
An Isabelle/HOL Formalization of Semi-Thue and Conditional
Semi-Thue Systems

Dohan Kim
University of Innsbruck, Austria

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025


Contents

1. Overview of Semi-Thue Systems

2. Inference System for Completion of Semi-Thue Systems

3. Conditional Semi-Thue Systems

4. Types and Properties of Conditional Semi-Thue Systems

5. An Isabelle/HOL Formalization

6. Conclusion

1 / 24



Overview of Semi-Thue Systems

Figure: Axel Thue (1863-1922)

Semi-Thue (String Rewriting) Systems

It is generally accepted that Thue first introduced semi-Thue systems, also known as
string rewriting systems in 1910’s to solve the word problem of semigroups/monoids. 2 / 24



Overview of Semi-Thue Systems

Semi-Thue Systems

‚ A semi-Thue system (STS) R over a finite alphabet Σ is a subset of Σ∗ ×Σ∗.
‚ Notation: u→R v denotes that u rewrites to v via a rule from R. Also, →∗

R

denotes the reflexive, transitive closure of →R.
‚ Example: Σ = {a, b} and R = {(ab, ba), (aa, a)}.

● Then, abab→R baab→R bab→R bba.
‚ Thue congruence induced by R is the relation ∗↔R.
‚ In the above example, abab

∗↔R bba.
‚ The congruence class [w]R of a word w ∈ Σ∗ is defined as
[w]R ∶= {v ∈ Σ∗ ∣w ∗↔R v}.

‚ In the above example, [abab]R ∶= {abab, baab, bab, bba, . . .}.

3 / 24



Monoids

Monoids and factor monoids

‚ Monoids are fundamental algebraic structures widely used in mathematics and
computer science.

‚ A monoid is a set equipped with an associative binary operation and a (two-sided)
identity element.

‚ Σ∗ is a monoid, called the free monoid.
● Elements: all finite (possibly empty) strings from Σ
● Operation: string concatenation
● Identity: empty string ε

‚ Given a semi-Thue system R over Σ, MR ∶= Σ∗/ ∗↔R is a monoid, called the factor
monoid of Σ∗ modulo ∗↔R.
● Elements: Congruence classes [w]R in {[w]R ∣w ∈ Σ∗}.
● Operation: A binary operation ⋅ such that [u]R ⋅ [v]R = [uv]R, where u, v ∈ Σ∗.
● Identity: [ε]R 4 / 24



Word problem of finitely presented monoids and groups

Word problem of finitely presented monoids

● Given a semi-Thue system R over Σ, a monoid M is finitely presented by (Σ;R) if
M ≅MR and both Σ and R are finite.
● The word problem of the monoid M = (Σ;R) is the following decision problem:

Given two words u, v ∈ Σ∗, decide if u = v in M .
● The word problem of a finitely presented monoid M = (Σ;R) is undecidable in

general, but it is decidable if →R is confluent and terminating (i.e., complete).

Groups

● A group is a monoid in which every element is invertible. More specifically,
● A monoid M = (Σ;R) is a group if for all u ∈ Σ, there is some v ∈ Σ∗ such that

uv
∗↔R ε and vu

∗↔R ε.
5 / 24



Completion for Finitely Presented Monoids

Purposes

● If a monoid is presented by a finite terminating semi-Thue system R but it is not
confluent, then one may attempt to construct a finite complete semi-Thue system
R′ equivalent to R using a completion procedure, where R is confluent if whenever
s
∗→R u and s

∗→R v, there is w such that u
∗→R w and v

∗→R w.
● It is known that an STS S on Σ∗ can be associated with a term rewriting system

(TRS) RS in such a way that RS ∶= {ℓ(x) → r(x) ∣ ℓ→ r ∈ S}, where each letter
from an alphabet Σ is interpreted as a unary function symbol.
● Knuth-Bendix algorithms for STSs are already known in the literature. There are

also known inference systems (e.g. abstract completion) for completion of TRSs.
● Proposed approach: Uses an inference system for completion of STSs (instead of

using algorithms). Uses simple linear time string matching and length-lexicographic
order (shortlex order) instead of using unification and more complex term ordering. 6 / 24



Inference System for Completion of Semi-Thue Systems

‚ In the following, E is a set of equations on Σ∗ and R is a set of string rewriting
rules on Σ∗ such that for each (ℓ, r) ∈ R, ℓ ≻sl r, where ≻sl is a shortlex order.

‚ Observe that for each (ℓ, r) ∈ R, ℓ cannot be the empty string because it is not the
case that ε ≻sl s for any s ∈ Σ∗.

Deduce
(E ,R)

(E ∪ {su3 ≈ u1t},R)
if (u1u2, s) ∈ R, (u2u3, t) ∈ R, and u2 ≠ ε.

Simplify
(E ∪ {u1u2u3 ≈ s},R)
(E ∪ {u1tu3 ≈ s},R)

if (u2, t) ∈ R.

7 / 24



Orient
(E ∪ {s ≈ t},R)
(E ,R∪ {(s, t)})

if s ≻sl t.

Collapse
(E ,R∪ {(u1u2u3, s)})
(E ∪ {u1tu3 ≈ s},R)

if (u2, t) ∈ R.

Compose
(E ,R∪ {(s, u1u2u3)})
(E ,R∪ {(s, u1tu3)})

if (u2, t) ∈ R.

Delete
(E ∪ {s ≈ s},R)
(E ,R)

8 / 24



Inference System for Completion of Semi-Thue Systems

Fair non-failing run

‚ We write (E ,R) ⊢SR (E ′,R′) if (E ′,R′) can be obtained from (E ,R) by applying
one of the inference rules in the inference system.

‚ A (finite) run for an initial set of equations E is a finite sequence
(E0,R0) ⊢SR (E1,R1) ⊢SR ⋯ ⊢SR (En,Rn), where E0 = E and R0 = ∅.

‚ A run (E0,R0) ⊢SR (E1,R1) ⊢SR ⋯ ⊢SR (En,Rn) fails if En ≠ ∅.
‚ A run (E0,R0) ⊢SR (E1,R1) ⊢SR ⋯ ⊢SR (En,Rn) is fair if CP (Rn) ⊆ ⋃n

i=0 ↔Ei .

Correctness
For every fair non-failing run (E0,R0) ⊢SR (E1,R1) ⊢SR ⋯ ⊢SR (En,Rn), →Rn is a
complete STS for an initial finite set of equations E = E0 on Σ∗.

9 / 24



Conditional Semi-Thue Systems (CSTSs) [Deiß, 1992]

Purposes

● Conditional semi-Thue systems (CSTSs) are extensions of STSs, where each of
their rules has the form (ℓ, r) ⇐ s1 ≈ t1, . . . , sn ≈ tn for ℓ, r, s1, t1, . . . , sn, tn ∈ Σ∗.
Here, each rule of CSTS (ℓ, r) ⇐ ϕ can also be denoted as ℓ→ r⇐ ϕ.
● A finitely presented monoid with decidable word problem may not admit a finite

complete (unconditional) presentation, but it may admit a finite complete
conditional presentation.
● For example, the monoid M = (Σ;R), where Σ = {a, b} and R = {aba→ ba}, is

finitely presented and have decidable word problem, but does not admit an
equivalent monoid presentation with (Σ;R′), where R′ is a finite complete STS.
● More specifically, a completion procedure for R may only yield an infinite complete

semi-Thue system {abna→ bna ∣n ≥ 1}. However, R admits an equivalent finite
complete (reductive) right-join CSTS R′′ = {aba→ ba, abb→ bb⇐ ab ≈ b}. (Here,
(Σ;R′′) is a finite complete (reductive) conditional presentation of M .)

10 / 24



Types of Conditional Semi-Thue Systems

Types of CSTSs

● The types of CSTSs depend on the string rewriting relations induced by CSTSs.
● More specifically, the types of CSTSs depend on how conditions are evaluated in

the conditional parts of their conditional string rewriting rules. The induced string
rewriting relations from CSTSs are structured into levels.

Left-Right-Join CSTSs

● The string rewriting relation →R,lr,j for a left-right-join CSTS R on Σ∗ is defined
as follows: t1 →R,lr,j t2 iff t1 →Rn t2 for some n ≥ 0. Here, the unconditional STS
Rn are inductively defined as follows:

⎧⎪⎪⎨⎪⎪⎩

R0 ∶= ∅
Rn+1∶={(uℓv, urv) ∣ (ℓ, r) ⇐ ϕ ∈ R, and usv ↓Rn utv for ∀s ≈ t ∈ ϕ, and u, v ∈ Σ∗} 11 / 24



Right-Join CSTSs

● The string rewriting relation →R,r,j for a right-join CSTS R on Σ∗ is defined as
follows: t1 →R,r,j t2 iff t1 →Rn t2 for some n ≥ 0. Here, the unconditional STS Rn

are inductively defined as follows:
⎧⎪⎪⎨⎪⎪⎩

R0 ∶= ∅
Rn+1 ∶= {(ℓv, rv) ∣ (ℓ, r) ⇐ ϕ ∈ R, and sv ↓Rn tv for all s ≈ t ∈ ϕ and v ∈ Σ∗}

Pure-Join CSTSs
● The string rewriting relation →R,p,j for a pure-join CSTS R on Σ∗ is defined as

follows: t1 →R,p,j t2 iff t1 →Rn t2 for some n ≥ 0. Here, the unconditional STS Rn

are inductively defined as follows:

⎧⎪⎪⎨⎪⎪⎩

R0 ∶= ∅
Rn+1 ∶= {(ℓ, r) ∣ (ℓ, r) ⇐ ϕ ∈ R, and s ↓Rn t for all s ≈ t ∈ ϕ}

12 / 24



Types of Conditional Semi-Thue Systems

Example

● Consider R = {aℓ→ bℓ, ℓam→ ℓbm, c→ d⇐ a ≈ b}, where Σ = {a, b, c, d, ℓ, m}
with a > b > c > d > ℓ >m. If R is a pure-join CSTS, then neither cℓ→R,p,j dℓ nor
ℓcm→R,p,j ℓdm holds. If R is a right-join CSTS, then cℓ→R,r,j dℓ holds, but
ℓcm→R,r,j ℓdm does not hold. If R is a left-right-join CSTS, then both
cℓ→R,rl,j dℓ and ℓcm→R,rl,j ℓdm hold.

Reductive CSTSs
● We call a CSTS R reductive if for all (ℓ, r) ⇐ ϕ ∈ R, ℓ ≻sl r, ℓ ≻sl si, and ℓ ≻sl ti

for all (si, ti) ∈ ϕ.
● If R is a finite reductive right-join CSTS, then →R,r,j is terminating and decidable.
● If R is a finite reductive pure-join CSTS, then →R,p,j is terminating and decidable.

13 / 24



Discussion

Limitation of Left-Right-Join CSTSs

‚ Non-overlap may not be joinable for left-right-join CSTSs.
‚ Example: R = {b→ u⇐ i ≈ j, c→ v⇐ l ≈m, aic→ ajc, bld→ bmd} over

Σ = {a, b, c, d, i, j, l, m, u, v}. Using the shortlex order ≻sl induced by the
precedence a > b > c > d > i > j > l >m > u > v, we see that R is reductive.

‚ Consider R as a left-right-join CSTS and a non-overlap
aucd

R,rl,j← abcd→R,rl,j abvd.
‚ Here, the step abcd→R,rl,j aucd uses the rules b→ u⇐ i ≈ j and aic→ ajc, and

the step abcd→R,rl,j abvd uses the rules c→ v⇐ l ≈m and bld→ bmd. However,
it is not the case that aucd ↓R,rl,j abvd.
● Therefore, joinability of critical pairs does not suffice to show local confluence for

left-right-join CSTSs even if they are reductive.
14 / 24



Confluence of CSTSs

Critical Pairs for Right-Join and Pure-Join CSTSs

‚ For each pair of not necessarily distinct conditional string rewriting rules from a
CSTS R, say (u0, v0) ⇐ ∀m

i=1ui ≈ vi and (u′0, v′0) ⇐ ∀n
i=1u′i ≈ v′i,

‚ A critical pair arises when there is an overlap, i.e., either u0y = xu′0 and ∣x∣ < ∣u0∣ or
u0 = xu′0y for some x, y ∈ Σ∗. Assume that there is an overlap with such x and y:

‚ Now, each element in the set of critical pairs w.r.t. →R,r,j has the following form:
● (v0y, xv′0) ⇐ ∀m

i=1uiy ≈ viy ∧ ∀n
i=1u′i ≈ v′i.

● (v0, xv′0y) ⇐ ∀m
i=1ui ≈ vi ∧ ∀n

i=1u′iy ≈ v′iy

‚ Meanwhile, each element in the set of critical pairs w.r.t. →R,p,j has the following
form:
● (v0y, xv′0) ⇐ ∀m

i=1ui ≈ vi ∧ ∀n
i=1u′i ≈ v′i.

● (v0, xv′0y) ⇐ ∀m
i=1ui ≈ vi ∧ ∀n

i=1u′i ≈ v′i

15 / 24



Confluence of CSTSs

Joinability of Critical Pairs

● For a right-join CSTS R, a critical pair (s0, t0) ⇐ ∀n
i=1si ≈ ti is joinable

w.r.t. →R,r,j if for any y ∈ Σ∗, siy ↓R,r,j tiy for all 1 ≤ i ≤ n implies s0y ↓R,r,j t0y.
● For a pure-join CSTS R, a critical pair (s0, t0) ⇐ ∀n

i=1si ≈ ti is joinable
w.r.t. →R,p,j if si ↓R,p,j ti for all 1 ≤ i ≤ n implies s0 ↓R,p,j t0.

Confluence Criteria for Right-Join and Pure-Join CSTSs

● Let R be a finite reductive right-join CSTS. Then, →R,r,j is confluent if and only if
all critical pairs of R are joinable w.r.t. →R,r,j [Deiß,1992].
● Let R be a finite reductive pure-join CSTS. Then, →R,p,j is confluent if and only if

all critical pairs of R are joinable w.r.t. →R,p,j .

16 / 24



Inference system for conditional equational theories

Inference rules for conditional equational theories

● Reflexivity: s ≈ s

● Symmetry: s ≈ t
t ≈ s

● Transitivity: s ≈ t t ≈ u
s ≈ u

● Congruence: s ≈ t
usv ≈ utv

● Replacement (LR): ∀(s ≈ t) ∈ ϕ ∶ usv ≈ utv

uℓv ≈ urv
for all (ℓ, r) ⇐ ϕ ∈ R.

● Replacement (R): ∀(s ≈ t) ∈ ϕ ∶ su ≈ tu

ℓu ≈ ru
for all (ℓ, r) ⇐ ϕ ∈ R.

● Replacement (P): ∀(s ≈ t) ∈ ϕ ∶ s ≈ t

ℓ ≈ r
for all (ℓ, r) ⇐ ϕ ∈ R.

Above, R is a CSTS on Σ∗. The Replacement rule (LR/R/P) can be selected.
17 / 24



Inference system for conditional equational theories

Conditional Equational Theories

● We write R ⊢lr s ≈ t if s ≈ t is derivable from the inference system consisting of
Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (LR) rule.
● We write R ⊢r s ≈ t if s ≈ t is derivable from the inference system consisting of

Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (R) rule.
● We write R ⊢p s ≈ t if s ≈ t is derivable from the inference system consisting of

Reflexivity, Symmetry, Transitivity, Congruence, and the Replacement (P) rule.

Related Results
● t1

∗↔R,lr,s t2 iff R ⊢lr t1 ≈ t2. Also, if →R,lr,j is confluent, then →R,lr,s = →R,lr,j .
● t1

∗↔R,r,s t2 iff R ⊢r t1 ≈ t2. Also, if →R,r,j is confluent, then →R,r,s = →R,r,j .
● t1

∗↔R,p,s t2 iff R ⊢p t1 ≈ t2. Also, if →R,p,j is confluent, then →R,p,s = →R,p,j . 18 / 24



Word Problem of Monoids defined by CSTSs

Monoids Defined by Finite Reductive CSTSs

‚ Given a finite reductive right-join CSTS R, MR,r,j ∶= Σ∗/ ∗↔R,r,j is also a monoid.
● Elements: Congruence classes [w]R,r,j in {[w]R,r,j ∣w ∈ Σ∗}.
● Operation: A binary operation ⋅ such that [u]R,r,j ⋅ [v]R,r,j = [uv]R,r,j , where

u, v ∈ Σ∗ with the identity element [ε]R,r,j .

‚ Given a finite reductive pure-join CSTS R, the monoid MR,p,j ∶= Σ∗/ ∗↔R,p,j can
be defined similarly.

Decision Procedure for the Word Problem of Monoids MR,r,j and MR,p,j

● Let R be a finite reductive right-join (resp. pure-join) CSTS on Σ∗. If →R,r,j

(resp. →R,p,j) is confluent, then we can decide whether s and t on Σ∗ are the same
element in the monoid MR,r,j ∶= Σ∗/ ∗↔R,r,j (resp. MR,p,j ∶= Σ∗/ ∗↔R,p,j).

19 / 24



Formalization of the Proposed Completion Procedure of STSs

Using Inductively Defined Predicates in Isabelle/HOL

inductive sts_compl_step:: "sts × sts⇒ sts × sts⇒ bool" (infix "⊢SR" 55) where
deduce: "(E, R) ⊢SR (E ∪ {(s @ u3, u1 @ t)}, R)"

if "(u1 @ u2, s) ∈ R" and "(u2 @ u3, t) ∈ R" and "u2 ≠ []"
∣ simplifyl: "(E ∪ {(u1 @ u2 @ u3, s)}, R) ⊢SR (E ∪ {(u1 @ t @ u3, s)}, R)"

if "(u2, t) ∈ R"
∣ simplifyr: "(E ∪ {(s, u1 @ u2 @ u3)}, R) ⊢SR (E ∪ {(s, u1 @ t @ u3)}, R)"

if "(u2, t) ∈ R"
∣ orientl: "(E ∪ {(s, t)}, R) ⊢SR (E,{R ∪ {(s, t)})" if "s ≻sl t"
∣ orientr: "(E ∪ {(s, t)}, R) ⊢SR (E,{R ∪ {(t, s)})" if "t ≻sl s"
∣ collapse: "(E, R∪{(u1 @ u2 @ u3, s)}) ⊢SR (E∪{(u1 @ t @ u3, s)}, R)" if "(u2, t) ∈ R"
∣ compose: "(E, R∪{(s, u1 @ u2 @ u3)}) ⊢SR (E, R∪{(s, u1 @ t @ u3)})" if "(u2, t) ∈ R"
∣ delete: "(E ∪ {(s, s)}, R) ⊢SR (E, R)"

Above, E consists of ordered pairs (instead of unordered pairs) for technical convenience. 20 / 24



Formalization of CSTSs

Formalization of →R,r,j

definition "csr_r_join_step R = (⋃n. csr_r_join_step_nR n)"

fun csr_r_join_step_n:: "csts⇒ nat⇒ string rel" where
"csr_r_join_step_nR 0 = {}" |
"csr_r_join_step_nR (Suc n) =
{(C⟪ℓ @ w⟫, C⟪r @ w⟫⟫) ∣ C ℓ r cs w. ((ℓ, r), cs) ∈ R ∧
(∀(si, ti) ∈ set cs. (si @ w, ti @ w) ∈ (csr_r_join_step_nR n)↓)}”

‚ In the csr r join step n function, C is a (string) context and C⟪ℓ@w⟫
(resp. C⟪r@w⟫) denotes the application of the context C to the string ℓw
(resp. rw). A context for strings is formalized based on the existing formalization of
contexts for terms in IsaFoR.

21 / 24



Locales for CSTSs

Locale for Right-Join CSTSs

locale conditional_r_join_semi_Thue = reductive_r_join + conditional_semi_Thue R S
for R ∶∶ csts and S ∶∶ "char set" +
fixes Thue_R_Congruence ∶∶ sts

assumes "Thue_R_Congruence = (csr_r_join_step R)↔∗"
and "Thue_R_Congruence ⊆ S∗ × S∗"

begin
. . .

The assumptions in the locale conditional r join semi Thue also represent the
assumption ∗↔R,r,j ⊆ Σ∗ ×Σ∗, which also implies the assumption →R,r,j ⊆ Σ∗ ×Σ∗.
● Here, S denotes an alphabet Σ.
● The assumption that S is finite and nonempty is declared in the locale

conditional semi Thue. 22 / 24



Locales for CSTSs

Using the Existing Locale Monoid
The (existing) locale monoid is instantiated using the different parameters for the
monoids MR,r,j and MR,p,j , respectively:

monoid "S⋆/Thue_R_Congruence" "([⋅]r)" "equiv_r.Class ε"

monoid "S⋆/Thue_P_Congruence" "([⋅]p)" "equiv_p.Class ε"

● Above, [⋅]r (resp. [⋅]p) represents an associative binary operator for the monoid
MR,r,j (resp. MR,p,j).
● Finally, equiv r.Class ε (resp. equiv p.Class ε) represents the congruence class
[ε]R,r,j (resp. [ε]R,p,j) corresponding to the identity element in MR,r,j

(resp. MR,p,j).

23 / 24



Conclusion

Summary

‚ Presented and formalized an inference system for a completion procedure of
semi-Thue systems, which is adapted from the existing Knuth-Bendix completion
procedure of semi-Thue systems and an abstract completion procedure of rewriting
systems.
● Used the simple and efficient (linear-time) string-matching algorithms and ordering

(length-lexicographic ordering) for inference rules instead of using more complex
unification/matching for terms and their ordering.

‚ Presented a formalization of conditional semi-Thue systems and provided a new
formalized proof of the confluence criterion for right-join and pure-join CSTSs.

‚ Provided a new formalized decision procedure for the word problem of monoids
presented by finite complete reductive right-join and pure-join CSTSs.

24 / 24



Thank you! Questions?

Dohan Kim
University of Innsbruck, Austria

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025

16th International Conference on Interactive Theorem Proving (ITP 2025), Reykjavik, Iceland, Sept. 29, 2025

	Bookmark Title
	Overview

	Thanks

