
Formalizing the Hidden Number Problem in

Isabelle/HOL
Sage Binder

University of Iowa

2025-09-29

Joint work with Eric Ren and Katherine Kosaian

1

The Hidden Number Problem

2

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.

2.1

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.

2.2

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.

2.3

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.
Many variants for different protocols.

2.4

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.
Many variants for different protocols.

Broad idea

2.5

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.
Many variants for different protocols.

Broad idea

Suppose yields some information about .O(t) αt mod p

2.6

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.
Many variants for different protocols.

Broad idea

Suppose yields some information about .O(t) αt mod p

Can we recover given access to ?α O

2.7

The Hidden Number Problem

Introduced by Boneh and Venkatesan in 1996.
Originally for DH bit-security.
Now an important paradigm in cryptography.
Many variants for different protocols.

Broad idea

Suppose yields some information about .O(t) αt mod p

Can we recover given access to ?α O

Yes, with high probability.

2.8

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

3

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

Brief DH review

3.1

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

Brief DH review
Intuition DH to HNP reduction

3.2

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

Brief DH review
Intuition DH to HNP reduction
HNP formal statement

3.3

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

Brief DH review
Intuition DH to HNP reduction
HNP formal statement
High-level proof idea

3.4

Broad idea

Suppose yields some information about .

Can we recover given access to ?

Yes, with high probability.

Talk outline

O(t) αt mod p

α O

Brief DH review
Intuition DH to HNP reduction
HNP formal statement
High-level proof idea
Formalization details

3.5

Diffie-Hellman Key Exchange

4

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

4.1

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

4.2

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

4.3

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

liceA

g

versaryAd

g

obB

g

4.4

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

liceA

g

a

versaryAd

g

obB

g

4.5

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

liceA

g

a

versaryAd

g

obB

g

b

4.6

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

liceA

g

a

ga

versaryAd

g

obB

g

b

4.7

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).g (Z/pZ)×

Goal: establish shared secret between lice and ob.A B

Idea: hard to compute from and gab ga gb

liceA

g

a

ga

versaryAd

g

obB

g

b

gb

4.8

lice versary ob

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).

Goal: establish shared secret between lice and ob.

Idea: hard to compute from and

g (Z/pZ)×

A B

gab ga gb

A

g

a

gb

Ad

g

ga

gb

B

g

b

ga

5

lice versary ob

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).

Goal: establish shared secret between lice and ob.

Idea: hard to compute from and

g (Z/pZ)×

A B

gab ga gb

A

g

a

gb

(g) =b a gab

Ad

g

ga

gb

B

g

b

ga

(g) =a b gab

5.1

lice versary ob

Diffie-Hellman Key Exchange

Let be a (public) generator of a group (say).

Goal: establish shared secret between lice and ob.

Idea: hard to compute from and

g (Z/pZ)×

A B

gab ga gb

A

g

a

gb

(g) =b a gab

Ad

g

ga

gb

​gab

B

g

b

ga

(g) =a b gab

5.2

lice versary ob

Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover from intercepted

information.

gab

A

g

a

gb

(g) =b a gab

Ad

g

ga

gb

​gab

B

g

b

ga

(g) =a b gab

6

Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover from intercepted

information.
We assume discrete log is hard...

gab

7

Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover from intercepted

information.
We assume discrete log is hard...

gab

Under this assumption: is it hard to gain even partial
information?

7.1

Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover from intercepted

information.
We assume discrete log is hard...

gab

Under this assumption: is it hard to gain even partial
information?
Yes!

7.2

Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover from intercepted

information.
We assume discrete log is hard...

gab

Under this assumption: is it hard to gain even partial
information?
Yes! Idea: compute given a bit-leaking oracle.gab

7.3

The Hidden Number Problem

DH(g , g) =x y gxy

8

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

8.1

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

8.2

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

8.3

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

= MSB ​((g) ⋅k
ab (g))b x

8.4

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

= MSB ​((g) ⋅k
ab (g))b x

= MSB ​(αh)k
x

8.5

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

= MSB ​((g) ⋅k
ab (g))b x

= MSB ​(αh)k
x

= MSB ​(αt)k

8.6

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

= MSB ​((g) ⋅k
ab (g))b x

= MSB ​(αh)k
x

= MSB ​(αt)k

=: O(t)

8.7

The Hidden Number Problem

DH(g , g) =x y gxy

Suppose .A(g , g) =x y MSB ​(DH(g , g))k
x y

Roughly, gives most significant bits.MSB ​k k

A(g , g) =a+x b MSB ​(DH(g , g))k
a+x b

= MSB ​((g) ⋅k
ab (g))b x

= MSB ​(αh)k
x

= MSB ​(αt)k

=: O(t)
Main theorem: we can recover given .α O

8.8

Theorem 1

9

Theorem 1

Let be hidden.α

9.1

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)

9.2

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)
Let be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

9.3

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)
Let be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

There exists an adversary such thatA

9.4

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)
Let be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

There exists an adversary such thatA

.Pr[A((t ​, O(t ​)), … , (t ​, O(t ​))) =1 1 d d α] ≥ 1/2

9.5

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)
Let be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

There exists an adversary such thatA

.Pr[A((t ​, O(t ​)), … , (t ​, O(t ​))) =1 1 d d α] ≥ 1/2

Can recover given access to random oracle in poly time.α O

9.6

Theorem 1

Let be hidden.α Let .O(t) = MSB ​(αt modk p)
Let be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

There exists an adversary such thatA

.Pr[A((t ​, O(t ​)), … , (t ​, O(t ​))) =1 1 d d α] ≥ 1/2

Can recover given access to random oracle in poly time.α O

961 < n =: ⌈log(p)⌉
d =: 2 ⋅ ⌈ ​⌉n
k =: ⌈ ​⌉ +n ⌈log(n)⌉

9.7

Proof idea

u =: (O(t ​), … , O(t ​), 0)1 d

10

Proof idea

u =: (O(t ​), … , O(t ​), 0)1 d

Recall .O(t) = MSB ​(αt modk p)

10.1

Proof idea

u =: (O(t ​), … , O(t ​), 0)1 d

Recall .O(t) = MSB ​(αt modk p)
 for some .O(t ​) ≈i αt ​ −i mp m

10.2

Proof idea

u =: (O(t ​), … , O(t ​), 0)1 d

Recall .O(t) = MSB ​(αt modk p)
 for some .O(t ​) ≈i αt ​ −i mp m

Idea: Approximate using lattice methods.α

10.3

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

11

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

Build lattice from basis:L

11.1

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

Build lattice from basis:L

 for ;x ​ =i (​, 0)

ith component = p

​0, … , p, … , 0 i ≤ d

11.2

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

Build lattice from basis:L

 for ;x ​ =i (​, 0)

ith component = p

​0, … , p, … , 0 i ≤ d

.x ​ =d+1 (t ​, … , t ​, 1/p)1 d

11.3

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

Build lattice from basis:L

 for ;x ​ =i (​, 0)

ith component = p

​0, … , p, … , 0 i ≤ d

.x ​ =d+1 (t ​, … , t ​, 1/p)1 d

11.4

Proof idea

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

Build lattice from basis:L

 for ;x ​ =i (​, 0)

ith component = p

​0, … , p, … , 0 i ≤ d

.x ​ =d+1 (t ​, … , t ​, 1/p)1 d

If is small, then with high probability∣v − u∣ β ≡ α (mod p)

11.5

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

12

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

Therefore, find minimizing .v ∣v − u∣

12.1

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

Therefore, find minimizing .v ∣v − u∣
This is the closest vector problem which is NP-hard...

12.2

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

Therefore, find minimizing .v ∣v − u∣
This is the closest vector problem which is NP-hard...
But we can approximate it!

12.3

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

Therefore, find minimizing .v ∣v − u∣
This is the closest vector problem which is NP-hard...
But we can approximate it!

With Babai's nearest plane algorithm.

12.4

Proof idea

If is small, then with high probability

​ ​

u

L ∋ v

≈ (αt ​ − m ​p, … ,αt ​ − m ​p, 0)1 1 d d

= (βt ​ − b p, … ,βt ​ − b ​p,β/p)1 1 d d

∣v − u∣ β ≡ α (mod p)

Therefore, find minimizing .v ∣v − u∣
This is the closest vector problem which is NP-hard...
But we can approximate it!

With Babai's nearest plane algorithm.
Finds with close to optimal.v ∈ L ∣u − v∣

12.5

Adversary

13

Formalization needs

Main goal:
With probability at least , all with

 are far from .

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

14

Formalization needs

Main goal:
With probability at least , all with

 are far from .

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

Need to formalize Babai's algorithm.

14.1

Formalization needs

Main goal:
With probability at least , all with

 are far from .

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

Need to formalize Babai's algorithm.
Need formal probabilistic reasoning.

14.2

Formalization needs

Main goal:
With probability at least , all with

 are far from .

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

Need to formalize Babai's algorithm.
Need formal probabilistic reasoning.
Need to formalize bounds (e.g. "for large enough ") and

make arithmetic precise.

n

14.3

Formalization needs

Main goal:
With probability at least , all with

 are far from .

Need to formalize Babai's algorithm.
We build on existing LLL formalization (many authors
including René Thiemann).

Need formal probabilistic reasoning.

Need to formalize bounds (e.g. "for large enough ") and

make arithmetic precise.

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

n

15

Formalization needs

Main goal:
With probability at least , all with

 are far from .

Need to formalize Babai's algorithm.
We build on existing LLL formalization (many authors
including René Thiemann).

Need formal probabilistic reasoning.

Need to formalize bounds (e.g. "for large enough ") and

make arithmetic precise.

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

We build on existing PMF library.
n

15.1

Formalization needs

Main goal:
With probability at least , all with

 are far from .

Need to formalize Babai's algorithm.
We build on existing LLL formalization (many authors
including René Thiemann).

Need formal probabilistic reasoning.

Need to formalize bounds (e.g. "for large enough ") and

make arithmetic precise.

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

We build on existing PMF library.
n

Isabelle/HOL automation very valuable.

15.2

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

16

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.

16.1

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}

16.2

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}
Can prove Babai output satisfies .v ∣v − u∣ ≤ 2 Ddim(L)/4.6

16.3

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}
Can prove Babai output satisfies .v ∣v − u∣ ≤ 2 Ddim(L)/4.6

Literature commonly gives .2 Ddim(L)/2

16.4

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}
Can prove Babai output satisfies .v ∣v − u∣ ≤ 2 Ddim(L)/4.6

Literature commonly gives .2 Ddim(L)/2

Not strong enough for final HNP result.

16.5

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}
Can prove Babai output satisfies .v ∣v − u∣ ≤ 2 Ddim(L)/4.6

Literature commonly gives .2 Ddim(L)/2

Not strong enough for final HNP result.
Boneh and Venkatesan use .2 Ddim(L)/4

16.6

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

We "algebraicize" a geometry proof by Stephens-
Davidowitz.
Let .D =: min{∣v − u∣ : v ∈ L}
Can prove Babai output satisfies .v ∣v − u∣ ≤ 2 Ddim(L)/4.6

Literature commonly gives .2 Ddim(L)/2

Not strong enough for final HNP result.
Boneh and Venkatesan use .2 Ddim(L)/4

We formalize , which suffices.​(4/3) Ddim(L) dim(L)/2

16.7

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}

17

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

17.1

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}

17.2

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

17.3

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize

17.4

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain where .v ​ϵ ∣v ​ −ϵ u∣ ≤ (1 + ϵ)D

17.5

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain where .v ​ϵ ∣v ​ −ϵ u∣ ≤ (1 + ϵ)D

For arbitrary .ϵ > 0

17.6

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain where .v ​ϵ ∣v ​ −ϵ u∣ ≤ (1 + ϵ)D

For arbitrary .ϵ > 0
 trickles down to final bound.(1 + ϵ)

17.7

Formalizing Babai's nearest plane algorithm

Informally: is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL only for finite sets. min

We use instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain where .v ​ϵ ∣v ​ −ϵ u∣ ≤ (1 + ϵ)D

For arbitrary .ϵ > 0
 trickles down to final bound.(1 + ϵ)

Can be removed since is arbitrary.ϵ > 0

17.8

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

18

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

18.1

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

18.2

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

18.3

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

Target vector can be in .u Qn

18.4

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

Target vector can be in .u Qn

In literature, can have .d ≤ n

18.5

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

Target vector can be in .u Qn

In literature, can have .d ≤ n

Our proof requires an invertible (thus square) change-of-
basis matrix.

18.6

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

Target vector can be in .u Qn

In literature, can have .d ≤ n

Our proof requires an invertible (thus square) change-of-
basis matrix.
Thus, we restrict to .d = n

18.7

Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale to .L ⊆ Qn L ∈′ Zn

Target vector can be in .u Qn

In literature, can have .d ≤ n

Our proof requires an invertible (thus square) change-of-
basis matrix.
Thus, we restrict to .d = n

Like LLL, our formal Babai's algorithm is executable.

18.8

Formalizing the HNP

19

Formalizing the HNP

19.1

Formalizing the HNP

Informal proof: one-page

20

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

20.1

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

20.2

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

proof steps,

20.3

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

proof steps,
definitions,

20.4

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

proof steps,
definitions,
bounds and arithmetic.

20.5

Formalizing the HNP

Counting is hard

21

Formalizing the HNP

Counting is hard

Original paper:

21.1

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

21.2

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.

21.3

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.
Our approach:

21.4

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.
Our approach:

.∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p B}∣ ≤ 2B

21.5

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.
Our approach:

.∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p B}∣ ≤ 2B
Weaker, but sufficient.

21.6

Formalizing the HNP

Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​)2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.
Our approach:

.∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p B}∣ ≤ 2B
Weaker, but sufficient.
Simple argument, simple to formalize

21.7

Formalizing the HNP

Clarifying definitionMSB ​k

22

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:

22.1

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:
First, is the unique such that

.

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

22.2

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:
First, is the unique such that

.

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

Like like a right-shift (by bits).n − k

22.3

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:
First, is the unique such that

.

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

Like like a right-shift (by bits).n − k

Actually, assume satisfies

.

MSB ​(x)k

∣x − MSB ​(x)∣ <k ​2k+1
p

22.4

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:
First, is the unique such that

.

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

Like like a right-shift (by bits).n − k

Actually, assume satisfies

.

MSB ​(x)k

∣x − MSB ​(x)∣ <k ​2k+1
p

Like like a right-then-left-shift.

22.5

Formalizing the HNP

Clarifying definitionMSB ​k

Original paper:
First, is the unique such that

.

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

Like like a right-shift (by bits).n − k

Actually, assume satisfies

.

MSB ​(x)k

∣x − MSB ​(x)∣ <k ​2k+1
p

Like like a right-then-left-shift.
In fact, only need .​2k

p

22.6

Formalizing the HNP

Clarifying definition

Original paper:
First, is the unique such that

.

Actually, assume satisfies

.

In fact, only need .

Our approach:
Work in Isabelle locale fixing operator and

assuming .

MSB ​k

MSB ​(x)k t ∈ Z
(t − 1) ⋅ ​ ≤2k

p x < t ⋅ ​2k
p

MSB ​(x)k

∣x − MSB ​(x)∣ <k ​

2k+1
p

​2k
p

MSB ​k

∣x − MSB ​(x)∣ <k ​2k
p

23

Formalizing the HNP

Clarifying definition

Our approach:
Work in Isabelle locale fixing operator and

assuming .

MSB ​k

MSB ​k

∣x − MSB ​(x)∣ <k ​2k
p

24

Formalizing the HNP

Clarifying definition

Our approach:
Work in Isabelle locale fixing operator and

assuming .

MSB ​k

MSB ​k

∣x − MSB ​(x)∣ <k ​2k
p

Instantiate locale with original definition,MSB ​k

24.1

Formalizing the HNP

Clarifying definition

Our approach:
Work in Isabelle locale fixing operator and

assuming .

MSB ​k

MSB ​k

∣x − MSB ​(x)∣ <k ​2k
p

Instantiate locale with original definition,MSB ​k

as well as simple "right-then-left-shift" definition.

24.2

Formalizing the HNP

Probability helper lemmas

25

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.do

25.1

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.do

We formulate cryptographic "game" as probabilistic
algorithm.

25.2

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.do

We formulate cryptographic "game" as probabilistic
algorithm.

25.3

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

26

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

We prove lemmas to reason about these expressions.

26.1

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

We prove lemmas to reason about these expressions.
We lift existing measure-theoretic lemmas to this level of
abstraction.

26.2

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

We prove lemmas to reason about these expressions.
We lift existing measure-theoretic lemmas to this level of
abstraction.

Helper lemmas aid expressivity

26.3

Formalizing the HNP

Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

We prove lemmas to reason about these expressions.
We lift existing measure-theoretic lemmas to this level of
abstraction.

Helper lemmas aid expressivity and improve Sledgehammer
performance.

26.4

Formalizing the HNP

Hiding in localeα

27

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

27.1

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.

27.2

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure is "hidden" from adversary?α

27.3

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure is "hidden" from adversary?α

Can manually inspect that adversary does not use .α

27.4

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure is "hidden" from adversary?α

Can manually inspect that adversary does not use .α

Not satisfying; not in spirit of formal verification.

27.5

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure is "hidden" from adversary?α

Can manually inspect that adversary does not use .α

Not satisfying; not in spirit of formal verification.
Instead, we use locale hierarchy; define adversary before

is fixed.

α

27.6

Formalizing the HNP

Hiding in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure is "hidden" from adversary?α

Can manually inspect that adversary does not use .α

Not satisfying; not in spirit of formal verification.
Instead, we use locale hierarchy; define adversary before

is fixed.

α

Simple, but streamlines manual verification.

27.7

Future work

28

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.

28.1

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

28.2

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

Elliptic curve HNP
Extended HNP
Modular inverse HNP
... many more!

28.3

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

Elliptic curve HNP
Extended HNP
Modular inverse HNP
... many more!

Formalize time complexity of adversary

28.4

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

Elliptic curve HNP
Extended HNP
Modular inverse HNP
... many more!

Formalize time complexity of adversary
Need to formalize complexity of Babai.

28.5

Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

Elliptic curve HNP
Extended HNP
Modular inverse HNP
... many more!

Formalize time complexity of adversary
Need to formalize complexity of Babai.
Luckily, LLL complexity is formalized.

28.6

