
Towards Automating Permutation Proofs in Rocq:
A Reflexive Approach with Iterative Deepening Search

(Short Paper)

Nadeem Abdul Hamid

ITP 2025, Reykjavic, Iceland

Reasoning
about
permutations

Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
| perm_trans l l' l’’ : Permutation l l' -> Permutation l' l'' -> Permutation l l''.

https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/corelib/Corelib.Init.Datatypes.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
-%253E
-%253E
https://rocq-prover.org/doc/V9.0.0/corelib/Corelib.Init.Datatypes.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
-%253E
-%253E
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Lists.List.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Lists.List.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
-%253E
-%253E
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
file:///
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
-%253E
-%253E
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
-%253E
-%253E
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html
https://rocq-prover.org/doc/V9.0.0/stdlib/Stdlib.Sorting.Permutation.html

Prior Work

• Rewriting theory, termination, and program transformation [6, 3, 7]

• Tactics for reasoning modulo AC (associativity and commutativity) [5]
• Some limited attention to lists and permutations

• Tactic to transform Permutation goals into solving multiplicity
calculations (alt. defn. of permutations)
• GitHub repo https://github.com/foreverbell/permutation-solver
• Could be generalized to any type with decidable equality
• Reduces to solving equations with lia

General Approach39:2 Automating Permutation Proofs in Rocq

A : Type

h : A

a, b, a’, t, a1, a2 : list A

...

H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation

H2 : Permutation a (h :: a’) :: is ‘cons‘

H3 : Permutation (a’ ++ b) t

H4 : Permutation (a1 ++ a2) a’

...

Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.

In a more substantial development, [10] developed a formalization of k-d trees in Rocq,

1. Build a mapping
environment (nat to
atomic list terms)

2. Reify permutation
terms into pairs of
binary trees with nat
leaves

3. Collect tree pairs
from hypotheses into
a substitution
environment

4. Run a “unification”
algorithm on the
substitution
environment and goal
trees.

5. Apply the reflection
theorem

1. Build a mapping environment39:2 Automating Permutation Proofs in Rocq

A : Type

h : A

a, b, a’, t, a1, a2 : list A

...

H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation

H2 : Permutation a (h :: a’) :: is ‘cons‘

H3 : Permutation (a’ ++ b) t

H4 : Permutation (a1 ++ a2) a’

...

Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.

In a more substantial development, [10] developed a formalization of k-d trees in Rocq,

[6 |-> a2
 5 |-> a1
 4 |-> a’
 3 |-> t
 2 |-> [h]
 1 |-> b
 0 |-> a]

• Collect arguments of all Permutation propositions
• Match terms around ++ and generate a map and reverse map (Ltac pseudo-

list of (atom , n) pairs -- used to see if an atom is already mapped)

Lta
c

2. Reify lists into binary trees

39:2 Automating Permutation Proofs in Rocq

A : Type

h : A

a, b, a’, t, a1, a2 : list A

...

H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation

H2 : Permutation a (h :: a’) :: is ‘cons‘

H3 : Permutation (a’ ++ b) t

H4 : Permutation (a1 ++ a2) a’

...

Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.

In a more substantial development, [10] developed a formalization of k-d trees in Rocq,

Permutation
 (nattree_to_list (br (br (lf 5) (lf 1))
 (br (lf 2) (lf 6))) M)
 (nattree_to_list (br (lf 0) (lf 1)) M))

[6 |-> a2
 5 |-> a1
 4 |-> a’
 3 |-> t
 2 |-> [h]
 1 |-> b
 0 |-> a]

Lta
c

3. Build a substitution environment39:2 Automating Permutation Proofs in Rocq

A : Type

h : A

a, b, a’, t, a1, a2 : list A

...

H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation

H2 : Permutation a (h :: a’) :: is ‘cons‘

H3 : Permutation (a’ ++ b) t

H4 : Permutation (a1 ++ a2) a’

...

Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.

In a more substantial development, [10] developed a formalization of k-d trees in Rocq,

([0,1], [2,3]),
([0], [2,4]),
([4,1], [3]),
([5, 6], [4])

[6 |-> a2
 5 |-> a1
 4 |-> a’
 3 |-> t
 2 |-> [h]
 1 |-> b
 0 |-> a]

Lta
c

4. Unification39:2 Automating Permutation Proofs in Rocq

A : Type

h : A

a, b, a’, t, a1, a2 : list A

...

H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation

H2 : Permutation a (h :: a’) :: is ‘cons‘

H3 : Permutation (a’ ++ b) t

H4 : Permutation (a1 ++ a2) a’

...

Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.

In a more substantial development, [10] developed a formalization of k-d trees in Rocq,

([0,1], [2,3]),
([0], [2,4]),
([4,1], [3]),
([5, 6], [4])

[6 |-> a2
 5 |-> a1
 4 |-> a’
 3 |-> t
 2 |-> [h]
 1 |-> b
 0 |-> a]

[5,1,2,6] [0,1]
• Substitute associated sets from the substitution environment in the left

goal until it matches the right.
• Implemented as a Fixpoint that computes to bool .

Ga
llin
a

4. Unification - demo

[5,1,2,6] [0,1]

[1,2, 4] [0,1]

• Determine applicable substitutions on
the left
• Recursively try applicable substitutions
• Iteratively depth-limited by quartiles of

the size of the substitution environment

([0,1], [2,3]),
([0], [2,4]),
([4,1], [3]),
([5, 6], [4])

[2, 3] [0,1] [1,2, 5,6] [0,1][1, 0] [0,1]

Ga
llin
a

5. Apply the reflection theorem

• Use one more tactic to clear the obligations relating the
substitution environment to Permutation assumptions

Ga
llin
a

39:4 Automating Permutation Proofs in Rocq

Inductive nattree := lf : nat -> nattree | br : nattree -> nattree -> nattree.

Fixpoint nattree_to_list {A} (nt:nattree) (menv:NatMap.t (list A)) : list A := ...

Theorem check_unify_permutation :

forall A (tenv: list (nattree * nattree)) (nt1 nt2: nattree) menv,

(forall t1 t2, List.In (t1, t2) tenv

-> Permutation (nattree_to_list t1 menv) (nattree_to_list t2 menv)) ->

check_unify (flatten_env tenv) (flatten nt1) (flatten nt2) = true ->

Permutation (nattree_to_list nt1 menv) (nattree_to_list nt2 menv).

Figure 2 Salient definitions for reflecting trees of labels into lists.

3.1 General Approach to Automating Permutation Proofs
To begin with, we build a mapping environment that assigns arbitrary labels to distinct
subterms of all concatenated list terms in the proof context. For Figure 1, this results in:

[6 |-> a2 , 5 |-> a1 , 4 |-> a’, 3 |-> t, 2 |-> [h], 1 |-> b, 0 |-> a]

We use a finite map data structure from the Rocq standard library, with keys ranging over
the data type of unary natural numbers, nat. Occurrences of cons (::) are rewritten into
concatenations (++) of a singleton list in this process (i.e. h::t becomes [h]++t).

With the mapping environment prepared, we now reify (to a first approximation) every
Permutation term into a pair of lists (treated as multisets) of numbers. Pairs corresponding
to the Permutation hypotheses are collected in a substitution environment, such as:

[([0; 1], [2; 3]), ([0] , [2; 4]), ([4; 1], [3]) , ([5; 6], [4])]

and the goal of Figure 1 would correspond to ([5; 1; 2; 6], [0; 1]). We now apply the
unification algorithm (Section 3.2) in order to equate the pair of sets in the goal, by searching
for a sequence of appropriate subset substitutions based on the substitution environment.
For example, replacing the 0 on the right with [2; 4], and then the 4 with [5; 6] results
in the set [2; 5; 6; 1] on the right, which contains the same elements as [5; 1; 2; 6].

In reality, we do not reify terms forming list concatenations directly into flat multi-
sets of nats, because that loses information about the grouping order of the operations
in the original. Instead, we define nattree (Figure 2), a data type of binary trees
with nat values at the leaves. The nattree_to_list function of Figure 2 reflects a
nattree back into a list of elements, under the mapping environment, menv. A term
like Permutation ((a1 ++ b) ++ h :: a2) (a ++ b) can now be rewritten into:

Permutation

(nattree_to_list (br (br (lf 6) (lf 2)) (br (lf 1) (lf 5))) M)

(nattree_to_list (br (lf 1) (lf 0)) M))

which is equivalent under Rocq’s conversion rules, for a properly constructed environment
M. Note that nattree_to_list swaps the order of the branches as the tree is flattened, for
convenience in the proof development.

With this reflection set up, and the check_unify function (see next section), we establish
the check_unify_permutation theorem in Figure 2. The tenv list is the substitution
environment introduced earlier, but maintained as a list of nattree pairs, rather than pairs
of lists. The first premise of the theorem expresses an obligation that for every pair of nattrees
in the substitution environment, there is a proof that the reflected lists are permutations

Put it all together!

Goal forall A (pq:list A) pqsm pqlg D Dsm Dlg R L x y,
 Permutation pq (x :: pqsm ++ rev pqlg) ->
 Permutation (rev pqlg) pqlg ->
 Permutation (Dsm ++ Dlg) D ->
 Permutation R (pqsm ++ y :: Dsm) ->
 Permutation L (Dlg ++ pqlg) ->
 Permutation (R ++ x :: L) (y :: D ++ pq).
Proof.
 intros; perm_solver.
Qed.

Usage and Experience

• ~20% (707/3277 lines) reduction in large proof development
involving lots of reasoning about permutations.

• Seems reasonably efficient in practice with IDS

• Obvious optimizations don’t have noticeable effect
• Binary nat representation
• Sorting lists into canonical form

• Future work:
• Port to Ltac2

Thank you!
nadeem@acm.org

https://github.com/nadeemabdulhamid/permsolver
Towards Automating Permutation Proofs in Rocq:

A Reflexive Approach with Iterative Deepening Search (Short Paper)

https://github.com/nadeemabdulhamid/permsolver

Inductive multiset : Type := Bag : (A -> nat) -> multiset.

Definition permutation (l m:list A)
 := meq (list_contents l) (list_contents m).

Definition meq (m1 m2:multiset) :=
forall a:A, multiplicity m1 a = multiplicity m2 a.

Definition multiplicity (m:multiset) (a:A) : nat
 := let (f) := m in f a.

Permutations based on multisets

There exists a permutation between two lists iff every
element has the same multiplicity in the two lists

https://rocq-prover.org/doc/v8.9/stdlib/Coq.Sorting.PermutSetoid.html

Continuation-Passing Style
Ltac build_env_and_go A :=
 normalize_append A;
 match goal with (@Permutation A ?X ?Y) =>
 collect_hyps_perm_terms A constr:((X, (Y, tt)))
 ltac:(fun hyps_perm_terms
 => gen_map_all hyps_perm_terms constr:(0) constr:(empty (list A)) tt
 ltac:(fun ctr env rmap =>
 let name := (fresh "env") in set (name := env);
 rewrite_hyp_perms A rmap name;
 build_tenv constr:((@nil (nattree * nattree)))
 ltac:(fun tenv => let tname := (fresh "tenv")
 in set (tname := tenv);
 apply check_unify_permutation with tname;
 [apply tenv_perm_forall;
 repeat (apply tp_cons; auto);
 apply tp_nil | reflexivity])))
 end.

