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Multiparty Session Types (Top Down Approach) (Honda, NY and Carbone !””#)
A Global Type Tree G

projection (↭)

Local Type Tree for p Tp Local Type Tree for q Tq Local Type Tree for r Tr

subtyping (↫) ↫ ↫ ↫

Local Type Tree for p T→
p Local Type Tree for q T→

q Local Type Tree for r T→
r

typing (→p)

Process for p Pp Process for q Pq Process for r Pr
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Contributions& Challenges

• extend synchronous MPST [#] with a mechanised proof of the non-stuck theorem

subject reduction well-typed sessions reduce into well-typed sessions
progress well-typed sessions either terminate or reduce to other sessions

using coinductive reasoning over “type trees”
• integrate subtyping
• decompose balanced type trees into finite prefixes – enabling inductive reasoning within infinite trees
• employ finite lists to encode, in Rcoq, continuations and branching/selections for type trees – simplifying

coinductive definitions and proofs further
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Design Overview
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Session Trees (coinductive syntax)

T ::= end | &i→Ip?εi(Si).Ti | ↑i→Ip!εi(Si).Ti

G ::= end | p ↓ q : {εi(Si).Gi}i→I

• internal nodes:

• branching (&) or selection (↑) for local type trees
• communication action for global type trees

• leaf nodes: payload sorts or end
• edge annotations: linking internal node to a payload (εP) or

continuation for message (εC)

&p

bool end

↑q nat

int end

&p real
...

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(
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Global Types↑Global Type Trees
represent recursive types and their unfoldings with the same tree – equi-recursive approach:

G[µt.G/t] G→↑ G

µt.G G→↑ G
[gtrans-rec]

↓i ↔ I, Gi
G→↑ Gi

p ↑ q : {ωi(Si).Gi}i→I
G→↑ p ↑ q : {ωi(Si).Gi}i→I

[gtrans-send]

Example

G = µt.p ↑ q

{
ω!(bool).t
ω”(nat).end

G↔↓

p ↑ q

bool endG
G→↑

...

nat

ωP
% ωC

%
ωP

!

ωC
!
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Projection
extracting local type trees from global type trees:

↗i ↘ I, Gi ↭r Ti

r ↓ q : {εi(Si).Gi}i→I ↭r↓i→I
q!εi(Si).Ti

[proj-send]
↗i ↘ I, Gi ↭r Ti

p ↓ r : {εi(Si).Gi}i→I ↭r &i→I
p?εi(Si).Ti

[proj-recv]

r /↘ {p, q} ↗i ↘ I, r ↘ pt(Gi) Gi ↭r T

p ↓ q : {εi(Si).Gi}i→I ↭r T
[proj-cont]

r /↘ pt(G)
G ↭r end

[proj-end]
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Provable

p ↓ q

p ↓ q

p ↓ q

p ↓ q

...

εC
%

εC
%

εC
%

εC
%

↭r

& p

& p

& p

& p

...

εC
%

εC
%

εC
%

εC
%
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Step Relation
global type trees evolve by consuming communications:

↗i ↘ I ≃k ↘ I, ε = εk
(

p ↓ q : {εi(Si).Gi}i→I
)
\ p ω↔↓ q Gk

[st-eq]

{r, s} ⇐ {p, q} = ⊋ ↗i ↘ I, {p, q} ⇒ pt(Gi)
(

r ↓ s : {εi(Si).Gi}i→I
)
\ p ω↔↓ q

(
r ↓ s : {εi(Si).Gi \ p ω↔↓ q}i→I

) [st-neq]
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Subtyping
provides flexibility to type system – use a process of type T whenever a process of type T↔ is needed – T ↫ T↔

↗i ↘ I, Si ⇑ : S↔
i Ti ↫ T↔

i

↓i→I
p!εi(Si).Ti ↫↓i→I↗J

p!εi(S↔
i ).T↔

i
[sub-out]

↗i ↘ I, S↔
i ⇑ : Si Ti ↫ T↔

i

&i→I↗J
p?εi(Si).Ti ↫ &i→I

p?εi(S↔
i ).T↔

i
[sub-in]

Type Checking

↗i ↘ I, !, xi : Si →p Pi : Ti

! →p
∑

i→I p?εi(xi).Pi : &i→I
p?εi(Si).Ti

[tin]
! →s e : S ! →p P : T

! →p p!ε(e).P : ↓ p!ε(S).T
[tout]

!, X : T →p P : T
! →p µX.P : T

[trec]
! →p P : T T ↫ T↔

! →p P : T↔ [tsub]
! →s e : bool ! →p P% : T ! →p P! : T

! →p if e then P% else P! : T
[tite]

↗i ↘ I, G↭pi Ti →p Pi : Ti pt(G) ⇒ {pi | i ↘ I}
→m

∏
i→I pi ω Pi : G

[tsess]

%! / &’
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Processes and Multiparty Sessions (syntax)
P ::= p!ε(e).P |

∑
i→I p?εi(xi).Pi | if e then P else P | µX.P | X | !

M ::= p ω P | M | M

Processes and Multiparty Sessions (pre-congruence and reduction)

p ω µX.P | M ↬ p ω P[µX.P/X] | M
[po-unf]

↗i ↘ I j ↘ I e ⇓ v
p ω

∑
i→I q?εi(xi).Pi | q ω p!εj(e).Q | M ↔↓ p ω Pj[v/xj] | q ω Q | M

[r-comm]

M↔
% ↬ M% M% ↔↓ M! M! ↬ M↔

!

M↔
% ↔↓ M↔

!
[r-struct]

%& / &’
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Congruence (violates subject reduction)

Assume! →p P : T and P ⇔ Q . Then we have! →p Q : T

does not hold!
some prior work invalidating subject reduction [%, #, %%, ), ’]

Counter Example
let a process P = p?ε(x).p!ε↔(x).X
have →p P[µX.P/X] : T where

T = p?ε(bool).p!ε↔(bool).p?ε(nat).p!ε↔(nat).T
however ⫅̸p µX.P : T

a solution is to disable fold-back identities (↬ handles that)
imported by some recently published work [%&, !]

%( / &’
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Balancedness
G is balanced if, for every subtree G↔ of G, whenever p ↘ pt(G↔),≃ k ↘ N such that

% For all paths ϑ of length k from the root of G↔, p ↘ ϑ

! For all paths ϑ from the root of G↔ that end at a leaf (end), p ↘ ϑ

Example (an unbalanced tree)

G =

p ↑ q

nat
q ↑ r

G
int

int end

ωP
%

ωC
%

ωP
!

ωC
!

ωP
& ωC

&

Well-formedness
Global type tree G is well-formed if≃ global typeG,

% recursion is guarded

! continuations non-empty and non-↖

& G G↔↓ G

( G is balanced
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Definition (Gra+ting)

!G ::= p ↓ q : {εi(Si).!Gi}i→I | [ ]i

• construct a global tree G by filling all holes in an input context!G with elements of a list of global type trees L
• denoted G = !G[L]

Example (Gra+ting)

=
p ↓ q

bool

q ↓ p nat

int

nat

εP
%

εC
% εP

!

εC
!

εP
&

εC
& εP

(

εC
(

L = [G”, G%, G!, G&, G(, G#]
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Lemma (gra+ting)
If p ↔g pt(G) . Then,

• ≃ L, Gl such that G = Gl[L] with p /↔h pt(Gl) ,

• elements filling a hole in Gl from L is of p ↑ q lsg , q ↑ p lsg or end

Notation
Represent continuations of global and local type trees as option lists of sort-tree pairs: p ↑ q L and ↗p! L
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Lemma (preservation of projection under reduction)
If we have

• G ↭p (↗q! l%) , G ↭q (&p? l!) , (εT l%)n = T , (εT l!)n = T’ , and G \p n→↑ q G’ .

Then,
• G’ ↭p T and G’ ↭q T’

Lemma (consumption from projection and subtyping)
If

• G ↭p (↗q! l%) , G ↭q (&p? l!) ,

• &p? xs ↫ &p? l! with (xs)n = (s’,T’) , and

• ↗q! (+[n] (s, T)) ↫ ↗q! l% .

Then,

• ≃ G’ such that G \p n→↑ q G’ .
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Theorem (subject reduction)
Have

• ↘ M : G and M →↑ M’

Then
• ≃ G’ such that ↘ M’ : G’ and G →↑ G’

Proof sketch ([r-comm])

{
(H) ↘ (p ϑ &q? L | q ϑ ↗p! n e Q | M): G ,
(Hn) Ln = Some P .

with e reduces into the value v , and the goal looks like
{

(G%) ≃ G’ such that ↘ (p ϑ P[v/0] | q ϑ Q | M): G’

(G!) G →↑ G’ .
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Proof sketch ([r-comm] rule)
G

T

G

T’

T = &q? [..(s!,T&)..] T’ = ↗p! [..(s&,T()..]

!q? [..P..]:

T ⊜ &q? [..(s”,T%)..] ⊜ ↗p! (+[n] (s%,T!))

T’p! n e Q:

G’ G’

T& T(

↭p ↭q

typing inversion typing inversion

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

consumption from projection + subtyping

well-definedness of projection under consumption

preservation of projection under reduction

↭p ↭q

• typing inversion additionally gives ↘ Q: T! , ↘ v: s with s ≃ s! and 0 : s” ↘ P: T%

• plug G’ as the existential global tree

• supposed to show ↘ P[v/0]: T% , ↘ Q: T( and ↘ M: G’
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Lemma (canonical forms for processes and sessions)

• Given ↘ M: (p ↑ q xs) . Then,

• ≃ M’ such that M ↬ M’ , and M’ is of p ϑ P | q ϑ Q | M’’ or p ϑ P | q ϑ Q form

• Given ↘ M: end . Then,

• ≃ M’ such that M ↬ M’ , and every process in M’ is !

Theorem (progress)
If ↘ M: G , then≃ M’ such that M →↑ M’ , or both M ↬ M’ and every process in M’ is !

Proof.
by case split on G – matching it with canonical forms of M

Theorem (non-stuck)
If ↘ M: G , then M does not get stuck.
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Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ ↓ gtt.

!( / &’



Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ list(option(sort*gtt)) ↓ gtt.

!( / &’



Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Approach

• usual inductive declarations for session types
Inductive global : Type ↭

| g_end : global
| g_var : nat ↓ global
| g_send: part ↓ part ↓ list(option(sort*global)) ↓ global
| g_rec : global ↓ global.

• positive coinductive type declarations

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ list(option(sort*gtt)) ↓ gtt.

!( / &’



Multiparty Session Types and Processes Session Trees Tree Operations Type System and Reductions Proof Sketch In Rocq

Parametrised Coinduction

• technique to aid coinductive goals in proof assistants

• parametrised coinduction := ordinary coinduction parametrised by a relation R — knowledge accumulator —
to keep track on visited proof states in a coinductive proof

• parametrised greatest cofixpoint := ordinary greatest cofixpoint extended by R

• obviously, when R is empty

ordinary greatest cofixpoint = parametrised greatest cofixpoint
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Paco (Hur et al. [*, %(])
• a Coq library that implements parametrised coinduction

• greatest cofixpoint of the (parametrised) least fixpoint technique – pacon construct

Inductive gttT (R : global ↓ gtt ↓ Prop) : global ↓ gtt ↓ Prop ↭
| ...
| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein

!) / &’
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| gttT_rec: ↔ G Q G’, subst_global 0 0 (g_rec G) G Q ↓ R Q G’ ↓ gttT R (g_rec G) G’.

Definition gttTC G G’ ↭ paco2 gttT bot2 G G’.

• gttTC is the greatest cofixpoint of the the generating function/relation gttT alas it is monotone – entirely
non-decreasing (Knaster-Tarski semantics)

• bot2 is the empty relation of arity ! – noting in knowledge accumulator to start with; ordinary cofixpoint
• coinductive proof structure in Rocq: expand the accumulator and close the goal if it is therein
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Approach (use of list in gtt (cont’d))

• use of lists↓ relaxing related definitions and (universal) proofs in Rocq
• suitable with parametrised corecursive definitions with paco (translation, projection, consumption,

subtyping)
• allows for inductive reasoning within coinductive proofs

• existential properties are problematic

Lemma translate: ↔ (g: global), ↗ (G: gtt), G = gttT g.

is not provable
• use colists or function types in gtt

CoInductive gtt: Type ↭
| gtt_end : gtt
| gtt_send: part ↓ part ↓ (label -> option(sort*gtt)) ↓ gtt.

allows for implementing “translate” as a cofixpoint
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Theorem
if projecting a well-formed tree G onto a participant p results in trees T% and T!, then T% = T!

Approach (coinductive extensionality (cont’d))
define a bisimulation↙ over local type trees T (structural sameness) and treat it as the Leibniz equality “=”

coinductive extensionality: T% ↙ T! =∝ T% = T!

justifying soundness:
• coinductive types can be implemented as “function types” in Rocq
• coinductive types modulo coinductive extensionality is equivalent to function types with functional

extensionality
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Mechanisation E,fort

• ↙ %)K lines of Rocq code

• &(% lemmata
• %%’ definitions (* coinductive)
• the use of classical reasoning to conduct case analysis over coinductively defined predicates
• accessible at: https://github.com/Apiros3/smpst-sr-smer
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Related& Future Work
Related:

% Zooid [&]: certified multiparty communication in Rocq, ensuring deadlock-free, protocol-compliant execution

! Multris [$]: Iris framework for local protocol consistency in multiparty concurrency, no global type guarantees

& MPGV [%”]: Linearϖ-calculus + MPST; deadlock-free, with progress& preservation in separation logic of Iris

( Ekici and Yoshida [(] formalise, in Rcoq, subtyping properties in asynchronous multiparty communication

# Tirore [%!] in his PhD thesis formalises subject reduction in Rocq for the multiparty sessionϱ-calculus

Future:

% incorporating full merging into projections

! full formal proof of liveness for synchronous MPST
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Thanks! &Questions?
https://github.com/Apiros3/smpst-sr-smer
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