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o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

Brief DH review

Intuition DH to HNP reduction
HNP formal statement
High-level proof idea
-ormalization details
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Diffie-Hellman Key Exchange

e An adversary observing communication must solve the
discrete log problem to recover g“b from intercepted

information.

e We assume discrete log is hard...

e Under this assumption:is it hard to gain even partial
Information?

e Yes! |dea: compute g“b given a bit-leaking oracle.
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The Hidden Number Problem

» DH(g%, ¢) = "
* Suppose A(g®, g¥) = MSB;(DH(g", g¥)).

» Roughly, MSB;. gives k most significant bits.

« A(g*™™,¢") = MSB(DH(g""*, ¢"))

= MSB((9*) - (9")*)
— MSBk(at)
=: O(t)

Main theorem: we can recover a given O.
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e Let abe hidden. Let O(t) = MSBy(at mod p).
o Lettq,...,tsbesampled uniformly from (Z/pZ.)*.

There exists an adversary A such that

PI[A((tlv O(tl))a O (tda O(td))) — Oé] > 1/2°

Can recover o given access to random oracle O in poly time.

e 961 < n := |log(p)|
vdi=2- [n]
* k= [v/n] + [log(n)]
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Recall O(t) = MSBg(at mod p).
O(t;) ~ at; — mpfor some m.
ldea: Approximate o using lattice methods.
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u =~ (at; — mqp,...,atg — mgp,0)

DV = (5151 —blp,...,ﬂtd_bdpaﬂ/p)

If |[v — ulissmall,then 8 = a (mod p) with high probability

e Therefore, find v minimizing |v — u|.
e Thisis the closest vector problem which is NP-hard...

e But we can approximate it!
= With Babai's nearest plane algorithm.

= Findsv € [ with |u — v| close to optimal.
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Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
= We build on existing LLL formalization (many authors
including René Thiemann).
e Need formal probabilistic reasoning.
= \We build on existing PMF library.

e Need to formalize bounds (e.g. "for large enough n") and

make arithmetic precise.
= |sabelle/HOL automation very valuable.

15.2
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Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

Let D := min{|v —u| : v € L}.
Can prove Babai output v satisfies |[v — u| < 24m1)/46 )

Literature commonly gives odim(L)/2 1y

= Not strong enough for final HNP result.
Boneh and Venkatesan use 24m(-)/4 D).

» We formalize 1/dim(/)(4/3)4=(")/2 D, which suffices.

16.7



Formalizing Babai's nearest plane algorithm

e Informally: D := min{|v — u| : v € L}isclearly w.d.




Formalizing Babai's nearest plane algorithm

e Informally: D := min{|v — u| : v € L}isclearly w.d.

e Formally: Isabelle/HOL min only for finite sets.

171



Formalizing Babai's nearest plane algorithm

o Informally: D := min{|v — u| :

e Formally: Isabelle/HOL min on
e Weuse inf instead: D := inf{

v € L}isclearly w.d.

y for finite sets.
v—ul:v € L}.

17.2



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.

y for finite sets.
v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.

17.3



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize

17.4



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

17.5



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.

17.6



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| : v € L}isclearly w.d.
Formally: Isabelle/HOL min only for finite sets.

We use inf instead: D := inf{|v — u| : v € L}...
But still need vy € I witnessing |vy — u| = D.

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.
(1 + €) trickles down to final bound.

17.7



Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| : v € L}isclearly w.d.
Formally: Isabelle/HOL min only for finite sets.

We use inf instead: D := inf{|v — u| : v € L}...
But still need vy € I witnessing |vy — u| = D.

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.

(1 + €) trickles down to final bound.

= Can beremovedsince e > Qis arbitrary.
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e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
» Canscale L C Q"to [ € Z™.

» Target vector u can be in Q™.

e |nliterature, canhaved < n.

= Qur proof requires an invertible (thus square) change-of-
basis matrix.

» Thus, werestricttod = n.
e Like LLL, our formal Babai's algorithm is executable.

18.8
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Proof. Let 3,4 be two integers. Define the modular disiance between 3 and v as

dist,(8,7) = min |3 — v — bp|
veZ

For example, dist, (1, p) = 1. Suppose 3 # v {mod p) and they are both integers
in the range [1,p— 1]. Define

A= E:r [dist, (4t vt) > 2p/2¥]

where ¢ is an integer chosen uniformly at random in {1, p — 1]. Then

_ 2p ‘ . 2p _ Lp_gﬂ _I.%f_.l
A—Prrl:g—“<(»j’})tmﬁdp<p-—2—p]-— p—1 21—211

This follows since for every x € [22, p— 2£! there exists a ¢ such that (3—y)}t = @
(mod p). In general, a lattice point v has the form

v ={Bty —bip, Bty —bap, ..., Bta — bap. B/p)

for some integers 3,b1,...,b4. Suppose || v — u ||< p/2¥. We show that with
probability at least § the vector v satisfies 3 = o (mod p) and Bt; — b;p € [0, p]
for all i. Observe that if 2 = @ (mod p). then #t; — bjp € [0,p] for all i.
Otherwise at least one of the components of v — u is bigger in absolute value
than p/2*,

Now, suppose 7 # @ (mod p). Then
Prllv—u|l>p/2%] > Pr[3i : distp(t: 3, a;) > p/2¥] >

- d
Pr{3i : disty(t:4, tie) > 2p/2"] =1 - (1 = A)* > 1 - (;_u)

Since 3 # a (mod p) there are exactly p — 1 values of 3 mod p to consider.
Hence, the probability there exists a lattice point contradicting the statement of

the theorem is at most
51" 1
-1 (= -
(p—1) (2,4) <3

The last inequality follows from the fact that d(x — log,5) > logp + 1. This
completes the proof of the theorem. |
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Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

e proof steps,
e definitions,
e bounds and arithmetic.
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Formalizing the HNP

Countingis hard

e Original paper°
. dist, (5, at) < 2u}\

Bﬂ

- - 2,
= Edge cases and ceil/floor arithmetic difficult to formalize.
e QOur approach:

« [{t € (Z/pZ)* : dist,(Bt,at) < B} < 2B.
= Weaker, but sufficient.
= Simple argument, simple to formalize
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Formalizing the HNP

Clarifying M SB . definition

e Our approach:
= Work in Isabelle locale fixing MSB;. operator and
assuming |z — MSB;,(z)| < .
= |nstantiate locale with original MSB;, definition,
= as well as simple "right-then-left-shift" definition.
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Probability helper lemmas

e InlIsabelle/HOL lib: PMF monad with "do" notation.
e We formulate cryptographic "game" as probabilistic

algorithm.

definition game :: "((nat x nat) list = nat) = bool pmf" where
"game A’ = do {
ts « replicate_pmf d (pmf_of_set {1..<p});
return_pmf (o = A’ (map (At. (t, O t)) ts))
}Il
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Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib;: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

e We prove lemmas to reason about these expressions.
= We lift existing measure-theoretic lemmas to this level of
abstraction.
e Helper lemmas aid expressivity and improve Sledgehammer
performance.
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Hiding ¢ in locale

e «x fixed in locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

e Can manually inspect that adversary does not use .
= Not satisfying; not in spirit of formal verification.
e |nstead, we use locale hierarchy; define adversary before «

iIs fixed.
= Simple, but streamlines manual verification.
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Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

e Other hidden number problems:
= Elliptic curve HNP

= Extended HNP
= Modular inverse HNP
= ..many more!
e Formalize time complexity of adversary
= Need to formalize complexity of Babai.
= Luckily, LLL complexity is formalized.
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