Multiparty Session Types and Processes

Formalising Subject Reduction and Progress for Multiparty Session Processes ITP 2025

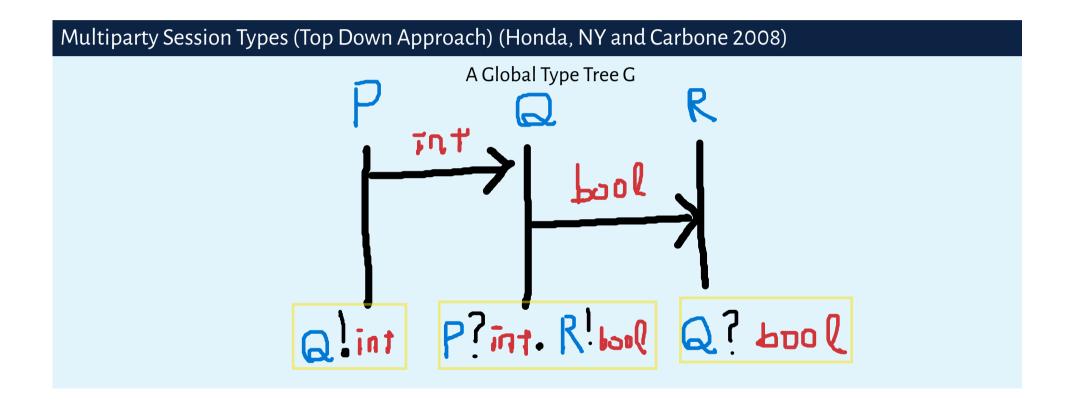
Burak Ekici Tadayoshi Kamegai Nobuko Yoshida

September 28, 2025

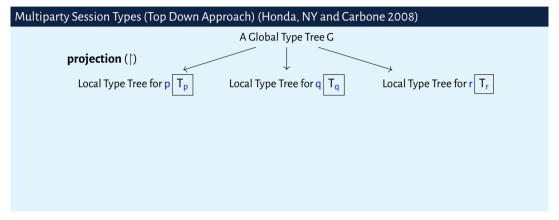
Outline

- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operation
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

In Roca

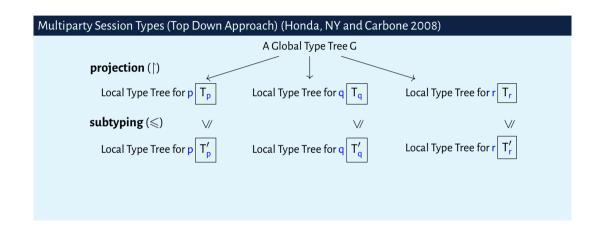


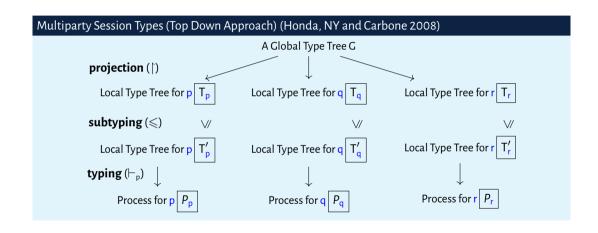
Type System and Reductions



Multiparty Session Types and Processes

0000





• extend synchronous MPST [5] with a **mechanised proof of the non-stuck theorem**

Proof Sketch

In Rocq

Multiparty Session Types and Processes

• extend synchronous MPST [5] with a mechanised proof of the non-stuck theorem

subject reduction

well-typed sessions reduce into well-typed sessions

progress

well-typed sessions either terminate or reduce to other sessions

Multiparty Session Types and Processes

• extend synchronous MPST [5] with a mechanised proof of the non-stuck theorem

subject reduction well-typed sessions reduce into well-typed sessions

progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over "type trees"

Multiparty Session Types and Processes

• extend synchronous MPST [5] with a mechanised proof of the non-stuck theorem

subject reduction

well-typed sessions reduce into well-typed sessions

progress

well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over "type trees"

integrate subtyping

Multiparty Session Types and Processes

• extend synchronous MPST [5] with a mechanised proof of the non-stuck theorem

subject reduction

well-typed sessions reduce into well-typed sessions

well-typed sessions either terminate or reduce to other sessions progress

using coinductive reasoning over "type trees"

- integrate subtyping
- decompose balanced type trees into finite prefixes enabling inductive reasoning within infinite trees

Multiparty Session Types and Processes

• extend synchronous MPST [5] with a mechanised proof of the non-stuck theorem

subject reduction

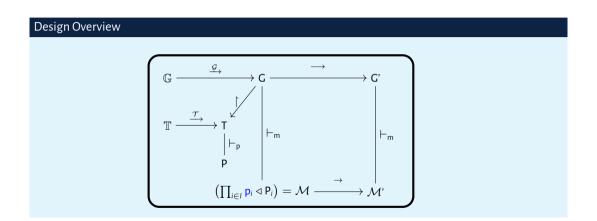
well-typed sessions reduce into well-typed sessions

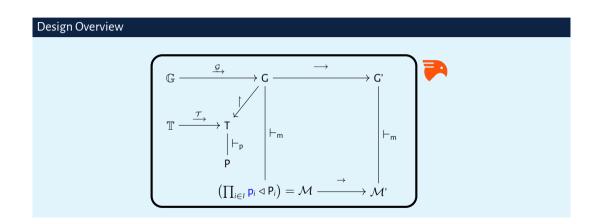
progress

well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over "type trees"

- integrate subtyping
- decompose balanced type trees into finite prefixes enabling inductive reasoning within infinite trees
- employ **finite lists** to encode, in Rcog, continuations and branching/selections for type trees simplifying coinductive definitions and proofs further

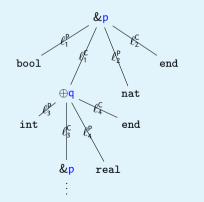




Outline

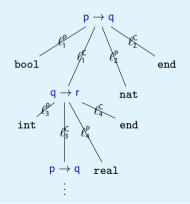
- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operation:
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

 $\mathsf{T} ::= \mathsf{end} \mid \&_{i \in I} \mathsf{p}?\ell_i(\mathsf{S}_i).\mathsf{T}_i \mid \oplus_{i \in I} \mathsf{p}!\ell_i(\mathsf{S}_i).\mathsf{T}_i$



 $T \quad ::= \quad \text{end} \quad | \quad \&_{i \in I} p ? \ell_i(S_i). T_i \quad | \quad \oplus_{i \in I} p ! \ell_i(S_i). T_i$

 $G ::= ext{ end } | ext{ } ext{ }$

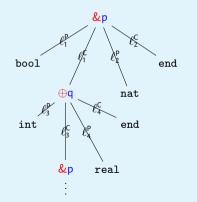


$$\begin{array}{llll} T & ::= & \text{end} & | & \&_{i \in I} p? \ell_i(S_i). T_i & | & \oplus_{i \in I} p! \ell_i(S_i). T_i \\ G & ::= & \text{end} & | & p \rightarrow q : \{\ell_i(S_i). G_i\}_{i \in I} \end{array}$$

internal nodes:

Multiparty Session Types and Processes

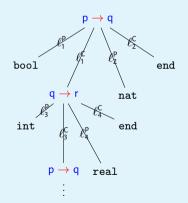
• branching (&) or selection (\oplus) for local type trees



$$\begin{array}{llll} T & ::= & end & | & \&_{i \in I}p?\ell_i(S_i).T_i & | & \oplus_{i \in I}p!\ell_i(S_i).T_i \\ G & ::= & end & | & p \rightarrow q: \{\ell_i(S_i).G_i\}_{i \in I} \end{array}$$

• internal nodes:

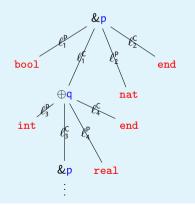
- branching (&) or selection (\oplus) for local type trees
- communication action for global type trees



$$\begin{array}{llll} T & ::= & \text{end} & | & \&_{i \in I} p? \ell_i(S_i). T_i & | & \oplus_{i \in I} p! \ell_i(S_i). T_i \\ G & ::= & \text{end} & | & p \rightarrow q : \{\ell_i(S_i). G_i\}_{i \in I} \end{array}$$

• internal nodes:

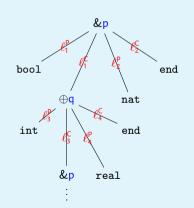
- branching (&) or selection (⊕) for local type trees
- communication action for global type trees
- leaf nodes: payload sorts or end



$$\begin{array}{llll} T & ::= & \text{end} & | & \&_{i \in I} p? \ell_i(S_i). T_i & | & \oplus_{i \in I} p! \ell_i(S_i). T_i \\ G & ::= & \text{end} & | & p \rightarrow q : \{\ell_i(S_i). G_i\}_{i \in I} \end{array}$$

internal nodes:

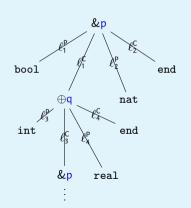
- branching (&) or selection (⊕) for local type trees
- communication action for global type trees
- leaf nodes: payload sorts or end
- edge annotations: linking internal node to a payload (ℓ^p) or continuation for message (ℓ^c)



$$\begin{array}{llll} T & ::= & \text{end} & | & \&_{i \in I} p? \ell_i(S_i).T_i & | & \oplus_{i \in I} p! \ell_i(S_i).T_i \\ G & ::= & \text{end} & | & p \rightarrow q : \{\ell_i(S_i).C_i\}_{i \in I} \end{array}$$

internal nodes:

- branching (&) or selection (⊕) for local type trees
- communication action for global type trees
- leaf nodes: payload sorts or end
- edge annotations: linking internal node to a payload (ℓ^p) or continuation for message (ℓ^c)



Global Types \rightarrow Global Type Trees

represent recursive types and their unfoldings with the same tree – equi-recursive approach:

$$\frac{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} \mathsf{G}}{\mu \mathbf{t}.\mathbb{G} \xrightarrow{\mathcal{G}} \mathsf{G}} [\mathsf{gtrans-rec}]$$

$$\frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} G_i}{p \to q : \{\ell_i(S_i).\mathbb{G}_i\}_{i \in I} \xrightarrow{\mathcal{G}} p \to q : \{\ell_i(S_i).G_i\}_{i \in I}} \text{ [gtrans-send]}$$

Global Types → Global Type Trees

represent recursive types and their unfoldings with the same tree – equi-recursive approach:

$$\frac{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} G}{\text{gtrans-rec}} [\text{gtrans-rec}]$$

$$\frac{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} \mathsf{G}}{\mu \mathbf{t}.\mathbb{G} \xrightarrow{\mathcal{G}} \mathsf{G}} \text{ [gtrans-rec]} \qquad \frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} \mathsf{G}_i}{\mathsf{p} \to \mathsf{q} : \{\ell_i(\mathsf{S}_i).\mathbb{G}_i\}_{i \in I} \xrightarrow{\mathcal{G}} \mathsf{p} \to \mathsf{q} : \{\ell_i(\mathsf{S}_i).\mathsf{G}_i\}_{i \in I}} \text{ [gtrans-send]}$$

$$\mathbb{G} = \mu \mathbf{t}.\mathtt{p} o \mathsf{q} egin{cases} \ell_1(\mathsf{bool}).\mathbf{t} \ \ell_2(\mathsf{nat}).\mathsf{end} \end{cases}$$

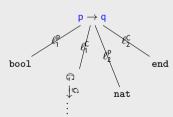
Global Types → Global Type Trees

represent recursive types and their unfoldings with the same tree – equi-recursive approach:

$$\frac{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} G}{\mu \mathbf{t}.\mathbb{G} \xrightarrow{\mathcal{G}} G} [gtrans-rec]$$

$$\frac{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} G}{\mu \mathbf{t}.\mathbb{G} \xrightarrow{\mathcal{G}} G} \text{ [gtrans-rec]} \qquad \frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} G_i}{p \to q : \{\ell_i(S_i).\mathbb{G}_i\}_{i \in I} \xrightarrow{\mathcal{G}} p \to q : \{\ell_i(S_i).G_i\}_{i \in I}} \text{ [gtrans-send]}$$

$$\mathbb{G} = \mu \mathbf{t}.\mathsf{p} o \mathsf{q} egin{cases} \ell_1(\mathsf{bool}).\mathbf{t} \ \ell_2(\mathsf{nat}).\mathsf{end} \end{cases}$$



Outline

- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operations
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

Projection

Multiparty Session Types and Processes

extracting local type trees from global type trees:

$$\frac{\forall i \in I, G_i \upharpoonright_r T_i}{r \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigoplus_{i \in I} q! \ell_i(S_i).T_i} \text{ [proj-send]} \qquad \frac{\forall i \in I, G_i \upharpoonright_r T_i}{p \to r : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigotimes_{i \in I} p? \ell_i(S_i).T_i} \text{ [proj-recv]}$$

$$\frac{r \notin \{p,q\} \quad \forall i \in I, r \in pt(G_i) \quad G_i \upharpoonright_r T}{p \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r T} \text{ [proj-cont]} \qquad \frac{r \notin pt(G)}{G \upharpoonright_r \text{ end}} \text{ [proj-end]}$$

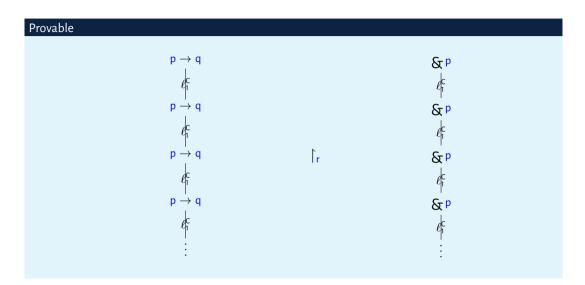
Projection

Multiparty Session Types and Processes

extracting local type trees from global type trees:

$$\frac{\forall i \in I, G_i \upharpoonright_r T_i}{r \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigoplus_{i \in I} q! \ell_i(S_i).T_i} \text{ [proj-send]} \qquad \frac{\forall i \in I, G_i \upharpoonright_r T_i}{p \to r : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigotimes_{i \in I} p? \ell_i(S_i).T_i} \text{ [proj-recv]}$$

$$\frac{r \notin \{p,q\} \quad \forall i \in I, r \in pt(G_i) \quad G_i \upharpoonright_r T}{p \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r T} \text{ [proj-cont]} \qquad \frac{r \notin pt(G)}{G \upharpoonright_r end} \text{ [proj-end]}$$



Projection

Multiparty Session Types and Processes

extracting local type trees from global type trees:

$$\frac{\forall i \in I, G_i \upharpoonright_r T_i}{r \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigoplus_{i \in I} q! \ell_i(S_i).T_i} \text{ [proj-send]} \qquad \frac{\forall i \in I, G_i \upharpoonright_r T_i}{p \to r : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r \bigotimes_{i \in I} p? \ell_i(S_i).T_i} \text{ [proj-recv]}$$

$$\frac{r \notin \{p,q\} \quad \forall i \in I, r \in pt(G_i) \quad G_i \upharpoonright_r T}{p \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r T} \text{ [proj-cont]} \qquad \frac{r \notin pt(G)}{G \upharpoonright_r end} \text{ [proj-end]}$$

Step Relation

Multiparty Session Types and Processes

global type trees evolve by consuming communications:

$$\begin{split} &\frac{\forall i \in I \quad \exists k \in I, \ell = \ell_k}{\left(p \to q : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ G_k} \quad \text{[st-eq]} \\ &\frac{\{r,s\} \cap \{p,q\} = \varnothing \quad \forall i \in I, \{p,q\} \subseteq \text{pt}(G_i)}{\left(r \to s : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ (r \to s : \{\ell_i(S_i).G_i \setminus p \xrightarrow{\ell} q\}_{i \in I})} \quad \text{[st-neq]} \end{split}$$

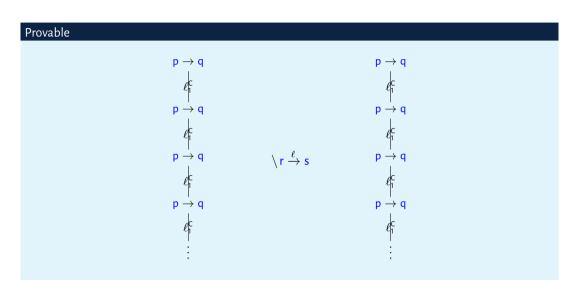
Step Relation

Multiparty Session Types and Processes

global type trees evolve by consuming communications:

$$\begin{split} &\frac{\forall i \in I \quad \exists k \in I, \ell = \ell_k}{\left(p \to q : \{\ell_i(S_i).C_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \; G_k} \; [\text{st-eq}] \\ &\frac{\{r,s\} \cap \{p,q\} = \varnothing \quad \forall i \in I, \{p,q\} \subseteq \text{pt}(G_i)}{\left(r \to s : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \; (r \to s : \{\ell_i(S_i).C_i \setminus p \xrightarrow{\ell} q\}_{i \in I})} \; [\text{st-neq}] \end{split}$$

$$\left(\mathsf{r} \to \mathsf{s} : \{\ell_i.\mathsf{p} \to \mathsf{q.end}\}_{i \in I}\right) \setminus \mathsf{p} \xrightarrow{\ell} \mathsf{q} \ \left(\mathsf{r} \to \mathsf{s} : \{\ell_i.\mathsf{end}\}_{i \in I}\right)$$



Outline

- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operation
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

Subtyping

provides flexibility to type system – use a process of type T whenever a process of type T' is needed – T \leq T'

$$\frac{\forall i \in I, \quad S_i \leq : S_i' \quad T_i \leqslant T_i'}{\bigoplus_{i \in I} p! \ell_i(S_i).T_i \leqslant \bigoplus_{i \in I} p! \ell_i(S_i').T_i'} \text{ [sub-out]}$$

$$\frac{\forall i \in I, \quad S_i' \leq : S_i \quad T_i \leqslant T_i'}{\overline{S_{C_{i \in I}, I, I}} \, p?\ell_i(S_i).T_i \leqslant \overline{S_{C_{i \in I}, I}} \, p?\ell_i(S_i').T_i'} \, [\text{sub-in}]$$

Subtyping

Multiparty Session Types and Processes

provides flexibility to type system – use a process of type T whenever a process of type T' is needed – $T \leq T'$

$$\frac{\forall i \in I, \quad S_i \leq : S_i' \quad T_i \leqslant T_i'}{\bigoplus_{i \in I} p! \ell_i(S_i).T_i \leqslant \bigoplus_{i \in I} p! \ell_i(S_i').T_i'} \text{ [sub-out]} \qquad \frac{\forall i \in I, \quad S_i' \leq : S_i \quad T_i \leqslant T_i'}{\bigotimes_{i \in I} p! \ell_i(S_i).T_i \leqslant \bigotimes_{i \in I} p! \ell_i(S_i').T_i'} \text{ [sub-in]}$$

$$\frac{\forall i \in I, \quad S_i' \leq : S_i \quad T_i \leqslant T_i'}{\underbrace{S_{i=1,1}}_{i \in I_i} p?\ell_i(S_i').T_i'} \text{ [sub-in]}$$

Type System and Reductions

Type Checking

$$\frac{\forall i \in I, \quad \Gamma, x_i \colon S_i \vdash_p P_i \colon T_i}{\Gamma \vdash_p \sum_{i \in I} p?\ell_i(x_i).P_i \colon \underbrace{\xi_{T_i \in I} p?\ell_i(S_i).T_i}_{\Gamma \vdash_p p!\ell(s).T_i}[tin] \quad \frac{\Gamma \vdash_s e \colon S \quad \Gamma \vdash_p P \colon T}{\Gamma \vdash_p p!\ell(e).P \colon \bigoplus p!\ell(S).T}[tout]}$$

$$\frac{\Gamma, \mathbf{X} \colon T \vdash_p P \colon T}{\Gamma \vdash_p \mu \mathbf{X}.P \colon T}[trec] \quad \frac{\Gamma \vdash_p P \colon T \quad T \leqslant T'}{\Gamma \vdash_p P \colon T'}[tsub] \quad \frac{\Gamma \vdash_s e \colon bool \quad \Gamma \vdash_p P_1 \colon T \quad \Gamma \vdash_p P_2 \colon T}{\Gamma \vdash_p if e \, then \, P_1 \, else \, P_2 \colon T}[tite]}$$

$$\frac{\forall i \in I, \quad G \upharpoonright_{P_i} T_i \quad \vdash_p P_i \colon T_i \quad pt(G) \subseteq \{p_i \mid i \in I\}}{\vdash_m \prod_{i \in I} p_i \triangleleft P_i \colon G}[tsess]}$$

Proof Sketch

Processes and Multiparty Sessions (syntax)

Multiparty Session Types and Processes

P ::=
$$p!\ell(e).P$$
 | $\sum_{i\in I}p?\ell_i(x_i).P_i$ | if e then Pelse P | $\mu X.P$ | X | \mathcal{M} ::= $p \triangleleft P$ | $\mathcal{M} \mid \mathcal{M}$

Processes and Multiparty Sessions (pre-congruence and reduction)

$$p \triangleleft \mu \mathbf{X}.P \mid \mathcal{M} \Rightarrow p \triangleleft P[\mu \mathbf{X}.P/\mathbf{X}] \mid \mathcal{M}$$
 [po-unf]

$$\frac{\forall i \in I \quad j \in I \quad e \downarrow \nu}{p \lhd \sum_{i \in I} q?\ell_i(x_i).P_i \ | \ q \lhd p!\ell_j(e).Q \ | \ \mathcal{M} \ \longrightarrow \ p \lhd P_j[\nu/x_j] \ | \ q \lhd Q \ | \ \mathcal{M}} \text{[r-comm]}$$

$$\frac{\mathcal{M}_{1}' \Rrightarrow \mathcal{M}_{1} \quad \mathcal{M}_{1} \longrightarrow \mathcal{M}_{2} \quad \mathcal{M}_{2} \Rrightarrow \mathcal{M}_{2}'}{\mathcal{M}_{1}' \longrightarrow \mathcal{M}_{2}'} [\text{r-struct}]$$

Assume $\Gamma \vdash_p P : T$ and $P \equiv Q.$ Then we have $\Gamma \vdash_p Q : T$

Assume $\Gamma \vdash_p P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_p Q : T$ does not hold!

some prior work invalidating subject reduction

[1, 5, 11, 6, 7]

Assume $\Gamma \vdash_p P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_p Q : T$ does not hold!

some prior work invalidating subject reduction

[1, 5, 11, 6, 7]

Counter Example

let a process
$$P = p?\ell(x).p!\ell'(x).X$$

Assume $\Gamma \vdash_p P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_p Q : T$ does not hold!

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

let a process $P = p?\ell(x).p!\ell'(x).X$

have $\vdash_{p} P[\mu \mathbf{X}.P/\mathbf{X}] : T$

Proof Sketch

Type System and Reductions

Congruence (violates subject reduction)

Assume $\Gamma \vdash_p P$: T and $P \equiv Q$. Then we have $\Gamma \vdash_p Q$: T does not hold!

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

Multiparty Session Types and Processes

 $P = p?\ell(x).p!\ell'(x).X$ let a process

 $\vdash_{\mathtt{p}} \mathsf{P}[\mu \mathbf{X}.\mathsf{P}/\mathbf{X}] : \mathsf{T}$ where have

 $T = p?\ell(bool).p!\ell'(bool).p?\ell(nat).p!\ell'(nat).T$

Assume $\Gamma \vdash_p P$: T and $P \equiv Q$. Then we have $\Gamma \vdash_p Q$: T does not hold!

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

Multiparty Session Types and Processes

 $P = p?\ell(x).p!\ell'(x).X$ let a process

 $\vdash_{\mathtt{p}} \mathsf{P}[\mu \mathbf{X}.\mathsf{P}/\mathbf{X}] : \mathsf{T}$ where have

 $T = p?\ell(bool).p!\ell'(bool).p?\ell(nat).p!\ell'(nat).T$

however $\nvdash_{p} \mu \mathbf{X}.P : T$

Proof Sketch

Type System and Reductions

Congruence (violates subject reduction)

Assume $\Gamma \vdash_p P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_p Q : T$ does not hold!

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

Multiparty Session Types and Processes

let a process $P = p?\ell(x).p!\ell'(x).X$

have $\vdash_{\mathtt{p}} \mathtt{P}[\mu \mathbf{X}.\mathtt{P}/\mathbf{X}] : \mathsf{T}$ where

 $T = p?\ell(bool).p!\ell'(bool).p?\ell(nat).p!\ell'(nat).T$

a solution is to disable fold-back identities

does not hold! Assume $\Gamma \vdash_{p} P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_{p} Q : T$

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

Multiparty Session Types and Processes

 $P = p?\ell(x).p!\ell'(x).X$ let a process

 $\vdash_{p} P[\mu X.P/X] : T$ where have

 $T = p?\ell(bool).p!\ell'(bool).p?\ell(nat).p!\ell'(nat).T$

however $\nvdash_{p} \mu \mathbf{X}.P : T$

a solution is to disable fold-back identities (\Rightarrow handles that)

Proof Sketch

Congruence (violates subject reduction)

Assume $\Gamma \vdash_{p} P : T$ and $P \equiv Q$. Then we have $\Gamma \vdash_{p} Q : T$ does not hold!

some prior work invalidating subject reduction [1, 5, 11, 6, 7]

Counter Example

Multiparty Session Types and Processes

let a process $P = p?\ell(x).p!\ell'(x).X$

 $\vdash_{p} P[\mu X.P/X] : T$ where have

 $T = p?\ell(bool).p!\ell'(bool).p?\ell(nat).p!\ell'(nat).T$

 $\nvdash_{\mathsf{P}} \mu \mathbf{X}.\mathsf{P} : \mathsf{T}$ however

> a solution is to disable fold-back identities (\Rightarrow handles that) imported by some recently published work [13, 2]

Outline

- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operation
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

In Roca

Balancedness

Multiparty Session Types and Processes

G is balanced if, for every subtree G' of G, whenever $p \in pt(G')$, $\exists k \in \mathbb{N}$ such that

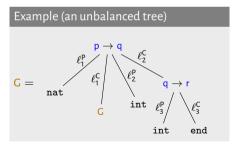
- **1** For all paths γ of length k from the root of G', $p \in \gamma$
- 2 For all paths γ from the root of G' that end at a leaf (end), $p \in \gamma$

Balancedness

Multiparty Session Types and Processes

G is balanced if, for every subtree G' of G, whenever $p \in pt(G')$, $\exists k \in \mathbb{N}$ such that

- **1** For all paths γ of length k from the root of G', $p \in \gamma$
- 2 For all paths γ from the root of G' that end at a leaf (end), $p \in \gamma$



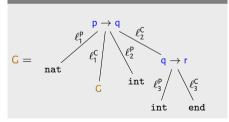
Balancedness

Multiparty Session Types and Processes

G is balanced if, for every subtree G' of G, whenever $p \in pt(G')$, $\exists k \in \mathbb{N}$ such that

- For all paths γ of length k from the root of G', $p \in \gamma$
- 2 For all paths γ from the root of G' that end at a leaf (end), $p \in \gamma$

Example (an unbalanced tree)



Well-formedness

Global type tree G is well-formed if \exists global type \mathbb{G} ,

- 1 recursion is guarded
- $oldsymbol{2}$ continuations non-empty and non- $oldsymbol{\perp}$
- 4 G is balanced

$$\Gamma_G \quad ::= \quad p \rightarrow q : \{\ell_i(S_i).\Gamma_{G_i}\}_{i \in I} \quad | \quad [\,]_i$$

$$\Gamma_G ::= p \rightarrow q : \{\ell_i(S_i).\Gamma_{G_i}\}_{i \in I} \mid []_i$$

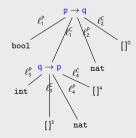
- construct a global tree G by filling all holes in an input context Γ_G with elements of a list of global type trees L
- denoted $G = \Gamma_G[L]$

$$\Gamma_G ::= p \rightarrow q : \{\ell_i(S_i).\Gamma_{G_i}\}_{i \in I} \mid []_i$$

- construct a global tree G by filling all holes in an input context Γ_G with elements of a list of global type trees L
- denoted $G = \Gamma_G[L]$

Example (Grafting)

$$\Gamma_G =$$

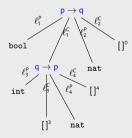


$$\Gamma_{G}$$
 ::= $p \rightarrow q : \{\ell_{i}(S_{i}).\Gamma_{G_{i}}\}_{i \in I} \mid []_{i}$

- construct a global tree G by filling all holes in an input context Γ_G with elements of a list of global type trees L
- denoted $G = \Gamma_G[L]$

Example (Grafting)

$$\Gamma_G =$$



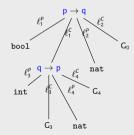
$$L = [G_0, G_1, G_2, G_3, G_4, G_5] \\$$

$$\Gamma_{G}$$
 ::= $p \rightarrow q : \{\ell_{i}(S_{i}).\Gamma_{G_{i}}\}_{i \in I} \mid []_{i}$

- construct a global tree G by filling all holes in an input context Γ_G with elements of a list of global type trees L
- denoted $G = \Gamma_G[L]$

Example (Grafting)

$$\Gamma_G[L] =$$



$$L = [G_0, G_1, G_2, G_3, G_4, G_5]$$

Lemma (grafting)

Multiparty Session Types and Processes

If $p \in g pt(G)$. Then,

- ∃ L, G1 such that G = G1[L] with p ∉h pt(G1),
- ullet elements filling a hole in G1 from L is of p ightarrow q lsg , q ightarrow p lsg or end

Proof Sketch

00000000

Lemma (grafting)

Multiparty Session Types and Processes

If $p \in g pt(G)$. Then,

- ∃ L, G1 such that G = G1[L] with p ∉h pt(G1),
- ullet elements filling a hole in G1 from L is of p o q lsg , q o p lsg or end

Represent continuations of global and local type trees as option lists of sort-tree pairs: $p \rightarrow q L$ and $\oplus p! L$

Lemma (preservation of projection under reduction)

If we have

• G $vert_p$ ($\oplus q!$ $vert_1$), G $vert_q$ (&p? $vert_2$), $(\pi_T$ $vert_1$) $_n$ = T, $(\pi_T$ $vert_2$) $_n$ = T', and G $vert_p$ $vert_p$ $vert_q$ G'.

Then,

• G' \upharpoonright_p T and G' \upharpoonright_q T'

Lemma (preservation of projection under reduction)

If we have

Multiparty Session Types and Processes

• G
$$\upharpoonright_p$$
 ($\oplus q!$ 1_1), G \upharpoonright_q ($\&p$? 1_2), $(\pi_T$ $1_1)_n$ = T, $(\pi_T$ $1_2)_n$ = T', and G $\backslash p \xrightarrow{n} q$ G'.

Then,

• G' | T and G' | T'

Lemma (consumption from projection and subtyping

If

- $G \upharpoonright_p (\oplus q! \ 1_1)$, $G \upharpoonright_q (\&p? \ 1_2)$,
- &p? $xs \leq &p$? 1_2 with $(xs)_n = (s',T')$, and
- $\oplus q!$ (+[n] (s, T)) $\leqslant \oplus q!$ l_1 .

Then,

• \exists G' such that $G \setminus p \xrightarrow{n} q G'$.

Theorem (subject reduction)

Have

• $\vdash M: G \text{ and } M \longrightarrow M'$

Then

• \exists G' such that \vdash M': G' and $G \longrightarrow G'$

Theorem (subject reduction)

Have

Multiparty Session Types and Processes

• $\vdash M: G \text{ and } M \longrightarrow M'$

Then

• \exists G' such that \vdash M': G' and $G \longrightarrow G'$

Proof sketch ([r-comm])

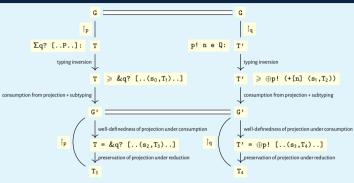
$$(H) \vdash (p \triangleleft &q? L \mid q \triangleleft \oplus p! n \in Q \mid M): G,$$

$$(Hn) L_n = Some P.$$

with e reduces into the value v, and the goal looks like

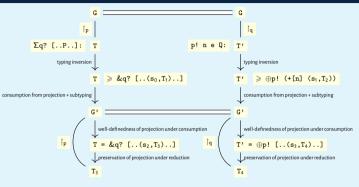
$$\begin{cases} (G_1) & \exists \mathbf{G'} \text{ such that } \vdash (p \triangleleft P[v/0] \mid q \triangleleft Q \mid M) \colon \mathbf{G'} \\ (G_2) & \mathbf{G} \longrightarrow \mathbf{G'} \end{cases}$$

Multiparty Session Types and Processes



Session Trees

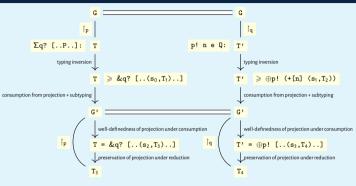
Proof sketch ([r-comm] rule)



• typing inversion additionally gives $\vdash Q: T_2$, $\vdash v: s$ with $s \leq s_2$ and $0: s_0 \vdash P: T_1$

Proof sketch ([r-comm] rule)

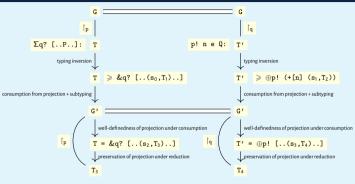
Multiparty Session Types and Processes



- typing inversion additionally gives $\vdash Q: T_2$, $\vdash v: s$ with $s \leq s_2$ and $0: s_0 \vdash P: T_1$
- plug G' as the existential global tree

Proof sketch ([r-comm] rule)

Multiparty Session Types and Processes



- typing inversion additionally gives $\vdash Q: T_2$, $\vdash v: s$ with $s \leq s_2$ and $0: s_0 \vdash P: T_1$
- plug G' as the existential global tree
- supposed to show $\vdash P[v/0]: T_1, \vdash Q: T_4 \text{ and } \vdash M: G'$

Type System and Reductions

Lemma (canonical forms for processes and sessions)

- Given \vdash M: (p \rightarrow q xs). Then,
 - \exists M' such that M \Rightarrow M', and M' is of p \triangleleft P | q \triangleleft Q | M'' or p \triangleleft P | q \triangleleft Q form
- Given ⊢ M: end . Then,

Multiparty Session Types and Processes

• \exists M' such that M \Rightarrow M', and every process in M' is **0**

Lemma (canonical forms for processes and sessions)

- ullet Given \vdash M: (p \rightarrow q xs) . Then,
 - \exists M' such that M \Rightarrow M', and M' is of p \triangleleft P | q \triangleleft Q | M'' or p \triangleleft P | q \triangleleft Q form
- Given ⊢ M: end . Then,
 - \exists M' such that M \Rightarrow M', and every process in M' is **O**

Theorem (progress

Multiparty Session Types and Processes

If $\vdash M: G$, then $\exists M'$ such that $M \longrightarrow M'$, or both $M \Rightarrow M'$ and every process in M' is $\mathbf{0}$

Lemma (canonical forms for processes and sessions)

- Given \vdash M: (p \rightarrow q xs) . Then,
 - \exists M' such that M \Rightarrow M', and M' is of p \triangleleft P | q \triangleleft Q | M'' or p \triangleleft P | q \triangleleft Q form
- Given ⊢ M: end . Then,
 - \exists M' such that M \Rightarrow M', and every process in M' is **O**

Theorem (progress

Multiparty Session Types and Processes

If $\vdash M: G$, then $\exists M'$ such that $M \longrightarrow M'$, or both $M \Rightarrow M'$ and every process in M' is $\mathbf{0}$

Proof.

by case split on G - matching it with canonical forms of M

Lemma (canonical forms for processes and sessions)

- Given \vdash M: $(p \rightarrow q xs)$. Then,
 - \exists M' such that M \Rightarrow M', and M' is of p \triangleleft P | q \triangleleft Q | M'' or p \triangleleft P | q \triangleleft Q form
- Given ⊢ M: end . Then,
 - \exists M' such that M \Rightarrow M', and every process in M' is **0**

Theorem (progress

Multiparty Session Types and Processes

If \vdash M: G, then \exists M' such that M \longrightarrow M', or both M \Rightarrow M' and every process in M' is **0**

Proof.

by case split on G - matching it with canonical forms of M

Theorem (non-stuck)

If \vdash M: G, then M does not get stuck.

Outline

- Multiparty Session Types and Processes
- 2 Session Trees
- 3 Tree Operation
- 4 Type System and Reductions
- 5 Proof Sketch
- 6 In Rocq

Approach

Multiparty Session Types and Processes

• usual inductive declarations for session types

```
Inductive global : Type \triangleq
  | g_end : global
  | g_var : nat → global
   g_send: part \rightarrow part \rightarrow list(option(sort*global)) \rightarrow global
  | g_rec : global → global.
```

Approach

Multiparty Session Types and Processes

usual inductive declarations for session types

```
\label{eq:continuous_continuous_continuous_cont} \begin{split} & \text{Inductive global} &: \text{Type} \triangleq \\ & \mid \text{g_end} : \text{global} \\ & \mid \text{g_svar} : \text{nat} \to \text{global} \\ & \mid \text{g_send: part} \to \text{part} \to \text{list(option(sort*global))} \to \text{global} \\ & \mid \text{g_rec} : \text{global} \to \text{global}. \end{split}
```

• positive coinductive type declarations

```
 \begin{array}{lll} \mbox{CoInductive gtt: Type} \triangleq & \\ & | \mbox{ gtt\_end : gtt} & \\ & | \mbox{ gtt\_send: part } \rightarrow \mbox{ part } \rightarrow \mbox{ list(option(sort*gtt))} \rightarrow \mbox{ gtt.} \\ \end{array}
```

Proof Sketch

Approach

Multiparty Session Types and Processes

usual inductive declarations for session types

```
Inductive global : Type \triangleq
  | g end : global
   | g_var : nat → global
   | g_send: part \rightarrow part \rightarrow list(option(sort*global)) \rightarrow global
  | g_rec : global \rightarrow global.
```

positive coinductive type declarations

```
CoInductive gtt: Type ≜
   | gtt_end : gtt
   | gtt_send: part \rightarrow part \rightarrow list(option(sort*gtt)) \rightarrow gtt.
```

• technique to aid coinductive goals in proof assistants

- technique to aid coinductive goals in proof assistants
- parametrised coinduction := ordinary coinduction parametrised by a relation R knowledge accumulator to keep track on visited proof states in a coinductive proof

- technique to aid coinductive goals in proof assistants
- parametrised coinduction := ordinary coinduction parametrised by a relation R knowledge accumulator to keep track on visited proof states in a coinductive proof
- parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

Multiparty Session Types and Processes

- technique to aid coinductive goals in proof assistants
- parametrised coinduction := ordinary coinduction parametrised by a relation $\frac{R}{R}$ knowledge accumulator to keep track on visited proof states in a coinductive proof
- parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R
- obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint

Paco (Hur et al. [9, 14])

• a Coq library that implements parametrised coinduction

Proof Sketch

- a Cog library that implements parametrised coinduction
- greatest cofixpoint of the (parametrised) least fixpoint technique pacon construct

```
Inductive gttT (R : global \rightarrow gtt \rightarrow Prop) : global \rightarrow gtt \rightarrow Prop \triangleq | ... | gttT_rec: \forall G Q G', subst_global 0 0 (g_rec G) G Q \rightarrow R Q G' \rightarrow gttT R (g_rec G) G'.

Definition gttTC G G' \triangleq paco2 gttT bot2 G G'.
```

Proof Sketch

Paco (Hur et al. [9, 14])

Multiparty Session Types and Processes

- a Cog library that implements parametrised coinduction
- greatest cofixpoint of the (parametrised) least fixpoint technique pacon construct

```
Inductive gttT (R : global \rightarrow gtt \rightarrow Prop) : global \rightarrow gtt \rightarrow Prop \triangleq
  1 ...
  | gttT_rec: ∀ G Q G', subst_global 0 0 (g_rec G) G Q → R Q G' → gttT R (g_rec G) G'.
Definition gttTC G G' ≜ paco2 gttT bot2 G G'.
```

gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone - entirely non-decreasing (Knaster-Tarski semantics)

Paco (Hur et al. [9, 14])

- a Coq library that implements parametrised coinduction
- greatest cofixpoint of the (parametrised) least fixpoint technique pacon construct

```
Inductive gttT (R : global \rightarrow gtt \rightarrow Prop) : global \rightarrow gtt \rightarrow Prop \triangleq | ... | gttT_rec: \forall G Q G', subst_global 0 0 (g_rec G) G Q \rightarrow R Q G' \rightarrow gttT R (g_rec G) G'.

Definition gttTC G G' \triangleq paco2 gttT bot2 G G'.
```

- gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone entirely non-decreasing (Knaster-Tarski semantics)
- bot2 is the empty relation of arity 2 noting in knowledge accumulator to start with; ordinary cofixpoint

- a Cog library that implements parametrised coinduction
- greatest cofixpoint of the (parametrised) least fixpoint technique pacon construct

```
Inductive gttT (R : global \rightarrow gtt \rightarrow Prop) : global \rightarrow gtt \rightarrow Prop \triangleq
  | gttT_rec: ∀ G Q G', subst_global 0 0 (g_rec G) G Q → R Q G' → gttT R (g_rec G) G'.
Definition gttTC G G' ≜ paco2 gttT bot2 G G'.
```

- gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone entirely non-decreasing (Knaster-Tarski semantics)
- bot2 is the empty relation of arity 2 noting in knowledge accumulator to start with; ordinary cofixpoint
- coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

Approach (use of list in gtt (cont'd))

- ullet use of lists o relaxing related definitions and (universal) proofs in Rocq
 - suitable with parametrised corecursive definitions with paco (translation, projection, consumption, subtyping)
 - allows for inductive reasoning within coinductive proofs

Approach (use of list in gtt (cont'd))

- use of lists → relaxing related definitions and (universal) proofs in Rocq
 - suitable with parametrised corecursive definitions with paco (translation, projection, consumption, subtyping)
 - allows for inductive reasoning within coinductive proofs
- existential properties are problematic

```
Lemma translate: \forall (g: global), \exists (G: gtt), G = gttT g.
```

is not provable

Approach (use of list in gtt (cont'd))

- use of lists → relaxing related definitions and (universal) proofs in Rocq
 - suitable with parametrised corecursive definitions with paco (translation, projection, consumption, subtyping)
 - allows for inductive reasoning within coinductive proofs
- existential properties are problematic

```
Lemma translate: \forall (g: global), \exists (G: gtt), G = gttT g.
```

is not provable

Multiparty Session Types and Processes

• use colists or function types in gtt

```
 \begin{array}{lll} \mbox{CoInductive gtt: Type} \triangleq & \\ | \mbox{ gtt_end : gtt} & \\ | \mbox{ gtt_send: part } \rightarrow \mbox{ part } \rightarrow \mbox{ (label -> option(sort*gtt))} \rightarrow \mbox{ gtt.} \\ \end{array}
```

allows for implementing "translate" as a cofixpoint

if projecting a well-formed tree G onto a participant p results in trees T_1 and T_2 , then $T_1 = T_2$

if projecting a well-formed tree G onto a participant p results in trees T_1 and T_2 , then $T_1 = T_2$

Approach (coinductive extensionality (cont'd))

define a bisimulation \sim over local type trees T (structural sameness) and treat it as the Leibniz equality "="

coinductive extensionality:
$$T_1 \sim T_2 \implies T_1 = T_2$$

if projecting a well-formed tree G onto a participant p results in trees T_1 and T_2 , then $T_1 = T_2$

Approach (coinductive extensionality (cont'd))

define a bisimulation ~ over local type trees T (structural sameness) and treat it as the Leibniz equality "="

coinductive extensionality:
$$T_1 \sim T_2 \implies T_1 = T_2$$

justifying soundness:

• coinductive types can be implemented as "function types" in Rocq

Session Trees

Multiparty Session Types and Processes

if projecting a well-formed tree G onto a participant p results in trees T_1 and T_2 , then $T_1 = T_2$

Approach (coinductive extensionality (cont'd))

define a bisimulation \sim over local type trees T (structural sameness) and treat it as the Leibniz equality "="

coinductive extensionality:
$$T_1 \sim T_2 \implies T_1 = T_2$$

justifying soundness:

- coinductive types can be implemented as "function types" in Rocq
- coinductive types modulo coinductive extensionality is equivalent to function types with functional extensionality

• \sim 16K lines of Rocq code

- \sim 16K lines of Rocq code
- 341 lemmata

- \sim 16K lines of Rocq code
- 341 lemmata
- 117 definitions (9 coinductive)

- \sim 16K lines of Rocg code
- 341 lemmata
- 117 definitions (9 coinductive)
- the use of classical reasoning to conduct case analysis over coinductively defined predicates

Proof Sketch

Mechanisation Effort

- \sim 16K lines of Rocg code
- 341 lemmata
- 117 definitions (9 coinductive)
- the use of classical reasoning to conduct case analysis over coinductively defined predicates
- accessible at: https://github.com/Apiros3/smpst-sr-smer

Related & Future Work

Related:

- 1 Zooid [3]: certified multiparty communication in Rocq, ensuring deadlock-free, protocol-compliant execution
- 2 Multris [8]: Iris framework for local protocol consistency in multiparty concurrency, no global type guarantees
- 3 MPGV [10]: Linear λ -calculus + MPST; deadlock-free, with progress & preservation in separation logic of Iris
- Ekici and Yoshida [4] formalise, in Rcoq, subtyping properties in asynchronous multiparty communication
- **S** Tirore [12] in his PhD thesis formalises subject reduction in Rocq for the multiparty session π -calculus

Related & Future Work

Related:

Multiparty Session Types and Processes

- 1 Zooid [3]: certified multiparty communication in Rocq, ensuring deadlock-free, protocol-compliant execution
- 2 Multris [8]: Iris framework for local protocol consistency in multiparty concurrency, no global type guarantees
- **3** MPGV [10]: Linear λ -calculus + MPST; deadlock-free, with progress & preservation in separation logic of Iris
- 4 Ekici and Yoshida [4] formalise, in Rcoq, subtyping properties in asynchronous multiparty communication
- \blacksquare Tirore [12] in his PhD thesis formalises subject reduction in Rocq for the multiparty session π -calculus

Future:

- 1 incorporating full merging into projections
- 2 full formal proof of liveness for synchronous MPST

Multiparty Session Types and Processes

Type System and Reductions

Thanks! & Questions?

https://github.com/Apiros3/smpst-sr-smer

References

- [1] Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou.

 Designing asynchronous multiparty protocols with crash-stop failures.

 In Karim Ali and Guido Salvaneschi, editors, 37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States, volume 263 of LIPIcs, pages 1:1–1:30. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2023.
- [2] Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Crash-stop failures in asynchronous multiparty session types. Logical Methods in Computer Science, 2025.

- [3] David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL for certified multiparty computation: from mechanised metatheory to certified multiparty processes.
 - In Stephen N. Freund and Eran Yahav, editors, *PLDI* '21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, pages 237–251. ACM, 2021.
- [4] Burak Ekici and Nobuko Yoshida.
 - Completeness of asynchronous session tree subtyping in Coq.
 - In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 13:1–13:20. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2024.

- [5] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. JLAMP, 104:127–173, 2019.
- [6] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5:16:1–16:28, jan 2021.
- [7] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise subtyping for asynchronous multiparty sessions. ACM Trans. Comput. Logic, 24(2), Nov 2023.
- [8] Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. Multris: Functional verification of multiparty message passing in Separation Logic. Proc. ACM Program. Lang., 8(OOPSLA2):1446-1474, 2024.

Multiparty Session Types and Processes

- [9] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis.
 - The power of parameterization in coinductive proof.

In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL'13, Rome, Italy - January 23 - 25, 2013, pages 193-206. ACM, 2013.

[10] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers.

Multiparty GV: functional multiparty session types with certified deadlock freedom.

Proc. ACM Program. Lang., 6(ICFP):466-495, 2022.

Multiparty Session Types and Processes

[11] Kirstin Peters and Nobuko Yoshida.

Separation and encodability in mixed choice multiparty sessions.

In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, *Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science*, LICS 2024, *Tallinn*, *Estonia*, *July 8-11*, 2024, pages 62:1–62:15. ACM, 2024.

[12] Dawit Legesse Tirore.

A Mechanisation of Multiparty Session Types.

PhD thesis, ITU Copenhagen, December 2024.

[13] Thien Udomsrirungruang and Nobuko Yoshida.

Top-down or bottom-up? complexity analyses of synchronous multiparty session types.

Proc. ACM Program. Lang., 9(POPL):1040-1071, 2025.

Type System and Reductions

References (cont.)

Multiparty Session Types and Processes

[14] Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory for weak bisimulation via generalized parameterized coinduction. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 71-84. ACM, 2020.