M universitat
™ innsbruck

An lIsabelle/HOL Formalization of Semi-Thue and Conditional
Semi-Thue Systems

Dohan Kim

University of Innsbruck, Austria

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025


16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025

Contents

1. Overview of Semi-Thue Systems

2. Inference System for Completion of Semi-Thue Systems
3. Conditional Semi-Thue Systems

4. Types and Properties of Conditional Semi-Thue Systems
5. An Isabelle/HOL Formalization

6. Conclusion

1/24



Overview of Semi-Thue Systems

Figure: Axel Thue (1863-1922)

Semi-Thue (String Rewriting) Systems

It is generally accepted that Thue first introduced semi-Thue systems, also known as
string rewriting systems in 1910's to solve the word problem of semigroups/monoids. 2/24



Overview of Semi-Thue Systems

Semi-Thue Systems

= A semi-Thue system (STS) R over a finite alphabet ¥ is a subset of ¥* x ¥*.

Notation: u —x v denotes that u rewrites to v via a rule from R. Also, -7,
denotes the reflexive, transitive closure of —5.
Example: ¥ = {a,b} and R = {(ab,ba), (aa,a)}.

e Then, abab - baab —x bab -7 bba.

Thue congruence induced by R is the relation Sr.

In the above example, abab <i>7g bba.

The congruence class [w]r of a word w € X% is defined as
[w]r = {veX* |w g v,
In the above example, [abab]r := {abab, baab, bab, bba, . ..}.

3/24



Monoids
Monoids and factor monoids

= Monoids are fundamental algebraic structures widely used in mathematics and
computer science.

= A monoid is a set equipped with an associative binary operation and a (two-sided)
identity element.
= >* is a monoid, called the free monoid.

e Elements: all finite (possibly empty) strings from X
e Operation: string concatenation
o ldentity: empty string

= Given a semi-Thue system R over X, Mg = ¥*/ S is a monoid, called the factor

monoid of £* modulo <.
e Elements: Congruence classes [w]r in {[w]r|weX*}.
e Operation: A binary operation - such that [u]z - [v]r = [uv]r, where u,v € ¥*.
e Identity: [e]r

4/24



Word problem of finitely presented monoids and groups

Word problem of finitely presented monoids

* Given a semi-Thue system R over 3, a monoid M is finitely presented by (X;R) if
M = Mg and both > and R are finite.

* The word problem of the monoid M = (3;R) is the following decision problem:
Given two words u,v € X, decide if u=v in M.

® The word problem of a finitely presented monoid M = (X;R) is undecidable in
general, but it is decidable if »5 is confluent and terminating (i.e., complete).

Groups

® A group is a monoid in which every element is invertible. More specifically,
* A monoid M = (X;R) is a group if for all u € X, there is some v € ¥* such that

* *
uv <R € and vu <R €.

5/24



Completion for Finitely Presented Monoids

Purposes

* |f a monoid is presented by a finite terminating semi-Thue system R but it is not
confluent, then one may attempt to construct a finite complete semi-Thue system
R’ equivalent to R using a completion procedure, where R is confluent if whenever
s —*>7g u and s —*>73 v, there is w such that u —*>R w and v —*>R w.

® |t is known that an STS S on ¥* can be associated with a term rewriting system
(TRS) Rg in such a way that Rg := {{(z) > r(x)|f{ — r € S}, where each letter
from an alphabet X is interpreted as a unary function symbol.

® Knuth-Bendix algorithms for STSs are already known in the literature. There are
also known inference systems (e.g. abstract completion) for completion of TRSs.

* Proposed approach: Uses an inference system for completion of STSs (instead of
using algorithms). Uses simple linear time string matching and length-lexicographic
order (shortlex order) instead of using unification and more complex term ordering.

6/24



Inference System for Completion of Semi-Thue Systems

= In the following, £ is a set of equations on 3* and R is a set of string rewriting
rules on ¥* such that for each (¢,7) € R, £ >4 r, where >4 is a shortlex order.

= Observe that for each (¢,7) € R, ¢ cannot be the empty string because it is not the
case that ¢ >4 s for any s e 2.

Deduce

(&;R)

if (uqus,s)€eR, (usus,t) € R, and us # €.
(€U {suz ~ uit}, R) (uatiz, 8) €R, (uatia, ) ’

Simplify
(€ u{ujugus ~ s}, R)

if (UQ,t) eR.
(Eu{uitug ~ s}, R)

7/24



Orient
(Eu{s~t},R)
(&, RuU{(s,1)})

if s >l t.

Collapse

(&, Ru{(urusus,s)})
(Eu{ujtug ~ s}, R)

if (UQ,t) eR.

Compose

(&, Ru{(s,ujugus)})

(E,Ru{(s,uitus)}) if (ug2,t)€R.

Delete
(Eu{s~s},R)
(&,R)




Inference System for Completion of Semi-Thue Systems

Fair non-failing run
= We write (§,R) +sr (€', R') if (§/,R") can be obtained from (£,R) by applying
one of the inference rules in the inference system.
= A (finite) run for an initial set of equations £ is a finite sequence
(So,Ro) SR (51,R1) SR " SR (gn,Rn), where & =€ and Ry = @.
= A run (EO,R()) SR (517R1) FSR ' FSR (gn,'Rn) fails if gn * .
= A run (Eo,Ro) SR (517R1) SR " ESR (gnaRn) is fair if CP(Rn) € U?:() S

Correctness

For every fair non-failing run (£, Ro) +sr (€1, R1) Fsg - +sr (En, Rp), &R, is a
complete STS for an initial finite set of equations £ = & on X*.

9/24



Conditional Semi-Thue Systems (CSTSs) [DeiB, 1992]

Purposes

* Conditional semi-Thue systems (CSTSs) are extensions of STSs, where each of
their rules has the form (¢,r) < sy & t1,...,8, &ty for £,7,81,t1,...,8p,tn € L%,
Here, each rule of CSTS (/,r) < ¢ can also be denoted as ¢ — 1 < ¢.

¢ A finitely presented monoid with decidable word problem may not admit a finite
complete (unconditional) presentation, but it may admit a finite complete
conditional presentation.

* For example, the monoid M = (X;R), where ¥ = {a,b} and R = {aba — ba}, is
finitely presented and have decidable word problem, but does not admit an
equivalent monoid presentation with (3;R’), where R’ is a finite complete STS.

* More specifically, a completion procedure for R may only yield an infinite complete
semi-Thue system {ab"a — b"a|n > 1}. However, R admits an equivalent finite
complete (reductive) right-join CSTS R” = {aba — ba,abb — bb < ab ~ b}. (Here,
(X;R") is a finite complete (reductive) conditional presentation of M)

10/24



Types of Conditional Semi-Thue Systems

Types of CSTSs

® The types of CSTSs depend on the string rewriting relations induced by CSTSs.

* More specifically, the types of CSTSs depend on how conditions are evaluated in
the conditional parts of their conditional string rewriting rules. The induced string
rewriting relations from CSTSs are structured into levels.

Left-Right-Join CSTSs
® The string rewriting relation —g ;.. ; for a left-right-join CSTS R on ¥* is defined

as follows: t1 =R i, t2 iff t1 =g, t2 for some n > 0. Here, the unconditional STS
R, are inductively defined as follows:

Ro =D
{Rn+1::{(u€v,u7'v) |(4,7) < ¢ e R,andusv |, utv for Vs~ t e ¢, and u,v € ¥} 112



Right-Join CSTSs

® The string rewriting relation —x . ; for a right-join CSTS R on X* is defined as
follows: t1 =g . j t2 iff t1 »%, t2 for some n > 0. Here, the unconditional STS R,
are inductively defined as follows:

Ro =g
{le ={(lv,rv)|(l,r) = ¢peR, and sv |g, tv forall smtep and veX*}

Pure-Join CSTSs

® The string rewriting relation —g ;, ; for a pure-join CSTS R on X* is defined as
follows: t1 »x j j to iff t1 -x, t2 for some n > 0. Here, the unconditional STS R,
are inductively defined as follows:

Ro =g
Rus1:={,r)|({,r) <=peR, and s g, t for all s~tep}

12/24



Types of Conditional Semi-Thue Systems

* Consider R = {al — bl,lam — lbm,c — d < a ~ b}, where X = {a,b,c,d,l,m}
with a>b>c>d>¢>m. If Ris a pure-join CSTS, then neither ¢l -5, ; d¢ nor
lem =g p j £dm holds. If R is a right-join CSTS, then ¢/ -, ; d/ holds, but
lem —g . £dm does not hold. If R is a left-right-join CSTS, then both
cl g 15 dl and fem —g 4 £dm hold.

Reductive CSTSs

* We call a CSTS R reductive if for all ({,1) <= ¢peR, b>gr, L >4 s;, and £ >4 t;
for all (s;,t;) € ¢.

* If R is a finite reductive right-join CSTS, then -z, ; is terminating and decidable.
* If R is a finite reductive pure-join CSTS, then g, ; is terminating and decidable.

13/24



Discussion

Limitation of Left-Right-Join CSTSs

= Non-overlap may not be joinable for left-right-join CSTSs.

= Example: R={b—>u<i~j,c—>v<I~»m,aic—> ajc,bld > bmd} over
Y ={a,b,c,d,i,j,l,m,u,v}. Using the shortlex order > induced by the
precedence a >b>c>d>1>7>1>m >wu>v, we see that R is reductive.

= Consider R as a left-right-join CSTS and a non-overlap
aucd Rorl,j < abed —x 1,5 abud.

= Here, the step abcd —x 1 ; aucd uses the rules b — u < i~ j and aic — ajc, and
the step abed —x ,,; abvd uses the rules ¢ — v <= [ ~m and bld — bmd. However,
it is not the case that aucd |, ; abvd.

® Therefore, joinability of critical pairs does not suffice to show local confluence for
left-right-join CSTSs even if they are reductive.

14/24



Confluence of CSTSs

Critical Pairs for Right-Join and Pure-Join CSTSs

= For each pair of not necessarily distinct conditional string rewriting rules from a
CSTS R, say (ug,vo) < V% u; ~ v; and (ug,v)) < Vit u; ~ v,
= A critical pair arises when there is an overlap, i.e., either ugy = zu(, and |z| < |ug| or
ug = zujy for some z,y € £*. Assume that there is an overlap with such z and y:
= Now, each element in the set of critical pairs w.r.t. - ;. ; has the following form:
* (voy,xv)) < VI uy » vy AV ul ~ vl
* (vg,zvyy) < Y% u; » v; A VZ’zluly ~ LY
= Meanwhile, each element in the set of critical pairs w.r.t. =, ; has the following
form:
* (voy,zv)) < Vitu; » vy AV 1u ~ ).
* (v, zvpy) < V2w, » v; AV Ul ~ v

15 /24



Confluence of CSTSs

Joinability of Critical Pairs

* For a right-join CSTS R, a critical pair (so,t0) < V' ;s; ~ t; is joinable

w.rt. =g if for any y € X%, s;y g tiy for all 1 <i <n implies sy I toy.
* For a pure-join CSTS R, a critical pair (so,t0) < VI s; ~ t; is joinable

w.rt. =g i if 8; lrpjti forall 1 <@ <n implies sg IR p ; to.

Confluence Criteria for Right-Join and Pure-Join CSTSs

® Let R be a finite reductive right-join CSTS. Then, —»x . ; is confluent if and only if
all critical pairs of R are joinable w.r.t. -z , ; [DeiB,1992].

® Let R be a finite reductive pure-join CSTS. Then, »% , ; is confluent if and only if
all critical pairs of R are joinable w.r.t. =g, ;.

16 /24



Inference system for conditional equational theories

Inference rules for conditional equational theories

e Reflexivity: s~

e Symmetry: f: z

e Transitivity: 3% g = 5% u
e Congruence: #:Ztv

V(sw~t)eop:usvw~uty
wlv ~ urv
(s~t)ep:suntu

by~ ru
HEilegsemvt for all (4,r) <= ¢peR.

{~r 17/24

Above, R is a CSTS on X*. The Replacement rule (LR/R/P) can be selected.

e Replacement (LR): for all (¢,7) < ¢peR.

e Replacement (R): v for all ({,r) <= ¢peR.

e Replacement (P):




Inference system for conditional equational theories

Conditional Equational Theories

e We write R ;. s~ t if s~ t is derivable from the inference system consisting of
Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (LR) rule.

* We write R+, s~ t if s~ t is derivable from the inference system consisting of
Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (R) rule.

* We write R -, s ~ t if s ~ 1 is derivable from the inference system consisting of
Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (P) rule.

Related Results
* . . .
® t1 <R s t2 iff Rty %o, Also, if »x . ; is confluent, then —x 1, s = =R 11 ;.
* . . .
® t1 <R st iff Rt ~ta. Also, if =g . is confluent, then - ;. o= =R ;.

* - . .
® t1 <R ps t2 iff Ryt ~ta. Also, if =, ; is confluent, then g , o= >R ;.

18 /24



Word Problem of Monoids defined by CSTSs

Monoids Defined by Finite Reductive CSTSs

= Given a finite reductive right-join CSTS R, Mg, ; = ¥*/ QRM- is also a monoid.
o Elements: Congruence classes [w]r,,; in {[w]r,;|weX*}.
e Operation: A binary operation - such that [u]g ;- [v]r; = [uv]R.rj, where
u,v € X* with the identity element [¢]r ;. ;.

= Given a finite reductive pure-join CSTS R, the monoid Mz, ; := £*/ <>g,;j can
be defined similarly.

Decision Procedure for the Word Problem of Monoids My ;. ; and My ), ;

* Let R be a finite reductive right-join (resp. pure-join) CSTS on ¥*. If -z, ;
(resp. =R p ;) is confluent, then we can decide whether s and ¢ on ¥* are the same
element in the monoid Mg , ;= X"/ ‘LR,T,J‘ (resp. MRy j:=%"/ <i>737p’j).

19/24



Formalization of the Proposed Completion Procedure of STSs

Using Inductively Defined Predicates in Isabelle/HOL

inductive sts_compl_step:: "sts x sts = sts x sts = bool" (infix "rFgr" 55) where
deduce: "(E,R) +sr (Eu{(sQu3,ul@t)}, R)"
if "(ul@Qu2,s) € R" and "(u2@Qu3,t) € R" and "u2+[]"
| simplifyl: "(Eu{(ulQu2Qu3,s)},R) +srp (Eu{(ul@t@Qu3,s)}, R)"
if "(u2,t) e R"
| simplifyr: "(Eu{(s,ul Qu2Qu3)},R) +sr (Eu{(s,ul@tQu3)},R)"
if "(u2,t) e R"
| orientl: "(Eu{(s,t)},R) +sr (E,{RU{(s,)})" if "s>4t"
| orientr: "(Eu{(s,t)},R) Fsr (B, {RU{(t,8)})" if "t>4 s"
| collapse: "(E, Ru{(ulQu2@Qu3,s)}) Fsr (Fu{(ul@t@Qu3,s)}, R)" if "(u2,t) € R"
| compose: "(E,Ru{(s,ul Qu2@Qu3)}) rsr (E, Ru{(s,ul @tQu3)})" if "(u2,t) € R"
| delete: "(Eu{(s,8)},R) +sr (E,R)"

20 /24

Above, E consists of ordered pairs (instead of unordered pairs) for technical convenience.



Formalization of CSTSs

Formalization of —x ;. ;

definition "csr_r_join_step R = (Un. csr_r_join_step_n R n)"

fun csr_r_join_step_n:: "csts = nat = string rel" where
"esr_r_join_step_n R 0= {}" |
"esr_r_join_step_n R (Sucn) =
{(C{eaw), C{r@uw)))|CLrcsw. ((L,r), cs) e R A
(V (s, t;) € setes. (s;Quw, t; Q) € (esr_r_join_step_n Rn)*)}”

= In the csr_r_join_step_n function, C is a (string) context and C'({¢Quw))
(resp. C'(r@Qw}))) denotes the application of the context C' to the string fw
(resp. rw). A context for strings is formalized based on the existing formalization of
contexts for terms in IsaFoR.

21/24



Locales for CSTSs

Locale for Right-Join CSTSs

locale conditional_r_join_semi_Thue = reductive_r_join + conditional_semi_Thue R S
for R:csts and S: "char set" +
fixes Thue_R_Congruence :: sts
assumes "Thue_R_Congruence = (csr_r_join_step R)H* "
and "Thue_R_Congruence € S* x S*"
begin

The assumptions in the locale conditional r join_semi_Thue also represent the
assumption <i>7g,w- c 3" x X%, which also implies the assumption —x . ;S 3" x X*.
® Here, S denotes an alphabet 3.
® The assumption that .S is finite and nonempty is declared in the locale

conditional_semi_Thue.



Locales for CSTSs

Using the Existing Locale Monoid

The (existing) locale monoid is instantiated using the different parameters for the
monoids Mg ,; and Mg , ;, respectively:

monoid "S*|Thue_R_Congruence" "([-],)" "equiv_r.Class "
monoid "S* [Thue_P_Congruence" "([-],)" "equiv_p.Class "
* Above, [-], (resp. [-],) represents an associative binary operator for the monoid
Af'ij (resp. Af'R,p,j)-

* Finally, equiv_r.Class e (resp. equiv_p.Class €) represents the congruence class
[e]r,r; (resp. [e]r p,j) corresponding to the identity element in Mg, ;
(resp. MR p.j).

23/24



Conclusion

Summary

= Presented and formalized an inference system for a completion procedure of
semi-Thue systems, which is adapted from the existing Knuth-Bendix completion
procedure of semi-Thue systems and an abstract completion procedure of rewriting
systems.
¢ Used the simple and efficient (linear-time) string-matching algorithms and ordering
(length-lexicographic ordering) for inference rules instead of using more complex
unification/matching for terms and their ordering.
= Presented a formalization of conditional semi-Thue systems and provided a new
formalized proof of the confluence criterion for right-join and pure-join CSTSs.

= Provided a new formalized decision procedure for the word problem of monoids
presented by finite complete reductive right-join and pure-join CSTSs.

24/24



Thank you! Questions?

Dohan Kim

University of Innsbruck, Austria

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025


16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025

	Bookmark Title
	Overview

	Thanks

