a_1 \cap a_2 = \emptyset \land (\forall p \ d \ r.$

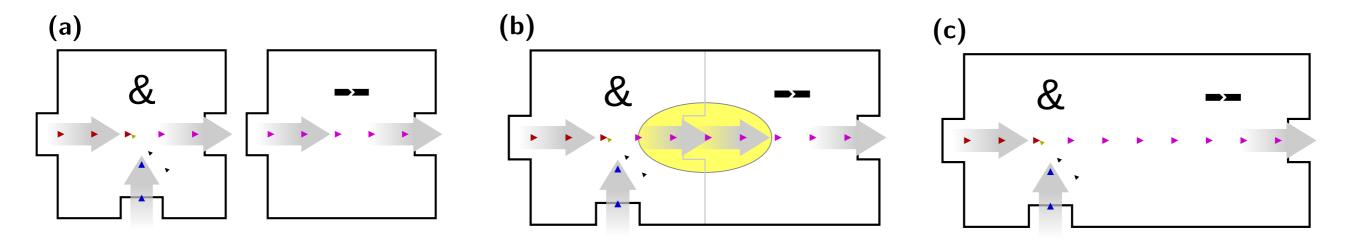
```
 \begin{array}{l} ((p,d,r) \in ins_1 \wedge p - d \in a_2 \Rightarrow (p,d,r) \in outs_2) \wedge \\ ((p,d,r) \in outs_1 \wedge p + d \in a_2 \Rightarrow (p,d,r) \in ins_2) \wedge \\ ((p,d,r) \in ins_2 \wedge p - d \in a_1 \Rightarrow (p,d,r) \in outs_1) \wedge \\ ((p,d,r) \in outs_2 \wedge p + d \in a_1 \Rightarrow (p,d,r) \in ins_1)) \Rightarrow \\ \operatorname{circuit\_run} \left(a_1 \cup a_2\right) \left(ins_1 \cup ins_2\right) \left(outs_1 \cup outs_2\right) \left(init_1 \cup init_2\right) \end{array}
```

result is the union of their components

area, inputs, outputs, initial states

Composition example





- $\begin{array}{ll} 1. & \vdash \mathsf{circuit_run} \ \{(0,0)\} \ \{((-1,0), \mathsf{E}, \textcolor{red}{a}), ((0,1), \mathsf{N}, \textcolor{red}{b})\} \\ & \{((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]} \land \textcolor{red}{b}^{[5]}\} \ \mathsf{and_gate_pattern} \end{array}$
- 2. $\vdash \text{circuit_run } \{(0,0)\} \ \{((-1,0), \mathsf{E}, \textcolor{red}{a})\} \ \{((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]}\} \ \emptyset$ with
- 3. \vdash circuit_run $\{(2,0)\}$ $\{((1,0),\mathsf{E},\textcolor{red}{a})\}$ $\{((3,0),\mathsf{E},\textcolor{red}{a}^{[5]}\}$ \emptyset
- 4. $\vdash \operatorname{circuit_run} \{(2,0)\} \{((1,0), \mathsf{E}, \boldsymbol{a}^{[5]} \land \boldsymbol{b}^{[5]})\}$ $\{((3,0), \mathsf{E}, (\boldsymbol{a}^{[5]} \land \boldsymbol{b}^{[5]})^{[5]}\} \emptyset$
- $$\begin{split} 5. & \vdash \mathsf{circuit_run} \ \{ (0,0), (2,0) \} \\ & \quad \{ ((-1,0), \mathsf{E}, \textcolor{red}{a}), ((0,1), \mathsf{N}, \textcolor{red}{b}), ((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]} \wedge \textcolor{red}{b}^{[5]}) \} \\ & \quad \{ ((1,0), \mathsf{E}, \textcolor{red}{a}^{[5]} \wedge \textcolor{red}{b}^{[5]}), ((3,0), \mathsf{E}, (\textcolor{red}{a}^{[5]} \wedge \textcolor{red}{b}^{[5]})^{[5]} \} \\ & \quad \mathsf{and_gate_pattern} \end{split}$$
- 6. \vdash circuit_run $\{(0,0),(2,0)\}$ $\{((-1,0),\mathsf{E},\overset{\pmb{a}}{a}),((0,1),\mathsf{N},\overset{\pmb{b}}{b})\}$ $\{((3,0),\mathsf{E},\overset{\pmb{a}}{a}^{[10]}\wedge \overset{\pmb{b}}{b}^{[10]}\}$ and_gate_pattern 25

AND gate spec

wire spec

translate (2)

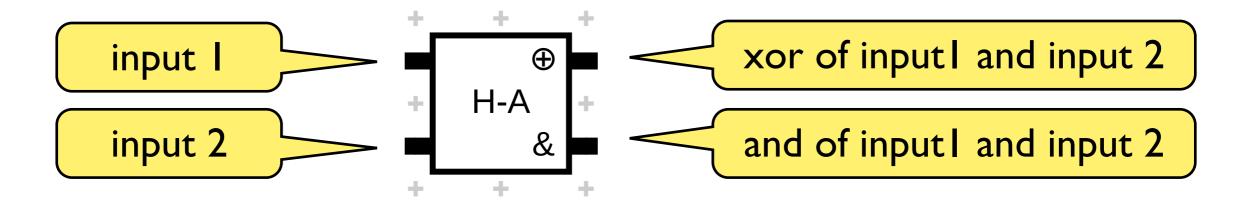
substitute (3)

compose (1,4)

internalize (5)

Problem

The GOL "mega cell" circuit uses half-adders:



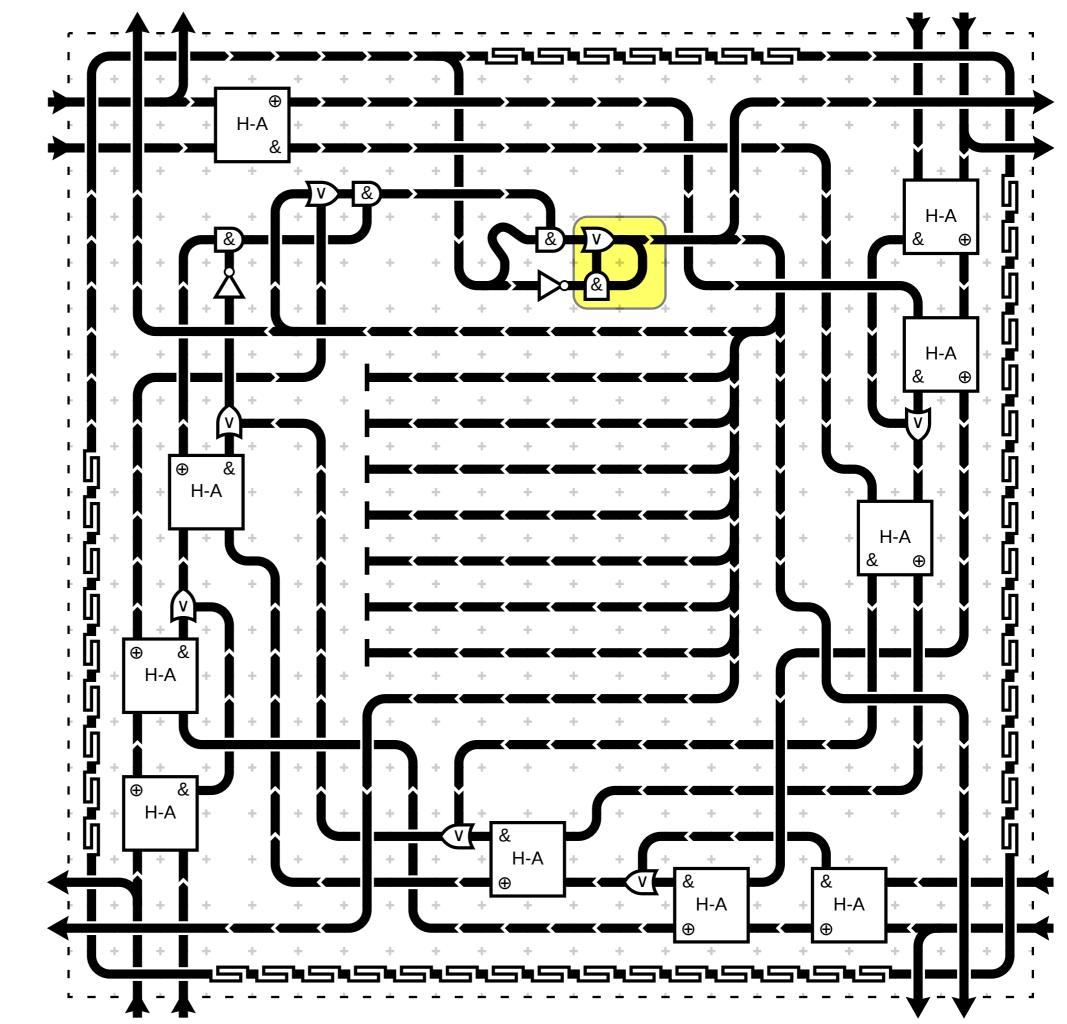
Too precise specification:

Mario to the rescue

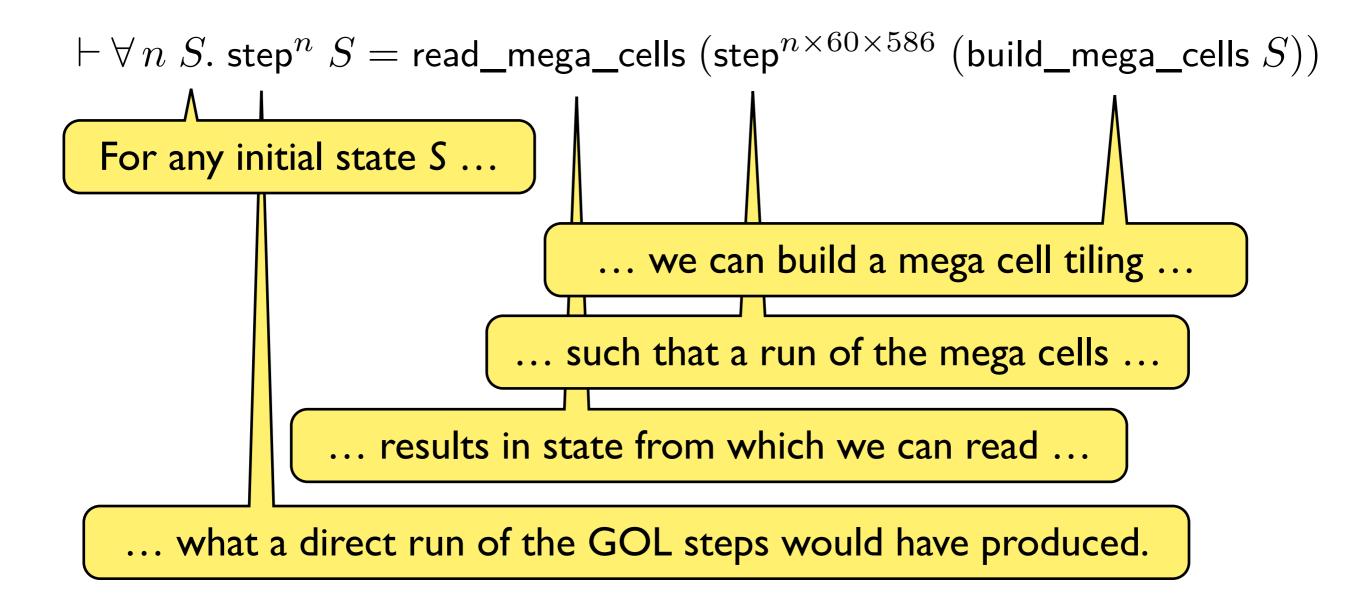
Mario developed a layer on top that talks about stable signals:

Too precise specification:

We proved:



Top-level correctness theorem:



The End — Questions?

6 Conclusion, Related Work and Future Work

In this paper, we have demonstrated that it is possible to formally verify circuits built in GOL and we have verified a circuit that implements GOL itself inside GOL. To the best of our knowledge, this is the first work to formally verify, in an interactive theorem prover (ITP), constructions in a cellular automata. The formalization is roughly 9500 LOC.

There has been significant prior work on formalizing more traditional models of computation in ITPs, e.g., Turing machines [11, 2, 20, 6], register machines [12, 3], λ -calculus [16, 13, 10, 9], μ -recursive functions [5] and more [17]. We refer to Forster [8] for more in depth discussions on computability in ITPs. Rule 110 [7] is another simple universal CA.

In future work, it would be interesting to explore ITP proofs connecting GOL with more traditional forms of computability. Also, the tools used here could be generalized to prove other GOL circuits, other cellular automata, as well as low level hardware correctness proofs.