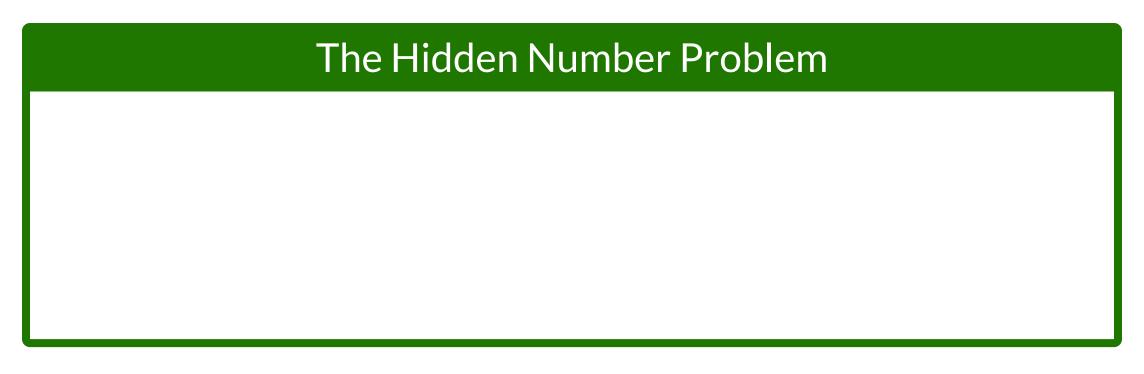
Formalizing the Hidden Number Problem in Isabelle/HOL

Sage Binder

University of Iowa

2025-09-29

Joint work with Eric Ren and Katherine Kosaian



Introduced by Boneh and Venkatesan in 1996.

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.
 - Many variants for different protocols.

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.
 - Many variants for different protocols.

Broad idea

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.
 - Many variants for different protocols.

Broad idea

• Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.
 - Many variants for different protocols.

Broad idea

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?

- Introduced by Boneh and Venkatesan in 1996.
 - Originally for DH bit-security.
 - Now an important paradigm in cryptography.
 - Many variants for different protocols.

Broad idea

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

Talk outline

Brief DH review

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

- Brief DH review
- Intuition DH to HNP reduction

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

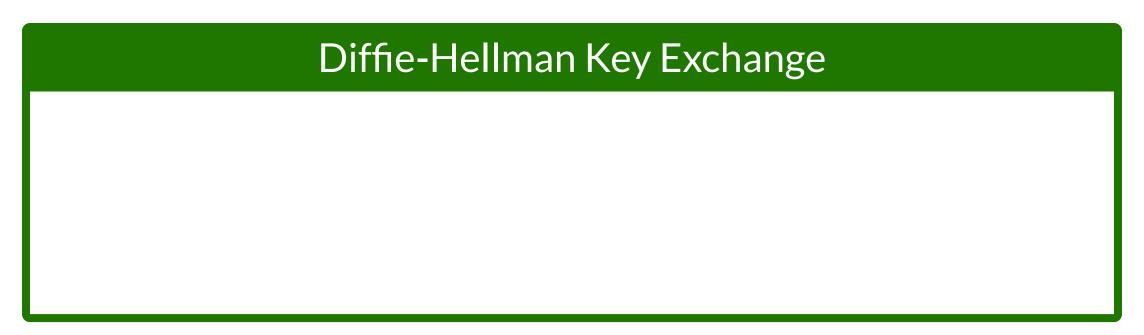
- Brief DH review
- Intuition DH to HNP reduction
- HNP formal statement

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

- Brief DH review
- Intuition DH to HNP reduction
- HNP formal statement
- High-level proof idea

- Suppose $\mathcal{O}(t)$ yields some information about $\alpha t \mod p$.
- Can we recover α given access to \mathcal{O} ?
- Yes, with high probability.

- Brief DH review
- Intuition DH to HNP reduction
- HNP formal statement
- High-level proof idea
- Formalization details



• Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between $m{A}$ lice and $m{B}$ ob.
- Idea: g^{ab} hard to compute from g^a and g^b

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

Alice	Adversary	Bob
$oldsymbol{g}$	$oldsymbol{g}$	\boldsymbol{g}
\boldsymbol{a}		b

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: $oldsymbol{g^{ab}}$ hard to compute from $oldsymbol{g^a}$ and $oldsymbol{g^b}$

<i>A</i> lice	Adversary	Bo
$oldsymbol{g}$	$oldsymbol{g}$	g
\boldsymbol{a}		\boldsymbol{b}
$oldsymbol{g^a}$		

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

Alice	Adversary	$oldsymbol{B}ob$
\boldsymbol{g}	$oldsymbol{g}$	\boldsymbol{g}
\boldsymbol{a}		\boldsymbol{b}
g^a		\boldsymbol{g}^b

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

Alice	Adversary	B o b
\boldsymbol{g}	$oldsymbol{g}$	g
\boldsymbol{a}	$g^a_{}$	<i>b</i>
$oldsymbol{g}^b$	$oldsymbol{g}^o$	$oldsymbol{g^a}$

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: g^{ab} hard to compute from g^a and g^b

Alice

Adversary

 $B \mathsf{ob}$

$$egin{array}{c} g \ g^b \end{array}$$

- Let g be a (public) generator of a group (say $(\mathbb{Z}/p\mathbb{Z})^{\times}$).
- Goal: establish shared secret between A lice and B ob.
- Idea: $oldsymbol{g^{ab}}$ hard to compute from $oldsymbol{g^a}$ and $oldsymbol{g^b}$

Alice

Adversary

 $B \mathsf{ob}$

$$egin{array}{c} g^a \ g^b \ g^{ab} \end{array}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

• An adversary observing communication must solve the discrete log problem to recover g^{ab} from intercepted information.

*A*lice

*Ad*versary

 $B\mathsf{ob}$

$$egin{aligned} g^a \ g^b \ g^{ab} \end{aligned}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

- An adversary observing communication must solve the discrete log problem to recover g^{ab} from intercepted information.
- We assume discrete log is hard...

- An adversary observing communication must solve the discrete log problem to recover g^{ab} from intercepted information.
- We assume discrete log is hard...
- Under this assumption: is it hard to gain even partial information?

- An adversary observing communication must solve the discrete log problem to recover g^{ab} from intercepted information.
- We assume discrete log is hard...
- Under this assumption: is it hard to gain even partial information?
- Yes!

- An adversary observing communication must solve the discrete log problem to recover g^{ab} from intercepted information.
- We assume discrete log is hard...
- Under this assumption: is it hard to gain even partial information?
- Yes! Idea: compute g^{ab} given a bit-leaking oracle.

$$\bullet \ \mathrm{DH}(g^x,g^y) = g^{xy}$$

- $\bullet \ \mathrm{DH}(g^x,g^y) = g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y))$.

- $ullet \mathrm{DH}(g^x,g^y)=g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y))$.
 - Roughly, MSB_k gives k most significant bits.

- $ullet \mathrm{DH}(g^x,g^y)=g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y)).$
 - Roughly, MSB_k gives k most significant bits.
- $ullet A(g^{oldsymbol{a}+x},g^b) = \mathrm{MSB}_k(\mathrm{DH}(g^{oldsymbol{a}+x},g^b))$

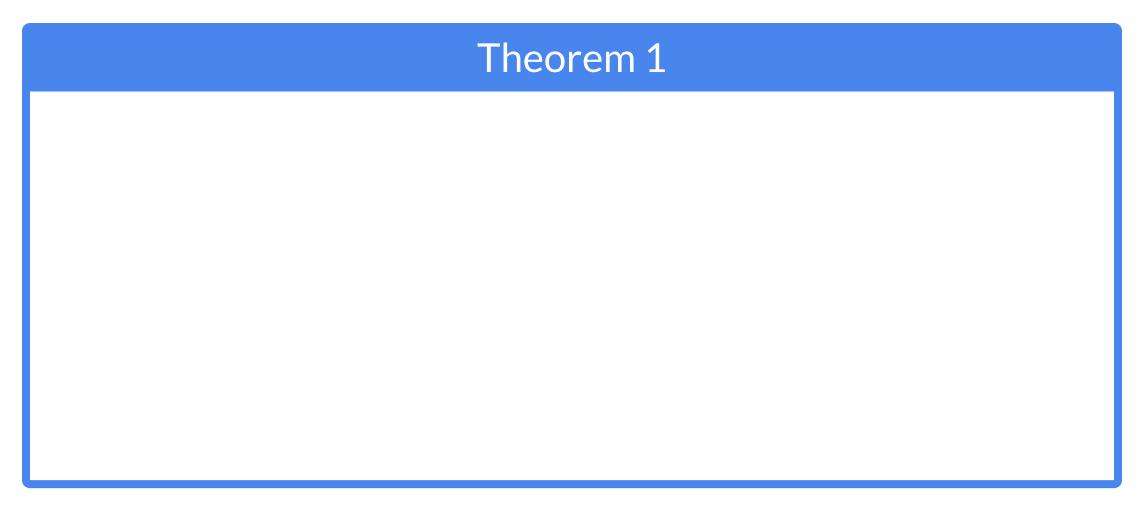
- ullet $\mathrm{DH}(g^x,g^y)=g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y))$.
 - lacktriangle Roughly, MSB_k gives k most significant bits.
- $egin{aligned} ullet & oldsymbol{A}(oldsymbol{g^{a+x}},oldsymbol{g^b}) = \mathrm{MSB}_k(\mathrm{DH}(oldsymbol{g^{a+x}},oldsymbol{g^b})) \ &= \mathrm{MSB}_k((oldsymbol{g^{ab}})\cdot(oldsymbol{g^b})^x) \end{aligned}$

- $\bullet \ \mathrm{DH}(g^x,g^y) = g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y)).$
 - lacktriangle Roughly, MSB_k gives k most significant bits.
- $egin{align} ullet & A(g^{a+x},g^b) = \mathrm{MSB}_k(\mathrm{DH}(g^{a+x},g^b)) \ &= \mathrm{MSB}_k((g^{ab})\cdot(g^b)^x) \ &= \mathrm{MSB}_k(lpha h^x) \end{split}$

- $\bullet \ \mathrm{DH}(g^x,g^y) = g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y))$.
 - Roughly, MSB_k gives k most significant bits.
- $egin{aligned} ullet & A(g^{a+x},g^b) = \mathrm{MSB}_k(\mathrm{DH}(g^{a+x},g^b)) \ &= \mathrm{MSB}_k((g^{ab})\cdot(g^b)^x) \ &= \mathrm{MSB}_k(oldsymbol{lpha}h^x) \ &= \mathrm{MSB}_k(oldsymbol{lpha}t) \end{aligned}$

- $ullet \mathrm{DH}(g^x,g^y)=g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y)).$
 - Roughly, MSB_k gives k most significant bits.
- $\begin{array}{l} \bullet \ \ A(g^{a+x},g^b) = \mathrm{MSB}_k(\mathrm{DH}(g^{a+x},g^b)) \\ = \mathrm{MSB}_k((g^{ab}) \cdot (g^b)^x) \\ = \mathrm{MSB}_k(\alpha h^x) \\ = \mathrm{MSB}_k(\alpha t) \\ = : \mathcal{O}(t) \end{array}$

- ullet $\mathrm{DH}(g^x,g^y)=g^{xy}$
- Suppose $A(g^x, g^y) = \mathrm{MSB}_k(\mathrm{DH}(g^x, g^y))$.
 - Roughly, MSB_k gives k most significant bits.
- $\begin{array}{l} \bullet \ \ A(g^{a+x},g^b) = \mathrm{MSB}_k(\mathrm{DH}(g^{a+x},g^b)) \\ = \mathrm{MSB}_k((g^{ab}) \cdot (g^b)^x) \\ = \mathrm{MSB}_k(\alpha h^x) \\ = \mathrm{MSB}_k(\alpha t) \\ = : \mathcal{O}(t) \end{array}$
- Main theorem: we can recover α given \mathcal{O} .



• Let α be hidden.

• Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.

- Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- Let t_1,\ldots,t_d be sampled uniformly from $(\mathbb{Z}/p\mathbb{Z})^{ imes}$.

- Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- Let t_1,\ldots,t_d be sampled uniformly from $(\mathbb{Z}/p\mathbb{Z})^{ imes}$.

There exists an adversary A such that

- Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- Let t_1,\ldots,t_d be sampled uniformly from $(\mathbb{Z}/p\mathbb{Z})^{ imes}$.

There exists an adversary A such that

$$\Pr[\mathcal{A}ig((t_1,\mathcal{O}(t_1)),\ldots,(t_d,\mathcal{O}(t_d))ig)=\pmb{lpha}]\geq 1/2.$$

- Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- Let t_1,\ldots,t_d be sampled uniformly from $(\mathbb{Z}/p\mathbb{Z})^{ imes}$.

There exists an adversary A such that

$$\Pr[\mathcal{A}ig((t_1,\mathcal{O}(t_1)),\ldots,(t_d,\mathcal{O}(t_d))ig)=\pmb{lpha}]\geq 1/2.$$

Can recover α given access to random oracle $\mathcal O$ in poly time.

- Let α be hidden. Let $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- Let t_1,\ldots,t_d be sampled uniformly from $(\mathbb{Z}/p\mathbb{Z})^{ imes}$.

There exists an adversary A such that

$$\Pr[\mathcal{A}ig((t_1,\mathcal{O}(t_1)),\ldots,(t_d,\mathcal{O}(t_d))ig)=\pmb{lpha}]\geq 1/2.$$

Can recover α given access to random oracle $\mathcal O$ in poly time.

•
$$961 < n \coloneqq \lceil \log(p) \rceil$$

•
$$d \coloneqq 2 \cdot \lceil \sqrt{n} \rceil$$

•
$$k \coloneqq \lceil \sqrt{n} \rceil + \lceil \log(n) \rceil$$

$$ullet u\coloneqq (\mathcal{O}(t_1),\ldots,\mathcal{O}(t_d),0)$$

$$ullet u\coloneqq (\mathcal{O}(t_1),\ldots,\mathcal{O}(t_d),0)$$

• Recall
$$\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$$
.

- $ullet u\coloneqq (\mathcal{O}(t_1),\ldots,\mathcal{O}(t_d),0)$
- Recall $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- ullet $\mathcal{O}(t_i)pprox {f lpha} t_i-mp$ for some m.

- $ullet u\coloneqq (\mathcal{O}(t_1),\ldots,\mathcal{O}(t_d),0)$
- Recall $\mathcal{O}(t) = \mathrm{MSB}_k(\alpha t \bmod p)$.
- ullet $\mathcal{O}(t_i)pprox oldsymbol{lpha} t_i-mp$ for some m.
- Idea: Approximate α using lattice methods.

$$upprox (lpha t_1-m_1p,\ldots,lpha t_d-m_dp,0)$$

$$upprox (lpha t_1-m_1p,\ldots,lpha t_d-m_dp,0)$$

$$upprox (oldsymbol{lpha} t_1-m_1p,\ldots,oldsymbol{lpha} t_d-m_dp,0)$$

•
$$x_i = (\underbrace{0, \dots, p, \dots, 0}_{i ext{th component} = p}, 0)$$
 for $i \leq d$;

$$upprox (lpha t_1-m_1p,\ldots,lpha t_d-m_dp,0)$$

•
$$x_i = (\underbrace{0, \dots, p, \dots, 0}_{i ext{th component} = p}, 0)$$
 for $i \leq d$;

$$ullet x_{d+1} = (t_1, \dots, t_d, 1/p).$$

$$upprox (oldsymbol{lpha} t_1-m_1p,\ldots,oldsymbol{lpha} t_d-m_dp,0)$$

$$L \ni v = (\beta t_1 - b_1 p, \ldots, \beta t_d - b_d p, \beta/p)$$

•
$$x_i = (\underbrace{0, \dots, p, \dots, 0}, 0)$$
 for $i \leq d$;

$$i$$
th component = p

$$ullet x_{d+1} = (t_1, \dots, t_d, 1/p).$$

$$upprox (lpha t_1-m_1p,\ldots,lpha t_d-m_dp,0)$$

$$L \ni v = (\beta t_1 - b_1 p, \ldots, \beta t_d - b_d p, \beta/p)$$

- Build lattice L from basis:
 - $x_i = (\underbrace{0, \dots, p, \dots, 0}_{i ext{th component} = p}, 0)$ for $i \leq d$;
 - $ullet x_{d+1} = (t_1, \dots, t_d, 1/p).$

$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

If $|oldsymbol{v}-u|$ is small, then $eta\equiv \pmb{\alpha}\pmod{p}$ with high probability

• Therefore, find v minimizing |v-u|.

$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

- Therefore, find v minimizing |v-u|.
- This is the <u>closest vector problem</u> which is NP-hard...

$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

- Therefore, find v minimizing |v-u|.
- This is the <u>closest vector problem</u> which is NP-hard...
- But we can approximate it!

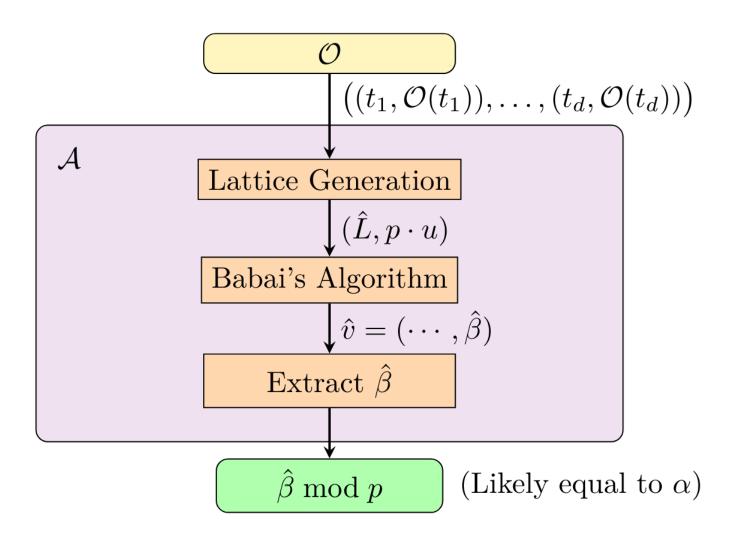
$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

- Therefore, find v minimizing |v-u|.
- This is the <u>closest vector problem</u> which is NP-hard...
- But we can approximate it!
 - With <u>Babai's nearest plane algorithm.</u>

$$egin{aligned} u &pprox (lpha t_1 - m_1 p, \ldots, lpha t_d - m_d p, 0) \ L &
otag v &= (eta t_1 - b_1 p, \ldots, eta t_d - b_d p, eta/p) \end{aligned}$$

- Therefore, find ${m v}$ minimizing $|{m v}-u|$.
- This is the <u>closest vector problem</u> which is NP-hard...
- But we can approximate it!
 - With <u>Babai's nearest plane algorithm.</u>
 - ullet Finds $v\in L$ with |u-v| close to optimal.

Adversary



Main goal:

With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta\not\equiv \alpha\pmod p$ are far from u.

- Main goal: With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta\not\equiv \alpha\pmod p$ are far from u.
- Need to formalize **Babai's algorithm**.

- Main goal: With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta
 ot\equiv \alpha \pmod p$ are far from u.
- Need to formalize Babai's algorithm.
- Need formal <u>probabilistic reasoning</u>.

- Main goal: With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta
 ot\equiv \alpha \pmod p$ are far from u.
- Need to formalize **Babai's algorithm**.
- Need formal <u>probabilistic reasoning</u>.
- Need to formalize bounds (e.g. "for large enough n") and make arithmetic precise.

- Main goal: With probability at least 1/2, all $m{v}=(\dots,\beta/p)\in m{L}$ with $eta
 ot\equiv \alpha\pmod p$ are far from u.
- Need to formalize Babai's algorithm.
 - We build on existing LLL formalization (many authors including René Thiemann).
- Need formal <u>probabilistic reasoning</u>.
- \bullet Need to formalize bounds (e.g. "for large enough n") and make arithmetic precise.

Formalization needs

- Main goal: With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta
 ot\equiv \alpha \pmod p$ are far from u.
- Need to formalize <u>Babai's algorithm.</u>
 - We build on existing LLL formalization (many authors including René Thiemann).
- Need formal <u>probabilistic reasoning</u>.
 - We build on existing PMF library.
- ullet Need to formalize bounds (e.g. "for large enough n") and make arithmetic precise.

Formalization needs

- Main goal: With probability at least 1/2, all $v=(\ldots,\beta/p)\in L$ with $\beta
 ot\equiv \alpha \pmod p$ are far from u.
- Need to formalize <u>Babai's algorithm.</u>
 - We build on existing LLL formalization (many authors including René Thiemann).
- Need formal <u>probabilistic reasoning</u>.
 - We build on existing PMF library.
- Need to formalize bounds (e.g. "for large enough n") and make arithmetic precise.
 - Isabelle/HOL automation very valuable.

Babai's algorithm bounds:

 We "algebraicize" a geometry proof by Stephens-Davidowitz.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- Let $D\coloneqq\min\{|v-u|:v\in L\}$.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- ullet Let $D\coloneqq\min\{|v-u|:v\in L\}.$
- Can prove Babai output $m{v}$ satisfies $|m{v}-m{u}| \leq 2^{\dim(m{L})/4.6} D$.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- Let $D\coloneqq\min\{|v-u|:v\in L\}$.
- ullet Can prove Babai output $oldsymbol{v}$ satisfies $|oldsymbol{v}-u|\leq 2^{\dim(oldsymbol{L})/4.6}D.$
- ullet Literature commonly gives $2^{\dim(L)/2}D$.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- Let $D \coloneqq \min\{|v u| : v \in L\}$.
- Can prove Babai output $m{v}$ satisfies $|m{v}-u| \leq 2^{\dim(m{L})/4.6}D$.
- ullet Literature commonly gives $2^{\dim(oldsymbol{L})/2}D$.
 - Not strong enough for final HNP result.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- Let $D\coloneqq \min\{|v-u|:v\in L\}$.
- Can prove Babai output $m{v}$ satisfies $|m{v}-m{u}| \leq 2^{\dim(m{L})/4.6} D.$
- Literature commonly gives $2^{\dim(L)/2}D$.
 - Not strong enough for final HNP result.
- Boneh and Venkatesan use $2^{\dim(L)/4}D$.

- We "algebraicize" a geometry proof by Stephens-Davidowitz.
- Let $D\coloneqq\min\{|v-u|:v\in L\}$.
- Can prove Babai output $m{v}$ satisfies $|m{v}-m{u}| \leq 2^{\dim(m{L})/4.6}D$.
- Literature commonly gives $2^{\dim(L)/2}D$.
 - Not strong enough for final HNP result.
- Boneh and Venkatesan use $2^{\dim(L)/4}D$.
- We formalize $\sqrt{\dim(L)}(4/3)^{\dim(L)/2}D$, which suffices.

• Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.

- Informally: $D \coloneqq \min\{|v-u| : v \in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.

- Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...

- Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.

- Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.
- Intuitively true (lattice is discrete); annoying to formalize

- Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.
- Intuitively true (lattice is discrete); annoying to formalize
- Instead, we obtain v_{ϵ} where $|v_{\epsilon} u| \leq (1 + \epsilon)D$.

- Informally: $D\coloneqq\min\{|v-u|:v\in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- ullet We use \inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.
- Intuitively true (lattice is discrete); annoying to formalize
- Instead, we obtain v_{ϵ} where $|v_{\epsilon} u| \leq (1 + \epsilon)D$.
 - For arbitrary $\epsilon > 0$.

- Informally: $D \coloneqq \min\{|v-u| : v \in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.
- Intuitively true (lattice is discrete); annoying to formalize
- Instead, we obtain v_{ϵ} where $|v_{\epsilon} u| \leq (1 + \epsilon)D$.
 - For arbitrary $\epsilon > 0$.
- $(1 + \epsilon)$ trickles down to final bound.

- Informally: $D \coloneqq \min\{|v-u| : v \in L\}$ is clearly w.d.
- Formally: Isabelle/HOL min only for finite sets.
- We use inf instead: $D\coloneqq\inf\{|v-u|:v\in L\}$...
- But still need $v_0 \in L$ witnessing $|v_0 u| = D$.
- Intuitively true (lattice is discrete); annoying to formalize
- Instead, we obtain v_{ϵ} where $|v_{\epsilon} u| \leq (1 + \epsilon)D$.
 - For arbitrary $\epsilon > 0$.
- $(1 + \epsilon)$ trickles down to final bound.
 - Can be removed since $\epsilon>0$ is arbitrary.

ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.

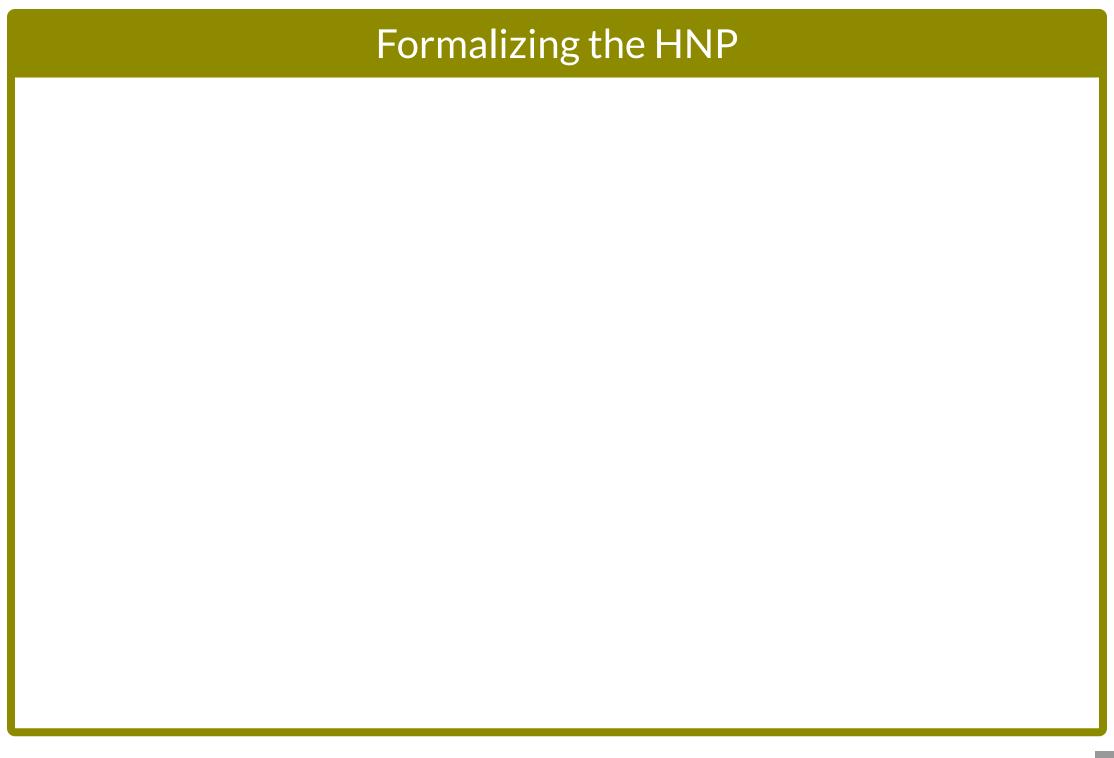
- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.
 - Target vector u can be in \mathbb{Q}^n .

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.
 - Target vector u can be in \mathbb{Q}^n .
- In literature, can have $d \leq n$.

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.
 - Target vector u can be in \mathbb{Q}^n .
- In literature, can have $d \leq n$.
 - Our proof requires an invertible (thus square) change-ofbasis matrix.

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.
 - Target vector u can be in \mathbb{Q}^n .
- In literature, can have $d \leq n$.
 - Our proof requires an invertible (thus square) change-ofbasis matrix.
 - Thus, we restrict to d = n.

- ullet In literature, Babai's algorithm applies to $L\subseteq \mathbb{R}^n$
 - LLL only formalized for $L \subseteq \mathbb{Z}^n$.
 - Our formal Babai's algorithm is also restricted to \mathbb{Z}^n .
 - lacksquare Can scale $L\subseteq \mathbb{Q}^n$ to $L'\in \mathbb{Z}^n$.
 - Target vector u can be in \mathbb{Q}^n .
- In literature, can have $d \leq n$.
 - Our proof requires an invertible (thus square) change-ofbasis matrix.
 - Thus, we restrict to d = n.
- Like LLL, our formal Babai's algorithm is executable.



Proof. Let β, γ be two integers. Define the modular distance between β and γ as

$$\operatorname{dist}_p(eta,\gamma) = \min_{b \in \mathbb{Z}} |eta - \gamma - bp|$$

For example, $\operatorname{dist}_p(1, p) = 1$. Suppose $\beta \neq \gamma \pmod{p}$ and they are both integers in the range [1, p-1]. Define

$$A = \Pr_{t} \left[\operatorname{dist}_{p}(\beta t, \gamma t) > 2p/2^{\mu} \right]$$

where t is an integer chosen uniformly at random in [1, p-1]. Then

$$A = \Pr_t \left[\frac{2p}{2^\mu} < (\beta - \gamma)t \bmod p < p - \frac{2p}{2^\mu} \right] = \frac{\left\lfloor p - \frac{2p}{2^\mu} \right\rfloor - \left\lceil \frac{2p}{2^\mu} \right\rceil}{p-1} \ge 1 - \frac{5}{2^\mu}$$

This follows since for every $x \in [\frac{2p}{2^{\mu}}, p - \frac{2p}{2^{\mu}}]$ there exists a t such that $(\beta - \gamma)t = x \pmod{p}$. In general, a lattice point v has the form

$$v = (\beta t_1 - b_1 p, \ \beta t_2 - b_2 p, \dots, \beta t_d - b_d p, \ \beta/p)$$

for some integers β, b_1, \ldots, b_d . Suppose $||v-u|| < p/2^{\mu}$. We show that with probability at least $\frac{1}{2}$ the vector v satisfies $\beta \equiv \alpha \pmod{p}$ and $\beta t_i - b_i p \in [0, p]$ for all i. Observe that if $\beta = \alpha \pmod{p}$, then $\beta t_i - b_i p \in [0, p]$ for all i. Otherwise at least one of the components of v-u is bigger in absolute value than $p/2^{\mu}$.

Now, suppose $\beta \neq \alpha \pmod{p}$. Then

$$\begin{split} \Pr\left[\| \ v - u \ \| > p/2^{\mu} \right] & \geq \Pr\left[\exists i \ : \ \mathrm{dist}_p(t_i\beta, a_i) > p/2^{\mu} \right] \geq \\ \Pr\left[\exists i \ : \ \mathrm{dist}_p(t_i\beta, t_i\alpha) > 2p/2^{\mu} \right] & = 1 - (1 - A)^d \geq 1 - \left(\frac{5}{2^{\mu}} \right)^d \end{split}$$

Since $\beta \neq \alpha \pmod{p}$ there are exactly p-1 values of $\beta \mod p$ to consider. Hence, the probability there exists a lattice point contradicting the statement of the theorem is at most

$$(p-1)\cdot \left(\frac{5}{2^{\mu}}\right)^d < \frac{1}{2}$$

The last inequality follows from the fact that $d(\mu - \log_2 5) > \log p + 1$. This completes the proof of the theorem.

Informal proof: one-page

<u>Informal</u> proof: one-page

Formal proof: 4000 LoC

Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

• proof steps,

Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

- proof steps,
- definitions,

Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

- proof steps,
- definitions,
- bounds and arithmetic.

Formalizing the HNP Counting is hard

Counting is hard

• Original paper:

Counting is hard

Original paper:

$$egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p - rac{2p}{2^\mu}
ight
floor - \left\lceil rac{2p}{2^\mu}
ight
ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$$

- Original paper:
 - $egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p rac{2p}{2^\mu}
 ight
 floor \left\lceil rac{2p}{2^\mu}
 ight
 ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$
 - Edge cases and ceil/floor arithmetic difficult to formalize.

- Original paper:
 - $egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p rac{2p}{2^\mu}
 ight
 floor \left\lceil rac{2p}{2^\mu}
 ight
 ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$
 - Edge cases and ceil/floor arithmetic difficult to formalize.
- Our approach:

- Original paper:
 - $egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p rac{2p}{2^\mu}
 ight
 floor \left\lceil rac{2p}{2^\mu}
 ight
 ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$
 - Edge cases and ceil/floor arithmetic difficult to formalize.
- Our approach:
 - $ullet |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq B\}| \leq 2B.$

- Original paper:
 - $egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p rac{2p}{2^\mu}
 ight
 floor \left\lceil rac{2p}{2^\mu}
 ight
 ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$
 - Edge cases and ceil/floor arithmetic difficult to formalize.
- Our approach:
 - $ullet |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq B\}| \leq 2B.$
 - Weaker, but sufficient.

- Original paper:
 - $egin{align} lacksquare |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq rac{2p}{2^\mu}\}| \ &= \left\lfloor p rac{2p}{2^\mu}
 ight
 floor \left\lceil rac{2p}{2^\mu}
 ight
 ceil \ &\geq (p-1)(1-rac{5}{2^\mu}). \end{split}$
 - Edge cases and ceil/floor arithmetic difficult to formalize.
- Our approach:
 - $ullet |\{t\in (\mathbb{Z}/p\mathbb{Z})^ imes : \operatorname{dist}_p(eta t, oldsymbollpha t) \leq B\}| \leq 2B.$
 - Weaker, but sufficient.
 - Simple argument, simple to formalize

Clarifying $\overline{\mathrm{MSB}}_k$ definition

• Original paper:

Clarifying $ext{MSB}_k$ definition

- Original paper:
 - ullet First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

Clarifying $ext{MSB}_k$ definition

- Original paper:
 - lacksquare First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

 \circ Like like a right-shift (by n-k bits).

- Original paper:
 - lacksquare First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

- \circ Like like a right-shift (by n-k bits).
- Actually, assume $\mathrm{MSB}_k(x)$ satisfies

$$|x-\mathrm{MSB}_k(x)|<rac{p}{2^{k+1}}.$$

Clarifying $\overline{ ext{MSB}}_k$ definition

- Original paper:
 - lacksquare First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

- \circ Like like a right-shift (by n-k bits).
- Actually, assume $\mathrm{MSB}_k(x)$ satisfies

$$|x-\mathrm{MSB}_k(x)|<rac{p}{2^{k+1}}.$$

Like like a right-then-left-shift.

- Original paper:
 - ullet First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

- \circ Like like a right-shift (by n-k bits).
- Actually, assume $\mathrm{MSB}_k(x)$ satisfies

$$|x-\mathrm{MSB}_k(x)|<rac{p}{2^{k+1}}.$$

- Like like a right-then-left-shift.
- In fact, only need $\frac{p}{2^k}$.

Clarifying $\overline{ ext{MSB}}_k$ definition

- Original paper:
 - lacksquare First, $\mathrm{MSB}_k(x)$ is the unique $t\in\mathbb{Z}$ such that

$$(t-1)\cdot rac{p}{2^k} \leq x < t\cdot rac{p}{2^k}.$$

• Actually, assume $\mathrm{MSB}_k(x)$ satisfies

$$|x-\mathrm{MSB}_k(x)|<rac{p}{2^{k+1}}.$$

- In fact, only need $\frac{p}{2^k}$.
- Our approach:
 - Work in Isabelle locale fixing $ext{MSB}_k$ operator and assuming $|x- ext{MSB}_k(x)|<rac{p}{2^k}.$

- Our approach:
 - lacksquare Work in Isabelle locale fixing MSB_k operator and assuming $|x-\mathrm{MSB}_k(x)|<rac{p}{2^k}.$

- Our approach:
 - lacksquare Work in Isabelle locale fixing MSB_k operator and assuming $|x-\mathrm{MSB}_k(x)|<rac{p}{2^k}.$
 - Instantiate locale with original MSB_k definition,

- Our approach:
 - Work in Isabelle locale fixing $ext{MSB}_k$ operator and assuming $|x- ext{MSB}_k(x)|<rac{p}{2^k}.$
 - Instantiate locale with original MSB_k definition,
 - as well as simple "right-then-left-shift" definition.

Probability helper lemmas

• In Isabelle/HOL lib: PMF monad with "do" notation.

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We formulate cryptographic "game" as probabilistic algorithm.

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We formulate cryptographic "game" as probabilistic algorithm.

```
definition game :: "((nat \times nat) list \Rightarrow nat) \Rightarrow bool pmf" where "game \mathcal{A}' = do {
   ts \leftarrow replicate_pmf d (pmf_of_set {1..<p});
   return_pmf (\alpha = \mathcal{A}' (map (\lambdat. (t, \mathcal{O} t)) ts))
}"
```

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We often use pattern:

```
do \{x \leftarrow p; return_pmf (P x)\}
```

Probability helper lemmas

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We often use pattern:

```
do \{x \leftarrow p; return_pmf (P x)\}
```

• We prove lemmas to reason about these expressions.

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We often use pattern:

```
do \{x \leftarrow p; return_pmf (P x)\}
```

- We prove lemmas to reason about these expressions.
 - We lift existing measure-theoretic lemmas to this level of abstraction.

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We often use pattern:

```
do \{x \leftarrow p; return_pmf (P x)\}
```

- We prove lemmas to reason about these expressions.
 - We lift existing measure-theoretic lemmas to this level of abstraction.
- Helper lemmas aid expressivity

- In Isabelle/HOL lib: PMF monad with "do" notation.
- We often use pattern:

```
do \{x \leftarrow p; return_pmf (P x)\}
```

- We prove lemmas to reason about these expressions.
 - We lift existing measure-theoretic lemmas to this level of abstraction.
- Helper lemmas aid expressivity and improve Sledgehammer performance.

Formalizing the HNP Hiding α in locale

Hiding α in locale

• α fixed in locale.

- α fixed in locale.
- Adversary defined as function in locale.

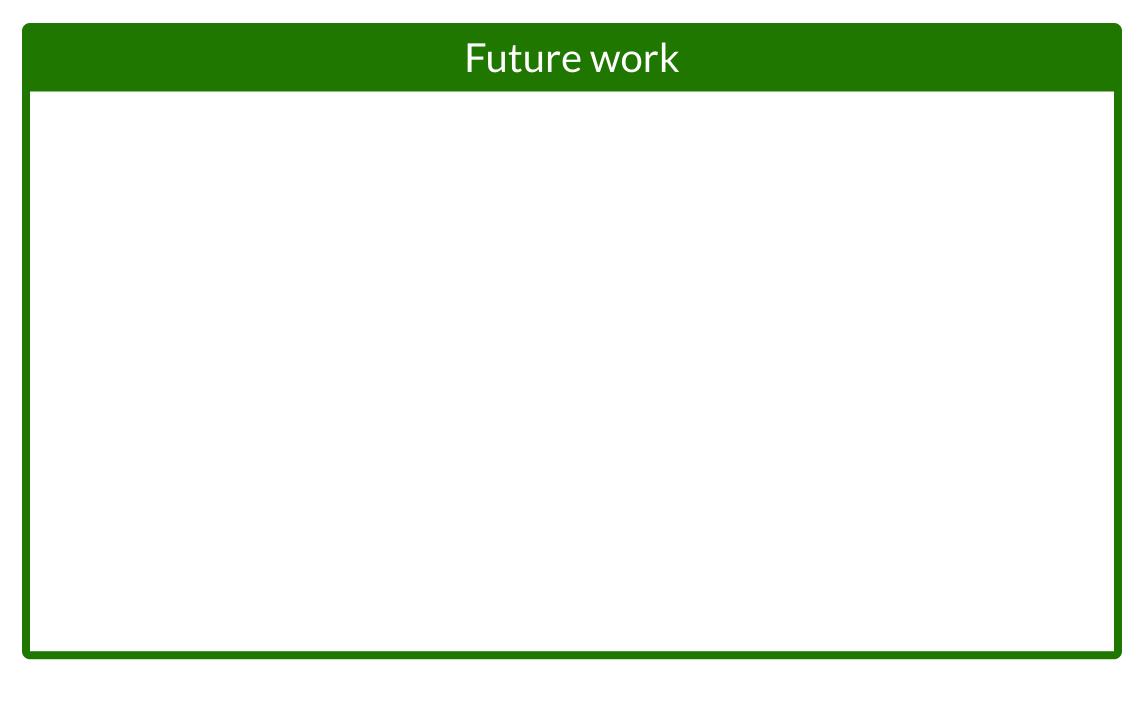
- α fixed in locale.
- Adversary defined as function in locale.
- How to ensure α is "hidden" from adversary?

- α fixed in locale.
- Adversary defined as function in locale.
- How to ensure α is "hidden" from adversary?
- Can manually inspect that adversary does not use α .

- α fixed in locale.
- Adversary defined as function in locale.
- How to ensure α is "hidden" from adversary?
- Can manually inspect that adversary does not use α .
 - Not satisfying; not in spirit of formal verification.

- α fixed in locale.
- Adversary defined as function in locale.
- How to ensure α is "hidden" from adversary?
- Can manually inspect that adversary does not use α .
 - Not satisfying; not in spirit of formal verification.
- Instead, we use locale hierarchy; define adversary before α is fixed.

- α fixed in locale.
- Adversary defined as function in locale.
- How to ensure α is "hidden" from adversary?
- Can manually inspect that adversary does not use α .
 - Not satisfying; not in spirit of formal verification.
- Instead, we use locale hierarchy; define adversary before α is fixed.
 - Simple, but streamlines manual verification.



• Explore further library and automation support for gamebased and probabilistic reasoning.

- Explore further library and automation support for gamebased and probabilistic reasoning.
- Other hidden number problems:

- Explore further library and automation support for gamebased and probabilistic reasoning.
- Other hidden number problems:
 - Elliptic curve HNP
 - Extended HNP
 - Modular inverse HNP
 - ... many more!

- Explore further library and automation support for gamebased and probabilistic reasoning.
- Other hidden number problems:
 - Elliptic curve HNP
 - Extended HNP
 - Modular inverse HNP
 - ... many more!
- Formalize time complexity of adversary

- Explore further library and automation support for gamebased and probabilistic reasoning.
- Other hidden number problems:
 - Elliptic curve HNP
 - Extended HNP
 - Modular inverse HNP
 - ... many more!
- Formalize time complexity of adversary
 - Need to formalize complexity of Babai.

- Explore further library and automation support for gamebased and probabilistic reasoning.
- Other hidden number problems:
 - Elliptic curve HNP
 - Extended HNP
 - Modular inverse HNP
 - ... many more!
- Formalize time complexity of adversary
 - Need to formalize complexity of Babai.
 - Luckily, LLL complexity is formalized.