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Diffie-Hellman Key Exchange

An adversary observing communication must solve the
discrete log problem to recover  from intercepted

information.
We assume discrete log is hard...

gab

Under this assumption: is it hard to gain even partial
information?
Yes! Idea: compute  given a bit-leaking oracle.gab
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Let  be hidden.α  Let .O(t) = MSB ​(αt modk p)
Let  be sampled uniformly from .t ​, … , t ​1 d (Z/pZ)×

There exists an adversary  such thatA

.Pr[A((t ​, O(t ​)), … , (t ​, O(t ​))) =1 1 d d α] ≥ 1/2

Can recover  given access to random oracle  in poly time.α O

961 < n =: ⌈log(p)⌉
d =: 2 ⋅ ⌈ ​⌉n
k =: ⌈ ​⌉ +n ⌈log(n)⌉
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This is the closest vector problem which is NP-hard...
But we can approximate it!
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including René Thiemann).
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Need to formalize bounds (e.g. "for large enough ") and

make arithmetic precise.

1/2 v = (… ,β/p) ∈ L

β ≡ α (mod p) u

We build on existing PMF library.
n

Isabelle/HOL automation very valuable.
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Davidowitz.
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Informally:  is clearly w.d.D =: min{∣v − u∣ : v ∈ L}
Formally: Isabelle/HOL  only for finite sets. min

We use  instead: ...inf D =: inf{∣v − u∣ : v ∈ L}
But still need  witnessing .v ​ ∈0 L ∣v ​ −0 u∣ = D

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain  where .v ​ϵ ∣v ​ −ϵ u∣ ≤ (1 + ϵ)D

For arbitrary .ϵ > 0
 trickles down to final bound.(1 + ϵ)

Can be removed since  is arbitrary.ϵ > 0
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Formalizing Babai's nearest plane algorithm

In literature, Babai's algorithm applies to L ⊆ Rn

LLL only formalized for .L ⊆ Zn

Our formal Babai's algorithm is also restricted to .Zn

Can scale  to .L ⊆ Qn L ∈′ Zn

Target vector  can be in .u Qn

In literature, can have .d ≤ n

Our proof requires an invertible (thus square) change-of-
basis matrix.
Thus, we restrict to .d = n

Like LLL, our formal Babai's algorithm is executable.
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We clarify:

proof steps,
definitions,
bounds and arithmetic.
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Counting is hard

Original paper:

.

∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p ​ }∣2μ
2p

= ⌊p − ​⌋ −2μ
2p ⌈ ​⌉2μ

2p

≥ (p − 1)(1 − ​ )2μ
5

Edge cases and ceil/floor arithmetic difficult to formalize.
Our approach:

.∣{t ∈ (Z/pZ) :× dist ​(βt,αt) ≤p B}∣ ≤ 2B
Weaker, but sufficient.
Simple argument, simple to formalize
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Our approach:
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Clarifying  definition

Our approach:
Work in Isabelle locale fixing  operator and

assuming .

MSB ​k

MSB ​k

∣x − MSB ​(x)∣ <k ​2k
p

Instantiate locale with original  definition,MSB ​k

as well as simple "right-then-left-shift" definition.
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Probability helper lemmas

In Isabelle/HOL lib: PMF monad with " " notation.

We often use pattern:

do

do {x ← p; return_pmf (P x)}

We prove lemmas to reason about these expressions.
We lift existing measure-theoretic lemmas to this level of
abstraction.

Helper lemmas aid expressivity and improve Sledgehammer
performance.
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Hiding  in localeα

 fixed in locale.α

Adversary defined as function in locale.
How to ensure  is "hidden" from adversary?α

Can manually inspect that adversary does not use .α

Not satisfying; not in spirit of formal verification.
Instead, we use locale hierarchy; define adversary before 

is fixed.

α

Simple, but streamlines manual verification.
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Future work

Explore further library and automation support for game-
based and probabilistic reasoning.
Other hidden number problems:

Elliptic curve HNP
Extended HNP
Modular inverse HNP
... many more!

Formalize time complexity of adversary
Need to formalize complexity of Babai.
Luckily, LLL complexity is formalized.
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