
Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Formalising Subject Reduction and Progress for
Multiparty Session Processes

ITP !”!#

Burak Ekici
Tadayoshi Kamegai

Nobuko Yoshida

September !$, !”!#

% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

! / &’

Synchronous Multiparty Session Types and Processes Session Trees Tree Operations Type System Proof Sketch In Rocq

Multiparty Session Types (Top Down Approach) (Honda, NY and Carbone !””#)
A Global Type Tree G

projection (↭)

Local Type Tree for p Tp Local Type Tree for q Tq Local Type Tree for r Tr

subtyping (↫) ↫ ↫ ↫

Local Type Tree for p T→
p Local Type Tree for q T→

q Local Type Tree for r T→
r

typing (→p)

Process for p Pp Process for q Pq Process for r Pr

$ / $#

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Multiparty Session Types (Top Down Approach) (Honda, NY and Carbone !””$)
A Global Type Tree G

projection (↭)

Local Type Tree for p Tp Local Type Tree for q Tq Local Type Tree for r Tr

subtyping (↫) ↫ ↫ ↫

Local Type Tree for p T→
p Local Type Tree for q T→

q Local Type Tree for r T→
r

typing (→p)

Process for p Pp Process for q Pq Process for r Pr

& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Multiparty Session Types (Top Down Approach) (Honda, NY and Carbone !””$)
A Global Type Tree G

projection (↭)

Local Type Tree for p Tp Local Type Tree for q Tq Local Type Tree for r Tr

subtyping (↫) ↫ ↫ ↫

Local Type Tree for p T→
p Local Type Tree for q T→

q Local Type Tree for r T→
r

typing (→p)

Process for p Pp Process for q Pq Process for r Pr

& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Multiparty Session Types (Top Down Approach) (Honda, NY and Carbone !””$)
A Global Type Tree G

projection (↭)

Local Type Tree for p Tp Local Type Tree for q Tq Local Type Tree for r Tr

subtyping (↫) ↫ ↫ ↫

Local Type Tree for p T→
p Local Type Tree for q T→

q Local Type Tree for r T→
r

typing (→p)

Process for p Pp Process for q Pq Process for r Pr

& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem

subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem
subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem
subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”

• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem
subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping

• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem
subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees

• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying
coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem
subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further

(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Design Overview

G

T

G

T

P
(∏

i→I pi ω Pi
)
= M M’

G’
G↑↓

T↑↓

↭

→p
→m

↑↓

→m

↓

/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Design Overview

G

T

G

T

P
(∏

i→I pi ω Pi
)
= M M’

G’
G↑↓

T↑↓

↭

→p
→m

↑↓

→m

↓

/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:

• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:

• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

p ↓ q

bool end

q ↓ r nat

int end

p ↓ q real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:
• branching (&) or selection (↑) for local type trees

• communication action for global type trees
• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:
• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

p ↓ q

bool end

q ↓ r nat

int end

p ↓ q real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:
• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end

• edge annotations: linking internal node to a payload (εP) or
continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:
• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:
• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Global Types↑Global Type Trees
represent recursive types and their unfoldings with the same tree – equi-recursive approach:

G[µt.G/t] G→↑ G

µt.G G→↑ G
[gtrans-rec]

↓i ↔ I, Gi
G→↑ Gi

p ↑ q : {ωi(Si).Gi}i→I
G→↑ p ↑ q : {ωi(Si).Gi}i→I

[gtrans-send]

Example

G = µt.p ↑ q

{
ω!(bool).t
ω”(nat).end

G↔↓

p ↑ q

bool endG
G→↑

...

nat

ωP
% ωC

%
ωP

!

ωC
!

$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Global Types↑Global Type Trees
represent recursive types and their unfoldings with the same tree – equi-recursive approach:

G[µt.G/t] G→↑ G

µt.G G→↑ G
[gtrans-rec]

↓i ↔ I, Gi
G→↑ Gi

p ↑ q : {ωi(Si).Gi}i→I
G→↑ p ↑ q : {ωi(Si).Gi}i→I

[gtrans-send]

Example

G = µt.p ↑ q

{
ω!(bool).t
ω”(nat).end

G↔↓

p ↑ q

bool endG
G→↑

...

nat

ωP
% ωC

%
ωP

!

ωC
!

$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Global Types↑Global Type Trees
represent recursive types and their unfoldings with the same tree – equi-recursive approach:

G[µt.G/t] G→↑ G

µt.G G→↑ G
[gtrans-rec]

↓i ↔ I, Gi
G→↑ Gi

p ↑ q : {ωi(Si).Gi}i→I
G→↑ p ↑ q : {ωi(Si).Gi}i→I

[gtrans-send]

Example

G = µt.p ↑ q

{
ω!(bool).t
ω”(nat).end

G↔↓

p ↑ q

bool endG
G→↑

...

nat

ωP
% ωC

%
ωP

!

ωC
!

$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

* / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Projection
extracting local type trees from global type trees:

↗i ↘ I, Gi ↭r Ti

r ↓ q : {εi(Si).Gi}i→I ↭r↓i→I
q!εi(Si).Ti

[proj-send]
↗i ↘ I, Gi ↭r Ti

p ↓ r : {εi(Si).Gi}i→I ↭r &i→I
p?εi(Si).Ti

[proj-recv]

r /↘ {p, q} ↗i ↘ I, r ↘ pt(Gi) Gi ↭r T

p ↓ q : {εi(Si).Gi}i→I ↭r T
[proj-cont]

r /↘ pt(G)
G ↭r end

[proj-end]

%” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Projection
extracting local type trees from global type trees:

↗i ↘ I, Gi ↭r Ti

r ↓ q : {εi(Si).Gi}i→I ↭r↓i→I
q!εi(Si).Ti

[proj-send]
↗i ↘ I, Gi ↭r Ti

p ↓ r : {εi(Si).Gi}i→I ↭r &i→I
p?εi(Si).Ti

[proj-recv]

r /↘ {p, q} ↗i ↘ I, r ↘ pt(Gi) Gi ↭r T

p ↓ q : {εi(Si).Gi}i→I ↭r T
[proj-cont]

r /↘ pt(G)
G ↭r end

[proj-end]

%” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Provable

p ↓ q

p ↓ q

p ↓ q

p ↓ q

...

εC
%

εC
%

εC
%

εC
%

↭r

& p

& p

& p

& p

...

εC
%

εC
%

εC
%

εC
%

%” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Projection
extracting local type trees from global type trees:

↗i ↘ I, Gi ↭r Ti

r ↓ q : {εi(Si).Gi}i→I ↭r↓i→I
q!εi(Si).Ti

[proj-send]
↗i ↘ I, Gi ↭r Ti

p ↓ r : {εi(Si).Gi}i→I ↭r &i→I
p?εi(Si).Ti

[proj-recv]

r /↘ {p, q} ↗i ↘ I, r ↘ pt(Gi) Gi ↭r T

p ↓ q : {εi(Si).Gi}i→I ↭r T
[proj-cont]

r /↘ pt(G)
G ↭r end

[proj-end]

%” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Step Relation
global type trees evolve by consuming communications:

↗i ↘ I ≃k ↘ I, ε = εk
(

p ↓ q : {εi(Si).Gi}i→I
)
\ p ω↔↓ q Gk

[st-eq]

{r, s} ⇐ {p, q} = ⊋ ↗i ↘ I, {p, q} ⇒ pt(Gi)
(

r ↓ s : {εi(Si).Gi}i→I
)
\ p ω↔↓ q

(
r ↓ s : {εi(Si).Gi \ p ω↔↓ q}i→I

) [st-neq]

%% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Step Relation
global type trees evolve by consuming communications:

↗i ↘ I ≃k ↘ I, ε = εk
(

p ↓ q : {εi(Si).Gi}i→I
)
\ p ω↔↓ q Gk

[st-eq]

{r, s} ⇐ {p, q} = ⊋ ↗i ↘ I, {p, q} ⇒ pt(Gi)
(

r ↓ s : {εi(Si).Gi}i→I
)
\ p ω↔↓ q

(
r ↓ s : {εi(Si).Gi \ p ω↔↓ q}i→I

) [st-neq]

(
r ↑ s : {ωi.p ↑ q.end}i↑I

)
\ p ω↔↑ q

(
r ↑ s : {ωi.end}i↑I)

%% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Provable

p ↓ q

p ↓ q

p ↓ q

p ↓ q

...

εC
%

εC
%

εC
%

εC
%

\ r ω↔↑ s

p ↓ q

p ↓ q

p ↓ q

p ↓ q

...

εC
%

εC
%

εC
%

εC
%

%% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

%% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Subtyping
provides flexibility to type system – use a process of type T whenever a process of type T↔ is needed – T ↫ T↔

↗i ↘ I, Si ⇑ : S↔
i Ti ↫ T↔

i

↓i→I
p!εi(Si).Ti ↫↓i→I↗J

p!εi(S↔
i).T↔

i
[sub-out]

↗i ↘ I, S↔
i ⇑ : Si Ti ↫ T↔

i

&i→I↗J
p?εi(Si).Ti ↫ &i→I

p?εi(S↔
i).T↔

i
[sub-in]

Type Checking

↗i ↘ I, !, xi : Si →p Pi : Ti

! →p
∑

i→I p?εi(xi).Pi : &i→I
p?εi(Si).Ti

[tin]
! →s e : S ! →p P : T

! →p p!ε(e).P : ↓ p!ε(S).T
[tout]

!, X : T →p P : T
! →p µX.P : T

[trec]
! →p P : T T ↫ T↔

! →p P : T↔ [tsub]
! →s e : bool ! →p P% : T ! →p P! : T

! →p if e then P% else P! : T
[tite]

↗i ↘ I, G↭pi Ti →p Pi : Ti pt(G) ⇒ {pi | i ↘ I}
→m

∏
i→I pi ω Pi : G

[tsess]

%! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Subtyping
provides flexibility to type system – use a process of type T whenever a process of type T↔ is needed – T ↫ T↔

↗i ↘ I, Si ⇑ : S↔
i Ti ↫ T↔

i

↓i→I
p!εi(Si).Ti ↫↓i→I↗J

p!εi(S↔
i).T↔

i
[sub-out]

↗i ↘ I, S↔
i ⇑ : Si Ti ↫ T↔

i

&i→I↗J
p?εi(Si).Ti ↫ &i→I

p?εi(S↔
i).T↔

i
[sub-in]

Type Checking

↗i ↘ I, !, xi : Si →p Pi : Ti

! →p
∑

i→I p?εi(xi).Pi : &i→I
p?εi(Si).Ti

[tin]
! →s e : S ! →p P : T

! →p p!ε(e).P : ↓ p!ε(S).T
[tout]

!, X : T →p P : T
! →p µX.P : T

[trec]
! →p P : T T ↫ T↔

! →p P : T↔ [tsub]
! →s e : bool ! →p P% : T ! →p P! : T

! →p if e then P% else P! : T
[tite]

↗i ↘ I, G↭pi Ti →p Pi : Ti pt(G) ⇒ {pi | i ↘ I}
→m

∏
i→I pi ω Pi : G

[tsess]

%! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Processes and Multiparty Sessions (syntax)
P ::= p!ε(e).P |

∑
i→I p?εi(xi).Pi | if e then P else P | µX.P | X | !

M ::= p ω P | M | M

Processes and Multiparty Sessions (pre-congruence and reduction)

p ω µX.P | M ↬ p ω P[µX.P/X] | M
[po-unf]

↗i ↘ I j ↘ I e ⇓ v
p ω

∑
i→I q?εi(xi).Pi | q ω p!εj(e).Q | M ↔↓ p ω Pj[v/xj] | q ω Q | M

[r-comm]

M↔
% ↬ M% M% ↔↓ M! M! ↬ M↔

!

M↔
% ↔↓ M↔

!
[r-struct]

%& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T

does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X

have →p P[µX.P/X] : T where
T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T

however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T

where
T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T

however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T

however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities

(↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)

imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T does not hold!
some prior work invalidating subject reduction [%, #, %%,), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

%# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Balancedness
G is balanced if, for every subtree G↔ of G, whenever p ↘ pt(G↔),≃ k ↘ N such that

% For all paths ϑ of length k from the root of G↔, p ↘ ϑ

! For all paths ϑ from the root of G↔ that end at a leaf (end), p ↘ ϑ

Example (an unbalanced tree)

G =

p ↑ q

nat
q ↑ r

G
int

int end

ωP
%

ωC
%

ωP
!

ωC
!

ωP
& ωC

&

Well-formedness
Global type tree G is well-formed if≃ global typeG,

% recursion is guarded

! continuations non-empty and non-↖

& G G↔↓ G

(G is balanced

%) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Balancedness
G is balanced if, for every subtree G↔ of G, whenever p ↘ pt(G↔),≃ k ↘ N such that

% For all paths ϑ of length k from the root of G↔, p ↘ ϑ

! For all paths ϑ from the root of G↔ that end at a leaf (end), p ↘ ϑ

Example (an unbalanced tree)

G =

p ↑ q

nat
q ↑ r

G
int

int end

ωP
%

ωC
%

ωP
!

ωC
!

ωP
& ωC

&

Well-formedness
Global type tree G is well-formed if≃ global typeG,

% recursion is guarded

! continuations non-empty and non-↖

& G G↔↓ G

(G is balanced

%) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Balancedness
G is balanced if, for every subtree G↔ of G, whenever p ↘ pt(G↔),≃ k ↘ N such that

% For all paths ϑ of length k from the root of G↔, p ↘ ϑ

! For all paths ϑ from the root of G↔ that end at a leaf (end), p ↘ ϑ

Example (an unbalanced tree)

G =

p ↑ q

nat
q ↑ r

G
int

int end

ωP
%

ωC
%

ωP
!

ωC
!

ωP
& ωC

&

Well-formedness
Global type tree G is well-formed if≃ global typeG,

% recursion is guarded

! continuations non-empty and non-↖

& G G↔↓ G

(G is balanced

%) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | []i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)

=
p ↓ q

bool

q ↓ p nat

int

nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]

%’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | []i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)

=
p ↓ q

bool

q ↓ p nat

int

nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]

%’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | []i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)
!G =

p ↓ q

bool []”

q ↓ p nat

int [](

[]& nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]

%’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | []i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)
!G =

p ↓ q

bool []”

q ↓ p nat

int [](

[]& nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]
%’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | []i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)
!G[L] =

p ↓ q

bool G”

q ↓ p nat

int G(

G& nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]
%’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (gra+ting)
If p ↔g pt(G) . Then,

• ≃ L, Gl such that G = Gl[L] with p /↔h pt(Gl) ,

• elements filling a hole in Gl from L is of p ↑ q lsg , q ↑ p lsg or end

Notation
Represent continuations of global and local type trees as option lists of sort-tree pairs: p ↑ q L and ↗p! L

%$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (gra+ting)
If p ↔g pt(G) . Then,

• ≃ L, Gl such that G = Gl[L] with p /↔h pt(Gl) ,

• elements filling a hole in Gl from L is of p ↑ q lsg , q ↑ p lsg or end

Notation
Represent continuations of global and local type trees as option lists of sort-tree pairs: p ↑ q L and ↗p! L

%$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (preservation of projection under reduction)
If we have

• G ↭p (↗q! l%) , G ↭q (&p? l!) , (εT l%)n = T , (εT l!)n = T’ , and G \p n→↑ q G’ .

Then,
• G’ ↭p T and G’ ↭q T’

Lemma (consumption from projection and subtyping)
If

• G ↭p (↗q! l%) , G ↭q (&p? l!) ,

• &p? xs ↫ &p? l! with (xs)n = (s’,T’) , and

• ↗q! (+[n] (s, T)) ↫ ↗q! l% .

Then,

• ≃ G’ such that G \p n→↑ q G’ .

%* / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (preservation of projection under reduction)
If we have

• G ↭p (↗q! l%) , G ↭q (&p? l!) , (εT l%)n = T , (εT l!)n = T’ , and G \p n→↑ q G’ .

Then,
• G’ ↭p T and G’ ↭q T’

Lemma (consumption from projection and subtyping)
If

• G ↭p (↗q! l%) , G ↭q (&p? l!) ,

• &p? xs ↫ &p? l! with (xs)n = (s’,T’) , and

• ↗q! (+[n] (s, T)) ↫ ↗q! l% .

Then,

• ≃ G’ such that G \p n→↑ q G’ .

%* / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem (subject reduction)
Have

• ↘ M : G and M →↑ M’

Then
• ≃ G’ such that ↘ M’ : G’ and G →↑ G’

Proof sketch ([r-comm])

{
(H) ↘ (p ϑ &q? L | q ϑ ↗p! n e Q | M): G ,
(Hn) Ln = Some P .

with e reduces into the value v , and the goal looks like
{

(G%) ≃ G’ such that ↘ (p ϑ P[v/0] | q ϑ Q | M): G’

(G!) G →↑ G’ .

!” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem (subject reduction)
Have

• ↘ M : G and M →↑ M’

Then
• ≃ G’ such that ↘ M’ : G’ and G →↑ G’

Proof sketch ([r-comm])

{
(H) ↘ (p ϑ &q? L | q ϑ ↗p! n e Q | M): G ,
(Hn) Ln = Some P .

with e reduces into the value v , and the goal looks like
{

(G%) ≃ G’ such that ↘ (p ϑ P[v/0] | q ϑ Q | M): G’

(G!) G →↑ G’ .

!” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Proof sketch ([r-comm] rule)
G

T

G

T’

T = &q? [..(s!,T&)..] T’ = ↗p! [..(s&,T()..]

!q? [..P..]:

T ⊜ &q? [..(s”,T%)..] ⊜ ↗p! (+[n] (s%,T!))

T’p! n e Q:

G’ G’

T& T(

↭p ↭q

typing inversion typing inversion

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

↭p ↭q

• typing inversion additionally gives ↘ Q: T! , ↘ v: s with s ≃ s! and 0 : s” ↘ P: T%

• plug G’ as the existential global tree

• supposed to show ↘ P[v/0]: T% , ↘ Q: T(and ↘ M: G’

!% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Proof sketch ([r-comm] rule)
G

T

G

T’

T = &q? [..(s!,T&)..] T’ = ↗p! [..(s&,T()..]

!q? [..P..]:

T ⊜ &q? [..(s”,T%)..] ⊜ ↗p! (+[n] (s%,T!))

T’p! n e Q:

G’ G’

T& T(

↭p ↭q

typing inversion typing inversion

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

↭p ↭q

• typing inversion additionally gives ↘ Q: T! , ↘ v: s with s ≃ s! and 0 : s” ↘ P: T%

• plug G’ as the existential global tree

• supposed to show ↘ P[v/0]: T% , ↘ Q: T(and ↘ M: G’

!% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Proof sketch ([r-comm] rule)
G

T

G

T’

T = &q? [..(s!,T&)..] T’ = ↗p! [..(s&,T()..]

!q? [..P..]:

T ⊜ &q? [..(s”,T%)..] ⊜ ↗p! (+[n] (s%,T!))

T’p! n e Q:

G’ G’

T& T(

↭p ↭q

typing inversion typing inversion

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

↭p ↭q

• typing inversion additionally gives ↘ Q: T! , ↘ v: s with s ≃ s! and 0 : s” ↘ P: T%

• plug G’ as the existential global tree

• supposed to show ↘ P[v/0]: T% , ↘ Q: T(and ↘ M: G’

!% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Proof sketch ([r-comm] rule)
G

T

G

T’

T = &q? [..(s!,T&)..] T’ = ↗p! [..(s&,T()..]

!q? [..P..]:

T ⊜ &q? [..(s”,T%)..] ⊜ ↗p! (+[n] (s%,T!))

T’p! n e Q:

G’ G’

T& T(

↭p ↭q

typing inversion typing inversion

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

↭p ↭q

• typing inversion additionally gives ↘ Q: T! , ↘ v: s with s ≃ s! and 0 : s” ↘ P: T%

• plug G’ as the existential global tree

• supposed to show ↘ P[v/0]: T% , ↘ Q: T(and ↘ M: G’

!% / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (canonical forms for processes and sessions)

• Given ↘ M: (p ↑ q xs) . Then,

• ≃ M’ such that M ↬ M’ , and M’ is of p ϑ P | q ϑ Q | M’’ or p ϑ P | q ϑ Q form

• Given ↘ M: end . Then,

• ≃ M’ such that M ↬ M’ , and every process in M’ is !

Theorem (progress)
If ↘ M: G , then≃ M’ such that M →↑ M’ , or both M ↬ M’ and every process in M’ is !

Proof.
by case split on G – matching it with canonical forms of M

Theorem (non-stuck)
If ↘ M: G , then M does not get stuck.

!! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (canonical forms for processes and sessions)

• Given ↘ M: (p ↑ q xs) . Then,

• ≃ M’ such that M ↬ M’ , and M’ is of p ϑ P | q ϑ Q | M’’ or p ϑ P | q ϑ Q form

• Given ↘ M: end . Then,

• ≃ M’ such that M ↬ M’ , and every process in M’ is !

Theorem (progress)
If ↘ M: G , then≃ M’ such that M →↑ M’ , or both M ↬ M’ and every process in M’ is !

Proof.
by case split on G – matching it with canonical forms of M

Theorem (non-stuck)
If ↘ M: G , then M does not get stuck.

!! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (canonical forms for processes and sessions)

• Given ↘ M: (p ↑ q xs) . Then,

• ≃ M’ such that M ↬ M’ , and M’ is of p ϑ P | q ϑ Q | M’’ or p ϑ P | q ϑ Q form

• Given ↘ M: end . Then,

• ≃ M’ such that M ↬ M’ , and every process in M’ is !

Theorem (progress)
If ↘ M: G , then≃ M’ such that M →↑ M’ , or both M ↬ M’ and every process in M’ is !

Proof.
by case split on G – matching it with canonical forms of M

Theorem (non-stuck)
If ↘ M: G , then M does not get stuck.

!! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Lemma (canonical forms for processes and sessions)

• Given ↘ M: (p ↑ q xs) . Then,

• ≃ M’ such that M ↬ M’ , and M’ is of p ϑ P | q ϑ Q | M’’ or p ϑ P | q ϑ Q form

• Given ↘ M: end . Then,

• ≃ M’ such that M ↬ M’ , and every process in M’ is !

Theorem (progress)
If ↘ M: G , then≃ M’ such that M →↑ M’ , or both M ↬ M’ and every process in M’ is !

Proof.
by case split on G – matching it with canonical forms of M

Theorem (non-stuck)
If ↘ M: G , then M does not get stuck.

!! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Outline

% Multiparty Session Types and Processes

! Session Trees

& Tree Operations

(Type System and Reductions

Proof Sketch

) In Rocq

!& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ ↓ gtt.

!(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ list(option(sort*gtt)) ↓ gtt.

!(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ list(option(sort*gtt)) ↓ gtt.

!(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Parametrised Coinduction

• technique to aid coinductive goals in proof assistants

• parametrised coinduction := ordinary coinduction parametrised by a relation R — knowledge accumulator —
to keep track on visited proof states in a coinductive proof

• parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

• obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint

!# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Parametrised Coinduction

• technique to aid coinductive goals in proof assistants
• parametrised coinduction := ordinary coinduction parametrised by a relation R — knowledge accumulator —

to keep track on visited proof states in a coinductive proof

• parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

• obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint

!# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Parametrised Coinduction

• technique to aid coinductive goals in proof assistants
• parametrised coinduction := ordinary coinduction parametrised by a relation R — knowledge accumulator —

to keep track on visited proof states in a coinductive proof
• parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

• obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint

!# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Parametrised Coinduction

• technique to aid coinductive goals in proof assistants
• parametrised coinduction := ordinary coinduction parametrised by a relation R — knowledge accumulator —

to keep track on visited proof states in a coinductive proof
• parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

• obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint

!# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction

• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction
• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction
• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction
• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint

• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction
• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach (use of list in gtt (cont’d))

• use of lists↓ relaxing related definitions and (universal) proofs in Rocq
• suitable with parametrised corecursive definitions with paco (translation, projection, consumption,

subtyping)
• allows for inductive reasoning within coinductive proofs

• existential properties are problematic

Lemma translate: ↔ (g: global), ↗ (G: gtt), G = gttT g.

is not provable
• use colists or function types in gtt

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ (label -> option(sort*gtt)) ↓ gtt.

allows for implementing “translate” as a cofixpoint

!’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach (use of list in gtt (cont’d))

• use of lists↓ relaxing related definitions and (universal) proofs in Rocq
• suitable with parametrised corecursive definitions with paco (translation, projection, consumption,

subtyping)
• allows for inductive reasoning within coinductive proofs

• existential properties are problematic

Lemma translate: ↔ (g: global), ↗ (G: gtt), G = gttT g.

is not provable

• use colists or function types in gtt
CoInductive gtt: Type ↭

| gtt_end : gtt
| gtt_send: part ↓ part ↓ (label -> option(sort*gtt)) ↓ gtt.

allows for implementing “translate” as a cofixpoint

!’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach (use of list in gtt (cont’d))

• use of lists↓ relaxing related definitions and (universal) proofs in Rocq
• suitable with parametrised corecursive definitions with paco (translation, projection, consumption,

subtyping)
• allows for inductive reasoning within coinductive proofs

• existential properties are problematic

Lemma translate: ↔ (g: global), ↗ (G: gtt), G = gttT g.

is not provable
• use colists or function types in gtt

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ (label -> option(sort*gtt)) ↓ gtt.

allows for implementing “translate” as a cofixpoint

!’ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem
if projecting a well-formed tree G onto a participant p results in trees T% and T!, then T% = T!

Approach (coinductive extensionality (cont’d))
define a bisimulation↙ over local type trees T (structural sameness) and treat it as the Leibniz equality “=”

coinductive extensionality: T% ↙ T! =∝ T% = T!

justifying soundness:
• coinductive types can be implemented as “function types” in Rocq
• coinductive types modulo coinductive extensionality is equivalent to function types with functional

extensionality

!$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem
if projecting a well-formed tree G onto a participant p results in trees T% and T!, then T% = T!

Approach (coinductive extensionality (cont’d))
define a bisimulation↙ over local type trees T (structural sameness) and treat it as the Leibniz equality “=”

coinductive extensionality: T% ↙ T! =∝ T% = T!

justifying soundness:
• coinductive types can be implemented as “function types” in Rocq
• coinductive types modulo coinductive extensionality is equivalent to function types with functional

extensionality

!$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem
if projecting a well-formed tree G onto a participant p results in trees T% and T!, then T% = T!

Approach (coinductive extensionality (cont’d))
define a bisimulation↙ over local type trees T (structural sameness) and treat it as the Leibniz equality “=”

coinductive extensionality: T% ↙ T! =∝ T% = T!

justifying soundness:
• coinductive types can be implemented as “function types” in Rocq

• coinductive types modulo coinductive extensionality is equivalent to function types with functional
extensionality

!$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Theorem
if projecting a well-formed tree G onto a participant p results in trees T% and T!, then T% = T!

Approach (coinductive extensionality (cont’d))
define a bisimulation↙ over local type trees T (structural sameness) and treat it as the Leibniz equality “=”

coinductive extensionality: T% ↙ T! =∝ T% = T!

justifying soundness:
• coinductive types can be implemented as “function types” in Rocq
• coinductive types modulo coinductive extensionality is equivalent to function types with functional

extensionality

!$ / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Mechanisation E,fort

• ↙ %)K lines of Rocq code

• &(% lemmata
• %%’ definitions (* coinductive)
• the use of classical reasoning to conduct case analysis over coinductively defined predicates
• accessible at: https://github.com/Apiros3/smpst-sr-smer

!* / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Mechanisation E,fort

• ↙ %)K lines of Rocq code
• &(% lemmata

• %%’ definitions (* coinductive)
• the use of classical reasoning to conduct case analysis over coinductively defined predicates
• accessible at: https://github.com/Apiros3/smpst-sr-smer

!* / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Mechanisation E,fort

• ↙ %)K lines of Rocq code
• &(% lemmata
• %%’ definitions (* coinductive)

• the use of classical reasoning to conduct case analysis over coinductively defined predicates
• accessible at: https://github.com/Apiros3/smpst-sr-smer

!* / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Mechanisation E,fort

• ↙ %)K lines of Rocq code
• &(% lemmata
• %%’ definitions (* coinductive)
• the use of classical reasoning to conduct case analysis over coinductively defined predicates

• accessible at: https://github.com/Apiros3/smpst-sr-smer

!* / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Mechanisation E,fort

• ↙ %)K lines of Rocq code
• &(% lemmata
• %%’ definitions (* coinductive)
• the use of classical reasoning to conduct case analysis over coinductively defined predicates
• accessible at: https://github.com/Apiros3/smpst-sr-smer

!* / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Related& Future Work
Related:

% Zooid [&]: certified multiparty communication in Rocq, ensuring deadlock-free, protocol-compliant execution

! Multris [$]: Iris framework for local protocol consistency in multiparty concurrency, no global type guarantees

& MPGV [%”]: Linearϖ-calculus + MPST; deadlock-free, with progress& preservation in separation logic of Iris

(Ekici and Yoshida [(] formalise, in Rcoq, subtyping properties in asynchronous multiparty communication

Tirore [%!] in his PhD thesis formalises subject reduction in Rocq for the multiparty sessionϱ-calculus

Future:

% incorporating full merging into projections

! full formal proof of liveness for synchronous MPST

&” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Related& Future Work
Related:

% Zooid [&]: certified multiparty communication in Rocq, ensuring deadlock-free, protocol-compliant execution

! Multris [$]: Iris framework for local protocol consistency in multiparty concurrency, no global type guarantees

& MPGV [%”]: Linearϖ-calculus + MPST; deadlock-free, with progress& preservation in separation logic of Iris

(Ekici and Yoshida [(] formalise, in Rcoq, subtyping properties in asynchronous multiparty communication

Tirore [%!] in his PhD thesis formalises subject reduction in Rocq for the multiparty sessionϱ-calculus

Future:

% incorporating full merging into projections

! full formal proof of liveness for synchronous MPST

&” / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Thanks! &Questions?
https://github.com/Apiros3/smpst-sr-smer

&% / &’

https://github.com/Apiros3/smpst-sr-smer

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References

[%] Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou.
Designing asynchronous multiparty protocols with crash-stop failures.
In Karim Ali and Guido Salvaneschi, editors, #$th European Conference on Object-Oriented
Programming, ECOOP ”%”#, July !$-”!, ”%”#, Seattle, Washington, United States, volume !)& of
LIPIcs, pages %:%–%:&”. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, !”!&.

[!] Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou.
Crash-stop failures in asynchronous multiparty session types.
Logical Methods in Computer Science, !”!#.

&! / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References (cont.)

[&] David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida.
Zooid: a DSL for certified multiparty computation: from mechanised metatheory to
certified multiparty processes.
In Stephen N. Freund and Eran Yahav, editors, PLDI ’”!: &”nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event, Canada, June
”%-”’, ”%”!, pages !&’–!#%. ACM, !”!%.

[(] Burak Ekici and Nobuko Yoshida.
Completeness of asynchronous session tree subtyping in Coq.
In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, !’th International Conference on
Interactive Theorem Proving, ITP ”%”&, September (-!&, ”%”&, Tbilisi, Georgia, volume &”* of
LIPIcs, pages %&:%–%&:!”. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, !”!(.

&& / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References (cont.)
[#] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.

Precise subtyping for synchronous multiparty sessions.
JLAMP, %”(:%!’–%’&, !”%*.

[)] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida.
Precise Subtyping for Asynchronous Multiparty Sessions.
Proc. ACM Program. Lang., #:%):%–%):!$, jan !”!%.

[’] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for asynchronous multiparty sessions.
ACM Trans. Comput. Logic, !((!), Nov !”!&.

[$] Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers.
Multris: Functional verification of multiparty message passing in Separation Logic.
Proc. ACM Program. Lang., $(OOPSLA!):%(()–%(’(, !”!(.

&(/ &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References (cont.)

[*] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis.
The power of parameterization in coinductive proof.
In Roberto Giacobazzi and Radhia Cousot, editors, The &%th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’!#, Rome, Italy - January ”# - ”’, ”%!#,
pages %*&–!”). ACM, !”%&.

[%”] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers.
Multiparty GV: functional multiparty session types with certified deadlock freedom.
Proc. ACM Program. Lang.,)(ICFP):())–(*#, !”!!.

&# / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References (cont.)

[%%] Kirstin Peters and Nobuko Yoshida.
Separation and encodability in mixed choice multiparty sessions.
In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the #(th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ”%”&, Tallinn, Estonia, July)-!!, ”%”&,
pages)!:%–)!:%#. ACM, !”!(.

[%!] Dawit Legesse Tirore.
A Mechanisation of Multiparty Session Types.
PhD thesis, ITU Copenhagen, December !”!(.

[%&] Thien Udomsrirungruang and Nobuko Yoshida.
Top-down or bottom-up? complexity analyses of synchronous multiparty session types.
Proc. ACM Program. Lang., *(POPL):%”(”–%”’%, !”!#.

&) / &’

Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

References (cont.)

[%(] Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic.
An equational theory for weak bisimulation via generalized parameterized coinduction.
In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the (th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP ”%”%, New Orleans, LA, USA,
January ”%-”!, ”%”%, pages ’%–$(. ACM, !”!”.

&’ / &’

	Multiparty Session Types and Processes
	Session Trees
	Tree Operations
	Type System and Reductions
	Proof Sketch
	In Rocq

