
GOL in GOL in HOL

Magnus O. Myreen, Mario Carneiro

ITP 2025

Chalmers

GOL in GOL in HOL

Conway’s Game of Life

GOL in GOL in HOL

Conway’s Game of Life

… simulated in Conway’s
Game of Life

GOL in GOL in HOL

Conway’s Game of Life

… simulated in Conway’s
Game of Life

… and this is verified

in the HOL prover.

This talk:

What is Conway’s Game of Life (GOL)?

Formal verification of circuits in GOL

rules, gliders, space ships, useful collisions,

circuits in GOL, GOL in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

Formal verification of circuits in GOL

rules, gliders, space ships, useful collisions,

circuits in GOL, GOL in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

Rules of Conway’s Game of Life

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

7

Rules of Conway’s Game of Life

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

8

Rules of Conway’s Game of Life

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

GOL in GOL in HOL
Verified Circuits in Conway’s Game of Life

Magnus O. Myreen �

Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden

Mario Carneiro �

Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden

Abstract
Conway’s Game of Life (GOL) is a cellular automaton that has captured the interest of hobbyists
and mathematicians alike for more than 50 years. The Game of Life is Turing complete, and people
have been building increasingly sophisticated constructions within GOL, such as 8-bit displays,
Turing machines, and even an implementation of GOL itself. In this paper, we report on a project
to build an implementation of GOL within GOL, via logic circuits, fully formally verified within
the HOL4 theorem prover. This required a combination of interactive tactic proving, symbolic
simulation, and semi-automated forward proof to assemble the components into an infinite circuit
which can calculate the next step of the simulation while respecting signal propagation delays. The
result is a verified “GOL in GOL compiler” which takes an initial GOL state and returns a mega-cell
version of it that can be passed to o�-the-shelf GOL simulators, such as Golly. We believe these
techniques are also applicable to other cellular automata, as well as for hardware verification which
takes into account both the physical configuration of components and wire delays.

2012 ACM Subject Classification Theory of computation æ Higher order logic; Theory of com-
putation æ Logic and verification; Theory of computation æ Computability; Software and its
engineering æ Formal methods

Keywords and phrases Cellular automata, Higher-order logic, Interactive theorem proving

Funding This work was supported by the Swedish Research Council (grant no. 2021-05165)

Acknowledgements A special thank you to Andreas Lööw for sowing the seeds for this work by
pointing the first author to the blog posts by Nicholas Carlini.

1 Introduction

Conway’s Game of Life is a cellular automaton that was first published in the Scientific
American in 1970 where it was said to model the rise and fall of societies [13]. Since its
initial publication, GOL has remained a curiosity among hobbyists and mathematicians for
its combination of simplicity and surprisingly chaotic organic look as a model of computation.
It has been demonstrated that one can create order in the chaos and build interesting
constructions in GOL such as, e.g., simple computers, complete Turing machines, or even
simulations of GOL in GOL [14, 18].

In this paper, we build infrastructure for formal reasoning about circuits in GOL and
construct a verified circuit in GOL that can simulate GOL itself. However, before we describe
our work, we provide necessary background on GOL.

1.1 A short introduction to Conway’s Game of Life

Conway’s Game of Life is a deterministic simulation that is performed on an unbounded
two-dimensional grid of cells. Each cell can be either alive or dead. Time passes in discrete
steps and, at each step, all cells simultaneously update to their next state. The state of a

ar
X

iv
:2

50
4.

00
26

3v
1

 [c
s.F

L]
 3

1
M

ar
 2

02
5

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

9

Demos

GOL rules, gliders, space ships, useful collisions

10

11

Blog posts

link to blog

https://nicholas.carlini.com/writing/2021/improved-logic-gates-game-of-life.html

GOL in GOL?

Can we build a “mega cell” circuit in GOL such that:

if the entire space is tiled with these mega cells,
the joint behaviour is to simulate GOL?

Yes!

Each mega cell needs be a circuit that behaves like

a GOL cell.
 How do we build such a circuit?

12

M. O. Myreen and M. Carneiro 5

⊕H-A
&

⊕H-A
&∨⊕H-A

&∨

⊕

H-A
&

⊕

H-A
&

∨

⊕H-A
&

⊕
H-A

&

∨∨

⊕H-A
&

&

∨&& ⊕H-A
&

&∨

⊕
H-A

&

Figure 4 A high-level circuit diagram representation of the mega-cell in our construction. There
are AND (&), OR (‚) and NOT (B¶) gates, half-adders (H-A), and all of it is acyclic except for the
latch, highlighted in yellow , and the clock, which is a wire cycle forming the outer border of the
cell. The clock uses slow wires (visualized as switchbacks) in order to ensure that the main logic can
complete in time for the next clock cycle.

Our mega

cell design

Mini-tile:

150x150

GOL cells

Each

mini-tile

is a gate:

M. O. Myreen and M. Carneiro 5

⊕H-A
&

⊕H-A
&∨⊕H-A

&∨

⊕

H-A
&

⊕

H-A
&

∨

⊕H-A
&

⊕

H-A
&

∨∨

⊕H-A
&

&

∨&& ⊕H-A
&

&∨

⊕
H-A

&

Figure 4 A high-level circuit diagram representation of the mega-cell in our construction. There
are AND (&), OR (‚) and NOT (B¶) gates, half-adders (H-A), and all of it is acyclic except for the
latch, highlighted in yellow , and the clock, which is a wire cycle forming the outer border of the
cell. The clock uses slow wires (visualized as switchbacks) in order to ensure that the main logic can
complete in time for the next clock cycle.

This talk:

What is Conway’s Game of Life (GOL)?

Formal verification of circuits in GOL

rules, gliders, space ships, useful collisions,

circuits in GOL, GOL in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

Formal verification of circuits in GOL

rules, gliders, space ships, useful collisions,

circuits in GOL, GOL in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

This talk:

What is Conway’s Game of Life (GOL)?

Formal verification of circuits in GOL

rules, gliders, space ships, useful collisions,

circuits in GOL, GOL in GOL

symbolic simulation for individual gates,

compositional reasoning about (circuits in) GOL

Compositional reasoning about GOL

Intuition:

Patterns that are far from each other do not affect each other.

In the ITP:

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

M. O. Myreen and M. Carneiro 7

Both of these, but particularly the former, made significant use of HOL4’s recently added
feature for fast kernel computation [1].

3 Formally reasoning about GOL

This section describes how we formalise the rules of GOL and our approach to modular
verification of patterns in GOL.

3.1 Rules of GOL
We define a GOL state as a set S ™ Z2, where (i, j) œ S means that (i, j) is alive in state S.
As the definition of GOL’s next-state function depends on counting the number of live cells
neighboring a cell, we use the live_adj function to count the number of live neighbours:

adj i j
def= {(iÕ, jÕ) | max (|iÕ ≠ i|, |jÕ ≠ j|) = 1}

live_adj S i j
def= card (S fl adj i j)

Now, given a state S, (i, j) will be alive in the next state if its number of live neighbors
is 2 or 3 if (i, j) is live, or exactly 3 if (i, j) is dead.

step S
def= { (i ,j) | if (i ,j) œ S then live_adj S i j œ {2, 3} else live_adj S i j = 3}

3.2 Area of influence and compositionality
In order to enable modular reasoning about patterns in GOL, we need some notion of
non-interference. The intuition we follow is that two patterns in GOL will not interfere with
one another as long as they are su�ciently far from each other.

We formalise this intuition by defining a function infl which computes the area of influence

of a GOL state. Location (i, j) is in the area of influence of the patterns in GOL state S if it
is at most one step away from a live cell in S.

infl S
def= { (iÕ, jÕ) | ÷ i j. (i, j) œ S · max (|iÕ ≠ i|, |jÕ ≠ j|) Æ 1 }

Using infl we can capture the intuition that, if two patterns s and t are su�ciently far
from each other, then they evolve independently of each other in the next step. “Su�ciently
far” can be asserted by simply requiring that their areas of influence are disjoint.

„ infl S fl infl S
Õ = ÿ ∆ step (S fi S

Õ) = step S fi step S
Õ

Note that, while infl S fl infl S
Õ = ÿ is a su�cient condition, it is not the weakest condition

one can have on that theorem. We chose to use this simple condition because it makes proofs
easier than more fine-grained conditions.

3.3 GOL-IO
The patterns in GOL that we set out to verify communicate by sending spaceship patterns
to one another. For example, the AND gates shown in Figure 3 receive input from the left
and the bottom, and produce output to the right. The input and output consist of LWSSs
that they receive or hand over to surrounding patterns in GOL.

In order to verify each gate in isolation, we must therefore sever the links between the
gates and replace them by an interface. Because every gate will only interact with the

Define area of influence:

Prove:

17

What about communication?

Intuition:

A logic gate hands over signals to the next gate.

In the ITP:

8 GOL in GOL in HOL

interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

÷ S2.
infl S1 ™ c.area · step S1 = S2 ·
S2 fl c.assert_area = c.assert_content ·
S3 = c.insertions fi (S2 ≠ c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a “modifier”
c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no e�ect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N æ modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ÷ S2. io_step (c n) S1 S2 · io_steps k c (n + 1) S2 S3

run c S
def= ’ k. ÷ S

Õ. io_steps k c 0 S S
Õ

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.

configuration

specifies owned area

GOL next-state function

assertions

insertion of input deletion of output

Runs of GOL with I/O

8 GOL in GOL in HOL

interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

÷ S2.
infl S1 ™ c.area · step S1 = S2 ·
S2 fl c.assert_area = c.assert_content ·
S3 = c.insertions fi (S2 ≠ c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a “modifier”
c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no e�ect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N æ modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ÷ S2. io_step (c n) S1 S2 · io_steps k c (n + 1) S2 S3

run c S
def= ’ k. ÷ S

Õ. io_steps k c 0 S S
Õ

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.

8 GOL in GOL in HOL

interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

÷ S2.
infl S1 ™ c.area · step S1 = S2 ·
S2 fl c.assert_area = c.assert_content ·
S3 = c.insertions fi (S2 ≠ c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a “modifier”
c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no e�ect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N æ modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ÷ S2. io_step (c n) S1 S2 · io_steps k c (n + 1) S2 S3

run c S
def= ’ k. ÷ S

Õ. io_steps k c 0 S S
Õ

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.

8 GOL in GOL in HOL

interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

÷ S2.
infl S1 ™ c.area · step S1 = S2 ·
S2 fl c.assert_area = c.assert_content ·
S3 = c.insertions fi (S2 ≠ c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a “modifier”
c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no e�ect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N æ modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ÷ S2. io_step (c n) S1 S2 · io_steps k c (n + 1) S2 S3

run c S
def= ’ k. ÷ S

Õ. io_steps k c 0 S S
Õ

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.

8 GOL in GOL in HOL

interfaces of its neighbors, the precise details of evolution inside the gate will not matter.
The way we express this is through a modified step relation called io_step:

io_step c S1 S3
def=

÷ S2.
infl S1 ™ c.area · step S1 = S2 ·
S2 fl c.assert_area = c.assert_content ·
S3 = c.insertions fi (S2 ≠ c.deletions)

This relation is functional, but unlike step it is not total. It is parameterized by a “modifier”
c which does several things at once:

c.area provides “guard rails” for the simulation. The initial state must stay within c.area
and must not touch the interior border.
c.assert_area and c.assert_content allow the modifier to assert that a particular pattern
appears in the simulation on this step, without otherwise modifying the behavior.
c.insertions and c.deletions actually change the state.

Inputs can be placed on the board at any time using c.insertions.
Outputs are cleanly zapped from the state using c.deletions.

For most steps, c.insertions, c.deletions, c.assert_area and c.assert_content are all empty.
However, at time points when an input is supposed to arrive, c.insertions will contain an LWSS
at an input port. Similarly, output is handled by a combination of c.deletions, c.assert_area
and c.assert_content — c.assert_area and c.assert_content ensure that the expected output was
produced, and c.deletions removes the output from our local simulation.

An important feature of io_step is that matching inputs and outputs cancel out. That
is, if c.assert_content = c.insertions and c.assert_area = c.deletions, then io_step c S1 S3 implies
step S1 = S3, i.e., that the insertions and deletions have no e�ect. This will be relevant later,
for the composition theorem.

3.4 GOL-IO runs
To reason about runs consisting of many GOL-IO steps, we define io_steps k which performs
k-steps of io_step. Since io_step requires a modifier c, io_steps requires a sequence of modifiers
c : N æ modifier.

io_steps 0 c n S1 S2
def= S1 = S2

io_steps (Suc k) c n S1 S3
def= ÷ S2. io_step (c n) S1 S2 · io_steps k c (n + 1) S2 S3

run c S
def= ’ k. ÷ S

Õ. io_steps k c 0 S S
Õ

The run c S function asserts that the execution starting from state S is able to run
indefinitely using and respecting the modifiers in c. Note that the assertions in c can be used
to assert that desired values appear at points of interest in the simulation. It is through
these assertions we record the behaviour of the verified circuits we build.

4 Verified Circuits in GOL

This section describes how we write specifications for logic gates built within GOL, the key
theorems for working with them, and the abstractions we build to reach the level where we
can construct the verified circuit that implements GOL itself.

A successful run is:

We can run many steps:

an infinite stream of configurations

can run any number of steps without error

19

Circuits

We build the notion of circuit on top ‘run’:

M. O. Myreen and M. Carneiro 9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[6]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[6]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[6], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

Example gate specification:

an infinite stream of booleans

another infinite stream

the pointwise conjunction of the two
streams, delayed by 5 steps

M. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

M. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

4 GOL in GOL in HOL

(a) AND gate computing 0 · 0 = 0 (b) AND gate computing 0 · 1 = 0

(c) AND gate computing 1 · 0 = 0 (d) AND gate computing 1 · 1 = 1

(e) AND gate, symbolic simulation of a·b (§5.1) (f) A crossover gate.

Figure 3 Illustration of some gates and their data flow behavior. Color key: a, b, ¬b, a · b.

AND gate exampleM. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

M. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

AND gate example

How is a theorem like this proved in HOL?

Answer:

1. We define a symbolic simulator that runs circuit io_step.

3. We run the symbolic simulator for 60 GOL steps in logic

 to confirm that the given symbolic state is a fixed point.

2. We use an external program to find a symbolic fixed-point.

M. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

M. O. Myreen and M. Carneiro 25:9

4.1 GOL-IO runs for circuit components
We state our circuit specifications in terms of circuit_run which is defined in terms of run
from the previous section. The meaning of the parameters, area, ins, outs, init, and helper
functions, circ_mod and circ_mod_wf, will be explained later.

circuit_run area ins outs init
def=

run (circ_mod area ins outs) init ·
circ_mod_wf area ins outs

To get a sense of what circuit specifications look like using an example, consider the AND
gate from Figure 3. We can prove the following specification theorem:

„ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} {((1, 0), E, a[5] · b[5]} and_gate_pattern

The coordinates and delays here are in a higher level coordinate system, where 1 unit
corresponds to 75 GOL cells (or 1/2 of a tile) and 1 tick of delay corresponds to 60 GOL
steps. The components of the specification are as follows:

area := {(0, 0)} asserts that this circuit uses one full tile centered at position (0, 0).
(Because the coordinate system here is in half-tile units, an adjacent gate would be at
(2, 0). Gates are always placed at double-even coordinates.)
ins := {((≠1, 0), E, a), ((0, 1), N, b)} states that this gate has two inputs. The first one is
at position (≠1, 0) (the left edge of the tile), moving east (E) into the tile, and carrying
some signal (at). Note that signals are functions from natural numbers to booleans, where
at is the value that arrives into this circuit on tick t. The second input comes from (0, 1),
moves north (N), and is carrying signal (bt).
outs := {((1, 0), E, a[5] · b[5]} states that there is one output stream appearing at location
(1, 0), moving east out of the tile and carrying signal a[5] ·b[5], where (a[n])t

def= t Ø n·at≠n

delays a signal by n ticks, and (a · b)t
def= (at · bt) is pointwise AND on signals.

init := and_gate_pattern specifies that the initial configuration of the GOL cells of this
AND gate is the content of and_gate_pattern.

4.2 Input and output in GOL circuits
As can be seen in Figure 3, circuit tiles have a square geometry with little ports on the sides
through which communication happens. We will now discuss how the IO ports are handled.
A gate simulation involves the following stages:
1. The initial state is set up, as in Figure 3.
2. IO ports are included for E/W inputs and N/S outputs, and excluded for N/S inputs and

E/W outputs. (See Figure 3f.)
3. 30 GOL steps are performed, during which nothing must escape the bounds.
4. Deletions are performed at N/S output ports.
5. Insertions are performed at N/S input ports.
6. IO ports are included for N/S inputs and E/W outputs, and excluded for E/W inputs and

N/S outputs.
7. 30 GOL steps are performed, during which nothing must escape the bounds.
8. Deletions are performed at E/W output ports.
9. Insertions are performed at E/W input ports.

10. Steps 2-9 are repeated for each tick.3

3 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

ITP 2025

10 GOL in GOL in HOL

(a) (b) (c)

Figure 5 Composition of an AND gate and a wire. In step (a) æ (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) æ (c) the matching pair is canceled.

10. Steps 2-9 are repeated for each tick.2
These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a hando� of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the hando� in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4,5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase di�erence between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) ≠ E = (≠1, 0).

„ circuit_run a1 ins1 outs1 init1 · circuit_run a2 ins2 outs2 init2 · a1 fl a2 = ÿ ·
(’ p d r .

((p,d,r) œ ins1 · p ≠ d œ a2 ∆ (p,d,r) œ outs2) ·
((p,d,r) œ outs1 · p + d œ a2 ∆ (p,d,r) œ ins2) ·
((p,d,r) œ ins2 · p ≠ d œ a1 ∆ (p,d,r) œ outs1) ·
((p,d,r) œ outs2 · p + d œ a1 ∆ (p,d,r) œ ins1)) ∆

circuit_run (a1 fi a2) (ins1 fi ins2) (outs1 fi outs2) (init1 fi init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and

2 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

Composing two circuits

circuit 1 circuit 2

result is the union of their components

area, inputs, outputs, initial states

23

Composition example10 GOL in GOL in HOL

(a)

&
(b) (c)

Figure 5 Composition of an AND gate and a wire. In step (a) æ (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) æ (c) the matching pair is canceled.

10. Steps 2-9 are repeated for each tick.2
These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a hando� of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the hando� in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4,5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase di�erence between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) ≠ E = (≠1, 0).

„ circuit_run a1 ins1 outs1 init1 · circuit_run a2 ins2 outs2 init2 · a1 fl a2 = ÿ ·
(’ p d r .

((p,d,r) œ ins1 · p ≠ d œ a2 ∆ (p,d,r) œ outs2) ·
((p,d,r) œ outs1 · p + d œ a2 ∆ (p,d,r) œ ins2) ·
((p,d,r) œ ins2 · p ≠ d œ a1 ∆ (p,d,r) œ outs1) ·
((p,d,r) œ outs2 · p + d œ a1 ∆ (p,d,r) œ ins1)) ∆

circuit_run (a1 fi a2) (ins1 fi ins2) (outs1 fi outs2) (init1 fi init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and

2 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

24

M. O. Myreen and M. Carneiro 25:11

To illustrate, suppose we want to compose an AND gate and a wire, as depicted in
Figure 5.

1. „ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} AND gate spec
{((1, 0), E, a[5] · b[5]} and_gate_pattern

2. „ circuit_run {(0, 0)} {((≠1, 0), E, a)} {((1, 0), E, a[5]} ÿ wire spec
3. „ circuit_run {(2, 0)} {((1, 0), E, a)} {((3, 0), E, a[5]} ÿ translate (2)
4. „ circuit_run {(2, 0)} {((1, 0), E, a[5] · b[5])} substitute (3)

{((3, 0), E, (a[5] · b[5])[5]} ÿ
5. „ circuit_run {(0, 0), (2, 0)} compose (1,4)

{((≠1, 0), E, a), ((0, 1), N, b), ((1, 0), E, a[5] · b[5])}
{((1, 0), E, a[5] · b[5]), ((3, 0), E, (a[5] · b[5])[5]}
and_gate_pattern

6. „ circuit_run {(0, 0), (2, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} internalize (5)
{((3, 0), E, a[10] · b[10]} and_gate_pattern

The AND gate specification is familiar from section 4.1. The wire is similar, but it
does not need any initial pattern because LWSSs can travel through empty space. We first
translate the wire by (2, 0) so it lies next to the AND gate, then substitute a to a[5] · b[5] so
that it matches with the output of the AND gate. We can then compose them in step 5, and
the redundant input/output pair is cancelled in step 6, with the delay distributing into the
expression.

Here we used a binary version of the composition theorem but in our formalization we
also prove and use a more general form of the composition theorem which can compose an
arbitrary set of circuits. This is used in particular to tile Z2-many copies of a gate.

4.4 Approximate signals
The above-described composition process results in exact descriptions of the stream outputs
from a set of gates. However, we run into issues when taking into account delay mismatches
where the same signal travels via two paths, resulting in expressions like a[5] · a[6] which we
cannot simplify to a[6], even though all we really care about is that the a signal arrives in at
most n ticks (in this case, n = 6).

In fact, this issue can even arise within a single gate. The half-adder is supposed to
calculate the XOR of two signals on one output and AND on the other output. However,
the actual circuit theorem we obtain looks like this:

„ circuit_run {(0, 0), (2, 0), (0, 2), (2, 2)} {((≠1, 0), E, a), ((≠1, 2), E, b)}
{((3, 0), E, (a[15] · ((a[12] · ¬b[18]) ‚ (¬a[12] · b[15] · ¬b[18]))) ‚ (¬a[15] · (a[12] ‚ b[15]))),

((3, 2), E, a[17] · b[15])}
half_adder_gate_pattern

If we could erase all the delays from the expression at (3, 0), we would be able to simplify
it to simply a[?] ü b[?], but because the delays are di�erent it is simply a somewhat arbitrary
function on four boolean values a[12], a[15], b[15], b[18]. To make matters worse, this self-delay
issue compounds as we push through more gates – if we were to feed this expression into
another XOR we would get even more mirror copies of the signals.

To resolve this, we weaken our constraints on signals. Rather than specifically asserting
that a signal is equal to a given value, each wire is associated to an element in a type value,
whose denotation is a set of possible signals. This amounts to a Hoare-triple-like precondition
at each “program point” (= IO port).

ITP 2025

10 GOL in GOL in HOL

(a)

&
(b) (c)

Figure 5 Composition of an AND gate and a wire. In step (a) æ (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) æ (c) the matching pair is canceled.

10. Steps 2-9 are repeated for each tick.2
These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a hando� of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the hando� in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4,5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase di�erence between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) ≠ E = (≠1, 0).

„ circuit_run a1 ins1 outs1 init1 · circuit_run a2 ins2 outs2 init2 · a1 fl a2 = ÿ ·
(’ p d r .

((p,d,r) œ ins1 · p ≠ d œ a2 ∆ (p,d,r) œ outs2) ·
((p,d,r) œ outs1 · p + d œ a2 ∆ (p,d,r) œ ins2) ·
((p,d,r) œ ins2 · p ≠ d œ a1 ∆ (p,d,r) œ outs1) ·
((p,d,r) œ outs2 · p + d œ a1 ∆ (p,d,r) œ ins1)) ∆

circuit_run (a1 fi a2) (ins1 fi ins2) (outs1 fi outs2) (init1 fi init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and

2 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

10 GOL in GOL in HOL

(a) (b)

&
(c)

Figure 5 Composition of an AND gate and a wire. In step (a) æ (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) æ (c) the matching pair is canceled.

10. Steps 2-9 are repeated for each tick.2
These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a hando� of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the hando� in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4,5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase di�erence between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) ≠ E = (≠1, 0).

„ circuit_run a1 ins1 outs1 init1 · circuit_run a2 ins2 outs2 init2 · a1 fl a2 = ÿ ·
(’ p d r .

((p,d,r) œ ins1 · p ≠ d œ a2 ∆ (p,d,r) œ outs2) ·
((p,d,r) œ outs1 · p + d œ a2 ∆ (p,d,r) œ ins2) ·
((p,d,r) œ ins2 · p ≠ d œ a1 ∆ (p,d,r) œ outs1) ·
((p,d,r) œ outs2 · p + d œ a1 ∆ (p,d,r) œ ins1)) ∆

circuit_run (a1 fi a2) (ins1 fi ins2) (outs1 fi outs2) (init1 fi init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and

2 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

10 GOL in GOL in HOL

(a) (b) (c)

&

Figure 5 Composition of an AND gate and a wire. In step (a) æ (b) we merge the gate areas,
resulting in an assembly with an internal input port overlapping an output, highlighted in yellow .
In step (b) æ (c) the matching pair is canceled.

10. Steps 2-9 are repeated for each tick.2
These steps are all expressible through a carefully chosen sequence of GOL-IO modifiers (see
Section 3.3).

In other words, for ports going N/S, the IO action scheduled to happen on this tick
happens at the end of 30 GOL steps (halfway through the tick), while for E/W ports the
action happens after all 60 GOL steps (right at the end of the tick period, before the start of
the next tick). The IO action itself is a hando� of an LWSS (or not, depending on the value
of the high level signal on that time step) at each output port, and a receipt of an LWSS (or
not) at each input port.

The reason for the flip-flopping IO port ownership in steps 2 and 6 is because the producer
gate must have ownership of the region prior to the hando� in order to get an LWSS to
migrate to that position, and once the deletions and insertions of steps 4,5 are performed,
the region must be given to the consumer so the LWSS can get out of the port area and into
the consumer gate. The phase di�erence between N/S and E/W ports is to enable crossovers
as demonstrated in Figure 3f.

4.3 Composing circuit tiles
Equipped with circuit_run and an understanding for how input-output ports work, we now
look at how circuit_run specifications can be composed.

We use the following theorem when composing two circuit_run specifications. The theorem
requires the areas owned by these specifications to be disjoint. Furthermore, input (resp.
output) port at the edge of one circuit to have a matching output (resp. input) port in the
other circuit. Here we overload notation: (0, 0) + E = (1, 0), and (0, 0) ≠ E = (≠1, 0).

„ circuit_run a1 ins1 outs1 init1 · circuit_run a2 ins2 outs2 init2 · a1 fl a2 = ÿ ·
(’ p d r .

((p,d,r) œ ins1 · p ≠ d œ a2 ∆ (p,d,r) œ outs2) ·
((p,d,r) œ outs1 · p + d œ a2 ∆ (p,d,r) œ ins2) ·
((p,d,r) œ ins2 · p ≠ d œ a1 ∆ (p,d,r) œ outs1) ·
((p,d,r) œ outs2 · p + d œ a1 ∆ (p,d,r) œ ins1)) ∆

circuit_run (a1 fi a2) (ins1 fi ins2) (outs1 fi outs2) (init1 fi init2)

The conclusion of the composition theorem above unions each component of the two
circuits. This means that matching input and output ports then appear both as input and

2 For reasons we will get into in section 5.1, because of our use of symbolic evaluation we only actually
need to perform steps 2-9 once, but the described gate evolution repeats these steps on each tick.

25

26

Problem

M. O. Myreen and M. Carneiro 5

⊕H-A
&

⊕H-A
&∨⊕H-A

&∨

⊕

H-A
&

⊕

H-A
&

∨

⊕H-A
&

⊕

H-A
&

∨∨

⊕H-A
&

&

∨&& ⊕H-A
&

&∨

⊕
H-A

&

Figure 4 A high-level circuit diagram representation of the mega-cell in our construction. There
are AND (&), OR (‚) and NOT (B¶) gates, half-adders (H-A), and all of it is acyclic except for the
latch, highlighted in yellow , and the clock, which is a wire cycle forming the outer border of the
cell. The clock uses slow wires (visualized as switchbacks) in order to ensure that the main logic can
complete in time for the next clock cycle.

The GOL “mega cell” circuit uses half-adders:

input 1

input 2

xor of input1 and input 2

and of input1 and input 2

M. O. Myreen and M. Carneiro 11

output ports of the resulting circuit_run specification (Figure 5b). The following input-output
internalization theorem allows us to delete matching IO ports.

„ circuit_run area ins outs init · m ™ ins · m ™ outs ∆
circuit_run area (ins ≠ m) (outs ≠ m) init

To illustrate, suppose we want to compose an AND gate and a wire, as depicted in
figure 5.

1. „ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} AND gate spec
{((1, 0), E, a[5] · b[6]} and_gate_pattern

2. „ circuit_run {(0, 0)} {((≠1, 0), E, a)} {((1, 0), E, a[5]} ÿ wire spec
3. „ circuit_run {(2, 0)} {((1, 0), E, a)} {((3, 0), E, a[5]} ÿ translate (2)
4. „ circuit_run {(2, 0)} {((1, 0), E, a[5] · b[6])} substitute (3)

{((3, 0), E, (a[5] · b[6])[5]} ÿ
5. „ circuit_run {(0, 0), (2, 0)} compose (1,4)

{((≠1, 0), E, a), ((0, 1), N, b), ((1, 0), E, a[5] · b[6])}
{((1, 0), E, a[5] · b[6]), ((3, 0), E, (a[5] · b[6])[5]}
and_gate_pattern

6. „ circuit_run {(0, 0), (2, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} internalize (5)
{((3, 0), E, a[10] · b[11]} and_gate_pattern

The AND gate specification is familiar from section 4.1. The wire is similar, but it
does not need any initial pattern because LWSSs can travel through empty space. We first
translate the wire by (2, 0) so it lies next to the AND gate, then substitute a to a[5] · b[6] so
that it matches with the output of the AND gate. We can then compose them in step 5, and
the redundant input/output pair is cancelled in step 6, with the delay distributing into the
expression.

Here we used a binary version of the composition theorem but in our formalization we
also prove and use a more general form of the composition theorem which can compose an
arbitrary set of circuits. This is used in particular to tile Z2-many copies of a gate.

4.4 Approximate signals
The above-described composition process results in exact descriptions of the stream outputs
from a set of gates. However, we run into issues when taking into account delay mismatches
where the same signal travels via two paths, resulting in expressions like a[5] · a[6] which we
cannot simplify to a[6], even though all we really care about is that the a signal arrives in at
most n ticks (in this case, n = 6).

In fact, this issue can even arise within a single gate. The half-adder is supposed to
calculate the XOR of two signals on one output and AND on the other output. However,
the actual circuit theorem we obtain looks like this:

„ circuit_run {(0, 0), (2, 0), (0, 2), (2, 2)} {((≠1, 0), E, a), ((≠1, 2), E, b)}
{((3, 0), E, (a[15] · ((a[12] · ¬b[18]) ‚ (¬a[12] · b[15] · ¬b[18]))) ‚ (¬a[15] · (a[12] ‚ b[15]))),

((3, 2), E, a[17] · b[15])}
half_adder_gate_pattern

If we could erase all the delays from the expression at (3, 0), we would be able to simplify
it to simply a[?] ü b[?], but because the delays are di�erent it is simply a somewhat arbitrary

Too precise specification:

xor of a and b ?

kind of if you squint very very hard….

M. O. Myreen and M. Carneiro 11

output ports of the resulting circuit_run specification (Figure 5b). The following input-output
internalization theorem allows us to delete matching IO ports.

„ circuit_run area ins outs init · m ™ ins · m ™ outs ∆
circuit_run area (ins ≠ m) (outs ≠ m) init

To illustrate, suppose we want to compose an AND gate and a wire, as depicted in
figure 5.

1. „ circuit_run {(0, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} AND gate spec
{((1, 0), E, a[5] · b[6]} and_gate_pattern

2. „ circuit_run {(0, 0)} {((≠1, 0), E, a)} {((1, 0), E, a[5]} ÿ wire spec
3. „ circuit_run {(2, 0)} {((1, 0), E, a)} {((3, 0), E, a[5]} ÿ translate (2)
4. „ circuit_run {(2, 0)} {((1, 0), E, a[5] · b[6])} substitute (3)

{((3, 0), E, (a[5] · b[6])[5]} ÿ
5. „ circuit_run {(0, 0), (2, 0)} compose (1,4)

{((≠1, 0), E, a), ((0, 1), N, b), ((1, 0), E, a[5] · b[6])}
{((1, 0), E, a[5] · b[6]), ((3, 0), E, (a[5] · b[6])[5]}
and_gate_pattern

6. „ circuit_run {(0, 0), (2, 0)} {((≠1, 0), E, a), ((0, 1), N, b)} internalize (5)
{((3, 0), E, a[10] · b[11]} and_gate_pattern

The AND gate specification is familiar from section 4.1. The wire is similar, but it
does not need any initial pattern because LWSSs can travel through empty space. We first
translate the wire by (2, 0) so it lies next to the AND gate, then substitute a to a[5] · b[6] so
that it matches with the output of the AND gate. We can then compose them in step 5, and
the redundant input/output pair is cancelled in step 6, with the delay distributing into the
expression.

Here we used a binary version of the composition theorem but in our formalization we
also prove and use a more general form of the composition theorem which can compose an
arbitrary set of circuits. This is used in particular to tile Z2-many copies of a gate.

4.4 Approximate signals
The above-described composition process results in exact descriptions of the stream outputs
from a set of gates. However, we run into issues when taking into account delay mismatches
where the same signal travels via two paths, resulting in expressions like a[5] · a[6] which we
cannot simplify to a[6], even though all we really care about is that the a signal arrives in at
most n ticks (in this case, n = 6).

In fact, this issue can even arise within a single gate. The half-adder is supposed to
calculate the XOR of two signals on one output and AND on the other output. However,
the actual circuit theorem we obtain looks like this:

„ circuit_run {(0, 0), (2, 0), (0, 2), (2, 2)} {((≠1, 0), E, a), ((≠1, 2), E, b)}
{((3, 0), E, (a[15] · ((a[12] · ¬b[18]) ‚ (¬a[12] · b[15] · ¬b[18]))) ‚ (¬a[15] · (a[12] ‚ b[15]))),

((3, 2), E, a[17] · b[15])}
half_adder_gate_pattern

If we could erase all the delays from the expression at (3, 0), we would be able to simplify
it to simply a[?] ü b[?], but because the delays are di�erent it is simply a somewhat arbitrary

Too precise specification:

xor of a and b ?

kind of if you squint very very hard….

Mario developed a layer on top that talks about stable signals:

12 GOL in GOL in HOL

function on four boolean values a[12], a[15], b[15], b[18]. To make matters worse, this self-delay
issue compounds as we push through more gates — if we were to feed this expression into
another XOR we would get even more mirror copies of the signals.

To resolve this, we weaken our constraints on signals. Rather than specifically asserting
that a signal is equal to a given value, each wire is associated to an element in a type value,
whose denotation is a set of possible signals. This amounts to a Hoare-triple-like precondition
at each “program point” (= IO port).

We use s „ A to assert that s : stream is in the denotation of A : value, where stream def=
Z2 æ N æ bool. A stream has values sz(t) saying whether there is an LWSS or not each tick,
parameterized over z œ Z2, which is the mega-cell index.

There are two main kinds of signals, exact signals and approximate signals. Most wires
in the circuit carry approximate signals.

avalue = cell(Z,Z) | ¬avalue | avalue · avalue | avalue ‚ avalue | avalue ü avalue
evalue = ck | ¬ck | this | this · ck | this · ¬ck
value = avalue[N] | evalue[Z] | €

An approximate signal A[n] represents a signal that holds the value A : avalue after
n ticks, and can have any value before that point. Signals have a refinement relation
A ™ B

def= ’s. s „ A ∆ s „ B, and we have m Æ n =∆ A[m] ™ A[n].
Exact signals are much rarer, and they deal with all of the signals that are involved in

the latch and clock, where it is important that we do not allow garbage values to enter. In
order for exact signals to support a lossless (≠)[n] delay operation, an exact signal denotes a
Z æ bool stream, that is, one that extends into the past (even though our GOL simulation
normally only deals with N æ bool streams). There are two main exact signals, which can
be combined in a limited way by logical operators:

ck, the clock signal, is 1 from tick 0 to 22 (the pulse width), and then 0 from tick 22 to
586 (the clock period), and then it repeats.
thisis a signal which denotes the current mega-cell value GOL(z, 0) for 586 ticks, then
GOL(z, 1) (the next time step), and so on.

For example, the wire at the top of the latch in Figure 4 has the value this[≠15], which
means that in the initial state it is holding the current value of this cell, and it will continue
to hold that value until tick 586 ≠ 15, at which point it will switch to holding the next value
that this cell should have, and it will switch again 586 ticks later.

Approximate signals allow arbitrary boolean combinations of the variables cell(m, n),
which denote the value of a nearby cell GOL(x + m, y + n, t). Note that this[m] ™ cell(0, 0)[n]

provided that 0 Æ m Æ n, and we perform this “decay” operation early so that most of the
gates never have to see an exact signal.

The value € represents failure and any signal satisfies it; it is used whenever operations
go outside the expected bounds. For example, when applying the negation function to this,
since there is no evalue representing ¬this, the result is instead €.

The upshot of this is that we now get much nicer provable gate specifications:

„ circuit_run’ {(0, 0), (2, 0), (0, 2), (2, 2)} {((≠1, 0), E, A), ((≠1, 2), E, B)}
{((3, 0), E, A[15] ü B[18]), ((3, 2), E, A[17] · B[15]}
half_adder_gate_pattern

this is the stable output

Mario to the rescue

We proved:

M. O. Myreen and M. Carneiro 5

⊕H-A
&

⊕H-A
&∨⊕H-A

&∨

⊕

H-A
&

⊕

H-A
&

∨

⊕H-A
&

⊕
H-A

&

∨∨

⊕H-A
&

&

∨&& ⊕H-A
&

&∨

⊕
H-A

&

Figure 4 A high-level circuit diagram representation of the mega-cell in our construction. There
are AND (&), OR (‚) and NOT (B¶) gates, half-adders (H-A), and all of it is acyclic except for the
latch, highlighted in yellow , and the clock, which is a wire cycle forming the outer border of the
cell. The clock uses slow wires (visualized as switchbacks) in order to ensure that the main logic can
complete in time for the next clock cycle.

… what a direct run of the GOL steps would have produced.

… results in state from which we can read …

… such that a run of the mega cells …

Top-level correctness theorem:

16 GOL in GOL in HOL

The expression above simplifies to A2 · B1. This approach would be unworkable if the number
of variables exceeds 2 or 3. Fortunately, such situations are very rare in our gate simulations
(it goes as high as 4 variables in the half-adder, see section 4.4).

5.2 Putting it all together
The floodfill lemmas of section 4.5 are designed so that the main part of the construction can
be done fully automatically.

An SML program takes as input an ASCII-art version of Figure 4.
It is parsed to get gate positioning and orientation, and the appropriate symbolic evaluation
theorem from section 5.1 is selected.
The initial gates (at the latch and clock), with their values, are additional inputs, and it
uses floodfill_add_ins to add these.
It then performs a depth first traversal of the diagram.

If an output is facing a gate which has all of its inputs in the output list, use
floodfill_add_gate.
If an output is facing a crossover, use floodfill_add_crossover, or floodfill_finish_crossover
if it is the second time we have visited this gate.
If an output is facing the edge of the tile, use floodfill_teleport to wrap it back in bounds.

These steps are repeated until nothing can make progress. In the process we work out all
of the formulas associated to each IO port.
The value type from section 4.4 has functions defined on it for ·, ‚, ¬, which do the
obvious thing on avalue values, but there are a few interesting cases designed to handle
the latch area:

this[m] · (¬ck)[n] = (this · ¬ck)[n] provided n Æ m Æ n + 22
ck[m] · v[n] = (this · ck)[m] provided n Æ m + 586, m Æ ≠22, and v = nextCell
(this · ck)[n] ‚ (this · ¬ck)[n] = this[n]

Here nextCell : avalue is the specific formula that the mega-cell circuit computes.
nextCell is a boolean combination of cell(m, n) values for ≠1 Æ m, n Æ 1, and we prove it
is equal to the GOL step function from section 3.1 by enumerating the 512 possibilities.
The final floodfill theorem has only two outputs, which overlap the two inputs, and therefore
they cancel and produce a complete GOL (not GOL-IO) simulation. In particular, since
one of these inputs has value this[≠15], we know that in the final simulation, if we sample a
particular pixel in this IO port at multiples of 586 ticks, it will be on i� the corresponding
mega GOL simulation pixel is on.

In the end, the final theorem we obtain looks like this (gol_in_gol_circuit_thm):

„ ’ n S. stepn S = read_mega_cells (stepn◊60◊586 (build_mega_cells S))

where step is the GOL step function; build_mega_cells s takes an input GOL state S and tiles
the plane with two versions of the mega-cell in figure 4, which di�er only slightly, in the
internal state of the latch; and read_mega_cells S = {p | 3150p + (1726, 599) œ S} performs
the aforementioned sampling.

6 Conclusion, Related Work and Future Work

In this paper, we have demonstrated that it is possible to formally verify circuits built in
GOL and we have verified a circuit that implements GOL itself inside GOL. To the best

For any initial state S …

… we can build a mega cell tiling …

29

The End — Questions?

M. O. Myreen and M. Carneiro 25:17

In the end, the final theorem we obtain looks like this (gol_in_gol_circuit_thm):

„ ’ n S. stepn S = read_mega_cells (stepn◊60◊586 (build_mega_cells S))

where step is the GOL step function; build_mega_cells s takes an input GOL state S and tiles
the plane with two versions of the mega-cell in Figure 4, which di�er only slightly, in the
internal state of the latch; and read_mega_cells S = {p | 3150p + (1726, 599) œ S} performs
the aforementioned sampling.

6 Conclusion, Related Work and Future Work

In this paper, we have demonstrated that it is possible to formally verify circuits built in
GOL and we have verified a circuit that implements GOL itself inside GOL. To the best of
our knowledge, this is the first work to formally verify, in an interactive theorem prover (ITP),
constructions in a cellular automata. The formalization is roughly 9 500 LOC.

There has been significant prior work on formalizing more traditional models of com-
putation in ITPs, e.g., Turing machines [11, 2, 20, 6], register machines [12, 3], ⁄-calculus
[16, 13, 10, 9], µ-recursive functions [5] and more [17]. We refer to Forster [8] for more in
depth discussions on computability in ITPs. Rule 110 [7] is another simple universal CA.

In future work, it would be interesting to explore ITP proofs connecting GOL with more
traditional forms of computability. Also, the tools used here could be generalized to prove
other GOL circuits, other cellular automata, as well as low level hardware correctness proofs.

References
1 Oskar Abrahamsson, Magnus O. Myreen, Michael Norrish, Hrutvik Kanabar, and Jo-

hannes Åman Pohjola. Fast, Verified Computation for HOL ITPs. J. Autom. Reason.,
69(1), February 2025. doi:10.1007/s10817-025-09719-8.

2 Andrea Asperti and Wilmer Ricciotti. Formalizing Turing Machines. In C.-H. Luke Ong
and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and Computation - 19th
International Workshop (WoLLIC), volume 7456 of Lecture Notes in Computer Science, pages
1–25. Springer, 2012. doi:10.1007/978-3-642-32621-9_1.

3 Jonas Bayer, Marco David, Abhik Pal, Benedikt Stock, and Dierk Schleicher. The DPRM
Theorem in Isabelle (Short Paper). In John Harrison, John O’Leary, and Andrew Tolmach,
editors, 10th International Conference on Interactive Theorem Proving (ITP), volume 141
of LIPIcs, pages 33:1–33:7. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:

10.4230/LIPICS.ITP.2019.33.
4 Nicholas Carlini. Improved Logic Gates on Conway’s Game of Life – Part 3, 2021. URL: https:

//nicholas.carlini.com/writing/2021/improved-logic-gates-game-of-life.html.
5 Mario Carneiro. Formalizing computability theory via partial recursive functions. CoRR,

abs/1810.08380, 2018. arXiv:1810.08380.
6 Alberto Cia�aglione. Towards Turing computability via coinduction. Sci. Comput. Program.,

126:31–51, 2016. doi:10.1016/J.SCICO.2016.02.004.
7 Matthew Cook. Universality in Elementary Cellular Automata. Complex Systems, 15, March

2004. doi:10.25088/ComplexSystems.15.1.1.
8 Yannick Forster. Computability in constructive type theory. PhD thesis, Saarland University,

Germany, 2021. URL: https://d-nb.info/1255182792.
9 Yannick Forster, Fabian Kunze, and Marc Roth. The weak call-by-value ⁄-calculus is reasonable

for both time and space. Proc. ACM Program. Lang., 4(POPL):27:1–27:23, 2020. doi:

10.1145/3371095.

ITP 2025

