Formalizing the Hidden Number Problem in
Isabelle/HOL

Sage Binder
University of lowa

2025-09-29

Joint work with Eric Ren and Katherine Kosaian

The Hidden Number Problem

The Hidden Number Problem

e Introduced by Boneh and Venkatesan in 1996.

The Hidden Number Problem
e Introduced by Boneh and Venkatesan in 1996.

= Originally for DH bit-security.

The Hidden Number Problem
e Introduced by Boneh and Venkatesan in 1996.

= Originally for DH bit-security.
= Now an important paradigm in cryptography.

The Hidden Number Problem
e Introduced by Boneh and Venkatesan in 1996.

= Originally for DH bit-security.
= Now an important paradigm in cryptography.
= Many variants for different protocols.

The Hidden Number Problem

e Introduced by Boneh and Venkatesan in 1996.
= Originally for DH bit-security.

= Now an important paradigm in cryptography.
= Many variants for different protocols.

Broad idea

The Hidden Number Problem

e Introduced by Boneh and Venkatesan in 1996.
= Originally for DH bit-security.
= Now an important paradigm in cryptography.
= Many variants for different protocols.

Broad idea

e Suppose O(t) yields some information about ait mod p.

The Hidden Number Problem

e Introduced by Boneh and Venkatesan in 1996.
= Originally for DH bit-security.
= Now an important paradigm in cryptography.
= Many variants for different protocols.

Broad idea

e Suppose O(t) yields some information about ait mod p.

e Canwe recover o given access to O?

The Hidden Number Problem

e Introduced by Boneh and Venkatesan in 1996.
= Originally for DH bit-security.
= Now an important paradigm in cryptography.
= Many variants for different protocols.

Broad idea

e Suppose O(t) yields some information about ait mod p.

e Canwe recover o given access to O?
e Yes, with high probability.

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

e Brief DH review

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.
Talk outline

e Brief DH review
e |ntuition DH to HNP reduction

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

e Brief DH review
e |ntuition DH to HNP reduction
e HNP formal statement

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

Brief DH review

Intuition DH to HNP reduction
HNP formal statement
High-level proof idea

Broad idea

o Suppose O(t) yields some information about ait mod p.

e Can we recover ¢ given access to D?
e Yes, with high probability.

Talk outline

Brief DH review

Intuition DH to HNP reduction
HNP formal statement
High-level proof idea
-ormalization details

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

e Let g be a(public) generator of a group (say (Z/pZ)*).

Diffie-Hellman Key Exchange

 Let g be a(public) generator of a group (say (Z/pZ)*).

e Goal: establish shared secret between Alice and Bob.

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).
n shared secret between Alice and Bob.

e Idea: g® harc

to compute from g% and g”

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).

e Idea: g® harc

to compute from g% and g”

h shared secret between Alice and Bob.

Alice

Adversary Bob

))

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).

e Idea: g® harc

to compute from g% and g”

h shared secret between Alice and Bob.

Alice

2

Adversary Bob

))

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).
n shared secret between Alice and Bob.

e Idea: g® harc

to compute from g% and g”

Alice

2

Adversary Bob

)

S Q

Diffie-Hellman Key Exchange

 Let g be a(public) generator of a group (say (Z/pZ)>).
e Goal: establish shared secret between Alice and Bob.

e Idea: g® hard to compute from g® and g°

Alice Adversary Bob
g g)
a b
ga

Diffie-Hellman Key Exchange

e Let g be a(public) generator of a group (say (Z/pZ)*).
e Goal: establish shared secret between Alice and Bob.

e Idea: g® hard to compute from g® and g°

Alice Adversary Bob
g g)
a b
g g

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).

e Idea: g® harc

to compute from g% and g”

h shared secret between Alice and Bob.

Alice

2

Adversary Bob
g g
g* b
Tk g°

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).

e Idea: g® harc

to compute from g% and g”

h shared secret between Alice and Bob.

Alice

Adversary Bob
g g
g* b
Tk g°
(ga)b _ gab

Diffie-Hellman Key Exchange

e Let gbea(pu
o Goal: establis

vlic) generator of a group (say (Z/pZ.)*).

e Idea: g® harc

to compute from g% and g”

h shared secret between Alice and Bob.

Alice

Adversary Bob
g g
g* b
Tk g°

Diffie-Hellman Key Exchange

e An adversary observing communication must solve the

discrete log problem to recover g“b from intercepted

iInformation.
Alice Adversary Bob
g) g
a 9" b
g’ g’ g°

Diffie-Hellman Key Exchange

e An adversary observing communication must solve the
discrete log problem to recover g“b from intercepted

information.
e We assume discrete logis hard...

Diffie-Hellman Key Exchange

e An adversary observing communication must solve the
discrete log problem to recover g“b from intercepted

information.

e We assume discrete logis hard...

e Under this assumption:is it hard to gain even partial
Information?

Diffie-Hellman Key Exchange

e An adversary observing communication must solve the
discrete log problem to recover g“b from intercepted

information.

e We assume discrete logis hard...

e Under this assumption: is it hard to gain even partial
Information?

e Yes!

Diffie-Hellman Key Exchange

e An adversary observing communication must solve the
discrete log problem to recover g“b from intercepted

information.

e We assume discrete log is hard...

e Under this assumption:is it hard to gain even partial
Information?

e Yes! |dea: compute g“b given a bit-leaking oracle.

The Hidden Number Problem

The Hidden Number Problem

» DH(g", ¢¥) = g™
» Suppose A(g”, g¥) = MSB;(DH(g*, g¥)).

The Hidden Number Problem

» DH(g", ¢¥) = g™
* Suppose A(g”, g¥) = MSB;(DH(g*, g¥)).
» Roughly, MSB;. gives k most significant bits.

The Hidden Number Problem

- DH(g%, ¢¥) = g

* Suppose A(g”, g¥) = MSB;(DH(g*, g¥)).
» Roughly, MSB;. gives k most significant bits.

» A(g***,9") = MSB(DH(g*"*, g"))

The Hidden Number Problem
« DH(g%, g¥) = g™
e Suppose A(g*, g¥) = MSB;(DH(g%, g¥)).

» Roughly, MSB;. gives k most significant bits.
» A(g***,¢") = MSBy(DH(g""*, g"))

= MSB((9”) - (9°)")

The Hidden Number Problem
« DH(g%, ¢¥) = g™
» Suppose A(g*, g¥) = MSB;(DH(g%, g¥)).

» Roughly, MSB;. gives k most significant bits.
» A(g***,¢") = MSBy(DH(g""*, g"))

= MSB((9*) - (¢")*)

The Hidden Number Problem
« DH(g%, g¥) = g™
» Suppose A(g®, g¥) = MSB;(DH(g", g¥)).

» Roughly, MSB;. gives k most significant bits.
» A(g***,¢") = MSBy(DH(g"**, g"))

= MSB;,((9™) - (")%)
— MSBk(at)

The Hidden Number Problem
« DH(g%, g¥) = g™
* Suppose A(g®, g¥) = MSB;(DH(g", g¥)).

» Roughly, MSB;. gives k most significant bits.
» A(g***,9") = MSBy(DH(g"**, g"))

= MSB((9™) - (9")7)
MSBk(at)
: O(t)

The Hidden Number Problem

» DH(g%, ¢) = "
* Suppose A(g®, g¥) = MSB;(DH(g", g¥)).

» Roughly, MSB;. gives k most significant bits.

« A(g*™™,¢") = MSB(DH(g""*, ¢"))

= MSB((9*) - (9")*)
— MSBk(at)
=: O(t)

Main theorem: we can recover a given O.

Theorem 1

e Let o« be hidden.

Theorem 1

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).
o Letty,...,tsbesampled uniformly from (Z/pZ.)*.

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).
o Lettq,...,tsbesampled uniformly from (Z/pZ.)*.

There exists an adversary A such that

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).
o Lettq,...,tsbesampled uniformly from (Z/pZ.)*.

There exists an adversary A such that

Pr[‘A((tlv O(tl))v O (tda O(td))) — Oé] > 1/2°

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).
o Lettq,...,tsbesampled uniformly from (Z/pZ.)*.

There exists an adversary A such that

PI[A((tlv O(tl))a O (tda O(td))) — Oé] > 1/2°

Can recover o given access to random oracle O in poly time.

Theorem 1

e Let abe hidden. Let O(t) = MSBy(at mod p).
o Lettq,...,tsbesampled uniformly from (Z/pZ.)*.

There exists an adversary A such that

PI[A((tlv O(tl))a O (tda O(td))) — Oé] > 1/2°

Can recover o given access to random oracle O in poly time.

e 961 < n := |log(p)|
vdi=2- [n]
* k= [v/n] + [log(n)]

Proof idea

Proof idea

o u = (O(t1),...,0(tq),0)
e Recall O(t) = MSBk(at mod p).

Proof idea

* u= (0O(t1),...,0(t4),0)

e Recall O(t) = MSBg(at mod p).

e O(t;) =~ at; — mpfor some m.

Proof idea

w:=(0(t1),...,0(ta),0)

Recall O(t) = MSBg(at mod p).
O(t;) ~ at; — mpfor some m.
ldea: Approximate o using lattice methods.

10.3

Proof idea

Proof idea

u = (at; — map,...,atg — mgp, 0)

e Build lattice /. from basis:

11.1

Proof idea

u = (at; — map,...,atg — mgp, 0)

e Build lattice /. from basis:

= z; = (0,...,p,...,0,0)fori < d;
——

1th component = p

11.2

Proof idea

u = (at; — map,...,atg — mgp, 0)

e Build lattice /. from basis:

= z; = (0,...,p,...,0,0)fori < d;
——

1th component = p

" Xdr1 — (tl,. . o ,td,l/p).

11.3

Proof idea

u = (at; — map,...,atg — mgp, 0)
oV = (5751 _blpwﬂvﬂtd_bdp?ﬂ/p)

e Build lattice /. from basis:

= z; = (0,...,p,...,0,0)fori < d;
——

1th component = p

" Xdr1 — (tl,. . o ,td,l/p).

11.4

Proof idea

u =~ (at; — mqp,...,atg — mgp,0)
oV = (5751 _blpwﬂvﬂtd_bdp)ﬂ/p)

e Build lattice /. from basis:

= z; = (0,...,p,...,0,0)fori < d;
——

1th component = p

" Ld+1 = (tla ooy td,]-/p)

If |[v — u|issmall,then 5 = a (mod p) with high probability

11.5

Proof idea

u = (at; — map,...,atg — mgp, 0)

oV = (5751 _blpwﬂvﬂtd_bdp?ﬂ/p)

If |[v — u|issmall,then 5 = a (mod p) with high probability

Proof idea

u = (at; — map,...,atg — mgp, 0)

oV = (5751 _blpwﬂvﬂtd_bdp?ﬂ/p)

If |[v — u|issmall,then 5 = a (mod p) with high probability

o Therefore, find v minimizing |[v — u|.

12.1

Proof idea

u = (at; — map,...,atg — mgp, 0)

oV = (5751 _blpwﬂvﬂtd_bdp?ﬂ/p)

If |[v — u|issmall,then 5 = a (mod p) with high probability

e Therefore, find v minimizing |v — u|.
e Thisisthe closest vector problem which is NP-hard...

12.2

Proof idea

u = (at; — map,...,atg — mgp, 0)

oV = (5751 _blpwﬂvﬂtd_bdp?ﬂ/p)

If |[v — u|issmall,then 5 = a (mod p) with high probability

o Therefore, find v minimizing |v — u/.
e Thisisthe closest vector problem which is NP-hard...
e But we can approximate it!

12.3

Proof idea

u =~ (at; — mqp,...,atg — mgp,0)

DV = (5151 —blp,...,ﬂtd_bdpaﬂ/p)

If |[v — ulissmall,then 8 = a (mod p) with high probability

e Therefore, find v minimizing |v — u|.
e This is the closest vector problem which is NP-hard...

e But we can approximate it!
= With Babai's nearest plane algorithm.

12.4

Proof idea

u =~ (at; — mqp,...,atg — mgp,0)

DV = (5151 —blp,...,ﬂtd_bdpaﬂ/p)

If |[v — ulissmall,then 8 = a (mod p) with high probability

e Therefore, find v minimizing |v — u|.
e Thisis the closest vector problem which is NP-hard...

e But we can approximate it!
= With Babai's nearest plane algorithm.

= Findsv € [with |u — v| close to optimal.

12.5

Adversary

O)
((t1,0(t1)), - - -, (ta, O(ta)))

\

Y
Lattice Generation

[(Z.p-u)

Babai’s Algorithm
lo=(-.B)
Extract (3

/

Y

[B mod p] (Likely equal to «)

Formalization needs
e Main goal:

With probability at least 1/2,allv = (...
B # a (mod p) are far from w.

,B/p) € L with

Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.

141

Formalization needs
e Main goal:

With probability at least 1/2,allv = (. ..
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
e Need formal probabilistic reasoning.

14.2

Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
e Need formal probabilistic reasoning.

e Need to formalize bounds (e.g. "for large enough n") and
make arithmetic precise.

14.3

Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
= We build on existing LLL formalization (many authors
including René Thiemann).
e Need formal probabilistic reasoning.

e Need to formalize bounds (e.g. "for large enough n") and
make arithmetic precise.

Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
= We build on existing LLL formalization (many authors
including René Thiemann).
e Need formal probabilistic reasoning.
= \We build on existing PMF library.

 Need to formalize bounds (e.g. "for large enough n") and

make arithmetic precise.

151

Formalization needs
e Main goal:

With probability atleast 1/2,allv = (..., 3/p) € L with
B # a (mod p) are far from w.

e Need to formalize Babai's algorithm.
= We build on existing LLL formalization (many authors
including René Thiemann).
e Need formal probabilistic reasoning.
= \We build on existing PMF library.

e Need to formalize bounds (e.g. "for large enough n") and

make arithmetic precise.
= |sabelle/HOL automation very valuable.

15.2

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

16.1

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

e LetD := min{|v —u|:v € L}.

16.2

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

e LetD := min{|v —u|:v € L}.

e Can prove Babai output v satisfies |[v — u| < 24m(1)/46)

16.3

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

e LetD := min{|v —u|:v € L}.
e Can prove Babai output v satisfies |[v — u| < 24m(1)/46)

e |Literature commonly gives odim(L)/2 1y

16.4

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

e LetD := min{|v —u|:v € L}
e Can prove Babai output v satisfies |[v — u| < 24m(1)/46)

e |Literature commonly gives odim(L)/2 1y

= Not strong enough for final HNP result.

16.5

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

Let D := min{|v —u| : v € L}.
Can prove Babai output v satisfies |[v — u| < 24m1)/46)

Literature commonly gives odim(L)/2 1y

= Not strong enough for final HNP result.
Boneh and Venkatesan use 24m(-)/4 D).

16.6

Formalizing Babai's nearest plane algorithm

Babai's algorithm bounds:

e We "algebraicize" a geometry proof by Stephens-
Davidowitz.

Let D := min{|v —u| : v € L}.
Can prove Babai output v satisfies |[v — u| < 24m1)/46)

Literature commonly gives odim(L)/2 1y

= Not strong enough for final HNP result.
Boneh and Venkatesan use 24m(-)/4 D).

» We formalize 1/dim(/)(4/3)4=(")/2 D, which suffices.

16.7

Formalizing Babai's nearest plane algorithm

e Informally: D := min{|v — u| : v € L}isclearly w.d.

Formalizing Babai's nearest plane algorithm

e Informally: D := min{|v — u| : v € L}isclearly w.d.

e Formally: Isabelle/HOL min only for finite sets.

171

Formalizing Babai's nearest plane algorithm

o Informally: D := min{|v — u| :

e Formally: Isabelle/HOL min on
e Weuse inf instead: D := inf{

v € L}isclearly w.d.

y for finite sets.
v—ul:v € L}.

17.2

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.

y for finite sets.
v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.

17.3

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize

17.4

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

17.5

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| :

Formally: Isabelle/HOL min on
We use inf instead: D = inf{

v € L}isclearly w.d.
y for finite sets.

v—ul:v € L}.

But still need vy € I witnessing |vy — u| = D.
Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.

17.6

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| : v € L}isclearly w.d.
Formally: Isabelle/HOL min only for finite sets.

We use inf instead: D := inf{|v — u| : v € L}...
But still need vy € I witnessing |vy — u| = D.

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.
(1 + €) trickles down to final bound.

17.7

Formalizing Babai's nearest plane algorithm

Informally: D := min{|v — u| : v € L}isclearly w.d.
Formally: Isabelle/HOL min only for finite sets.

We use inf instead: D := inf{|v — u| : v € L}...
But still need vy € I witnessing |vy — u| = D.

Intuitively true (lattice is discrete); annoying to formalize
Instead, we obtain v, where |v, — u| < (1 + €)D.

= For arbitrarye > 0.

(1 + €) trickles down to final bound.

= Can beremovedsince e > Qis arbitrary.

17.8

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

18.1

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".
= Our formal Babai's algorithm is also restricted to Z".

18.2

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
= Canscale . C Q"to ./ € Z™.

18.3

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
= Canscale . C Q"to ./ € Z™.

» Target vector u can be in Q™.

18.4

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
= Canscale . C Q"to ./ € Z™.

» Target vector u can be in Q™.
e |nliterature, can haved < n.

18.5

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
= Canscale . C Q"to ./ € Z™.

» Target vector u can be in Q™.
e |nliterature, can haved < n.

= Qur proof requires an invertible (thus square) change-of-
basis matrix.

18.6

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
» Canscale L C Q"to [€ Z™.

» Target vector u can be in Q™.

e |nliterature, can haved < n.

= Qur proof requires an invertible (thus square) change-of-
basis matrix.

» Thus, werestricttod = n.

18.7

Formalizing Babai's nearest plane algorithm

e |nliterature, Babai's algorithm appliesto /. C R"
» LLL only formalized for /. C Z".

= Our formal Babai's algorithm is also restricted to Z".
» Canscale L C Q"to [€ Z™.

» Target vector u can be in Q™.

e |nliterature, canhaved < n.

= Qur proof requires an invertible (thus square) change-of-
basis matrix.

» Thus, werestricttod = n.
e Like LLL, our formal Babai's algorithm is executable.

18.8

Formalizing the HNP

Formalizing the HNP

Proof. Let 3,4 be two integers. Define the modular disiance between 3 and v as

dist,(8,7) = min |3 — v — bp|
veZ

For example, dist, (1, p) = 1. Suppose 3 # v {mod p) and they are both integers
in the range [1,p— 1]. Define

A= E:r [dist, (4t vt) > 2p/2¥]

where ¢ is an integer chosen uniformly at random in {1, p — 1]. Then

_ 2p ‘ . 2p _ Lp_gﬂ _I.%f_.l
A—Prrl:g—“<(»j’})tmﬁdp<p-—2—p]-— p—1 21—211

This follows since for every x € [22, p— 2£! there exists a ¢ such that (3—y)}t = @
(mod p). In general, a lattice point v has the form

v ={Bty —bip, Bty —bap, ..., Bta — bap. B/p)

for some integers 3,b1,...,b4. Suppose || v — u ||< p/2¥. We show that with
probability at least § the vector v satisfies 3 = o (mod p) and Bt; — b;p € [0, p]
for all i. Observe that if 2 = @ (mod p). then #t; — bjp € [0,p] for all i.
Otherwise at least one of the components of v — u is bigger in absolute value
than p/2*,

Now, suppose 7 # @ (mod p). Then
Prllv—u|l>p/2%] > Pr[3i : distp(t: 3, a;) > p/2¥] >

- d
Pr{3i : disty(t:4, tie) > 2p/2"] =1 - (1 = A)* > 1 - (;_u)

Since 3 # a (mod p) there are exactly p — 1 values of 3 mod p to consider.
Hence, the probability there exists a lattice point contradicting the statement of

the theorem is at most
51" 1
-1 (= -
(p—1) (2,4) <3

The last inequality follows from the fact that d(x — log,5) > logp + 1. This
completes the proof of the theorem. |

191

Formalizing the HNP
Informal proof: one-page

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

20.1

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

20.2

Formalizing the HNP
Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

e proof steps,

20.3

Formalizing the HNP
Informal proof: one-page

Formal proof: 4000 LoC

We clarify:

e proof steps,
e definitions,

20.4

Formalizing the HNP

Informal proof: one-page
Formal proof: 4000 LoC

We clarify:

e proof steps,
e definitions,
e bounds and arithmetic.

20.5

Formalizing the HNP

Countingis hard

e Original paper:

Formalizing the HNP

Countingis hard

21.1

e Original paper:
" {t € (Z/pZ)"
= |p— 3]

Formalizing the HNP

Countingis hard

: dist, (Bt, at) < 2}

£l

> (p— 11— 5).

21.2

Formalizing the HNP

Countingis hard

e Original paper'
. dist, (5, at) < 2#”

Bﬂ

- 1)(1 = 5).

= Edge cases and ceil/floor arithmetic difficult to formalize.

21.3

Formalizing the HNP

Countingis hard

e Original paper'
n |{t € (: dist, (St, at) < 2u}|

= |p [?ﬂ

> (p— 11— 5).

= Edge cases and ceil/floor arithmetic difficult to formalize.

e QOur approach:

21.4

Formalizing the HNP

Countingis hard

e Original paper'
n |{t € (: dist, (St, at) < 2u}|

= |p Bﬁﬂ

> (p— 11— 5).

= Edge cases and ceil/floor arithmetic difficult to formalize.

e QOur approach:

" [{t € (Z/pZ)” : dist,(bt, at) < B}| < 2B.

21.5

Formalizing the HNP

Countingis hard

e Original paper°
. dist, (5, at) < 2“}\

Bﬂ

- - 2,
= Edge cases and ceil/floor arithmetic difficult to formalize.
e QOur approach:

. |{t € (Z/pZ)* : dist,(Bt, at) < B} < 2B.
= Weaker, but sufficient.

21.6

Formalizing the HNP

Countingis hard

e Original paper°
. dist, (5, at) < 2u}\

Bﬂ

- - 2,
= Edge cases and ceil/floor arithmetic difficult to formalize.
e QOur approach:

« [{t € (Z/pZ)* : dist,(Bt,at) < B} < 2B.
= Weaker, but sufficient.
= Simple argument, simple to formalize

21.7

Formalizing the HNP

Clarifying M SB . definition

Formalizing the HNP

Clarifying M SB . definition

e Original paper:

22.1

Formalizing the HNP
Clarifying M SB . definition

e Original paper:
= First, MSBy () is the unique t € Z such that
(t—1) -z <z <t-;.

22.2

Formalizing the HNP
Clarifying M SB . definition

e Original paper:
= First, MSBy () is the unique t € Z such that
(t—1) -z <z <t-;.

o Like like a right-shift (by n — k bits).

22.3

Formalizing the HNP
Clarifying M SB . definition

e Original paper:
= First, MSBy () is the unique t € Z such that
(t—1) -z <z <t-;.

o Like like a right-shift (by n — k bits).
= Actually, assume MSBy, () satisfies
lz — MSB(z)| < 5.

22.4

Formalizing the HNP
Clarifying M SB . definition

e Original paper:
= First, MSBy () is the unique t € Z such that
(t—1) -z <z <t-;.

o Like like a right-shift (by n — k bits).
= Actually, assume MSBy, () satisfies

lz — MSB(z)| < 5.

o Like like aright-then-left-shift.

22.5

Formalizing the HNP
Clarifying M SB . definition

e Original paper:
= First, MSBy () is the unique t € Z such that
(t—1) -z <z <t-;.

o Like like a right-shift (by n — k bits).
= Actually, assume MSBy, () satisfies

lz — MSB(z)| < 5.

o Like like aright-then-left-shift.
= Infact, only need ;.

22.6

Formalizing the HNP

Clarifying M SB . definition

e Original paper:
= First, MSB,(z) isthe uniquet € Z such that
t—1) - F <z <t-;.
= Actually, assume MSB, () satisfies
z — MSB(z)| < 5.

= Infact, only need ;.
e Our approach:
= Work in Isabelle locale fixing MSB;. operator and
assuming |z — MSB;,(z)| < .

Formalizing the HNP

Clarifying M SB . definition

e Our approach:
= Work in Isabelle locale fixing MSB;. operator and

assuming |z — MSB;,(z)| < .

Formalizing the HNP

Clarifying M SB . definition

e Our approach:
= Work in Isabelle locale fixing MSB;. operator and

assuming |z — MSB;,(z)| < .
= |nstantiate locale with original MSB;, definition,

24.1

Formalizing the HNP

Clarifying M SB . definition

e Our approach:
= Work in Isabelle locale fixing MSB;. operator and
assuming |z — MSB;,(z)| < .
= |nstantiate locale with original MSB;, definition,
= as well as simple "right-then-left-shift" definition.

24.2

Formalizing the HNP

Probability helper lemmas

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib;: PMF monad with "do" notation.

25.1

Formalizing the HNP

Probability helper lemmas

e Inlsabelle/HOL lib: PMF monad with "do" notation.
e We formulate cryptographic "game" as probabilistic

algorithm.

25.2

Formalizing the HNP

Probability helper lemmas

e InlIsabelle/HOL lib: PMF monad with "do" notation.
e We formulate cryptographic "game" as probabilistic

algorithm.

definition game :: "((nat x nat) list = nat) = bool pmf" where
"game A’ = do {
ts « replicate_pmf d (pmf_of_set {1..<p});
return_pmf (o = A’ (map (At. (t, O t)) ts))
}Il

25.3

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib;: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib;: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

e We prove lemmas to reason about these expressions.

26.1

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

e We prove lemmas to reason about these expressions.
= We lift existing measure-theoretic lemmas to this level of
abstraction.

26.2

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

e We prove lemmas to reason about these expressions.
= We lift existing measure-theoretic lemmas to this level of
abstraction.
e Helper lemmas aid expressivity

26.3

Formalizing the HNP

Probability helper lemmas

e |nlsabelle/HOL lib;: PMF monad with "do" notation.

e We often use pattern:
do {x < p; return_pmf (P x)}

e We prove lemmas to reason about these expressions.
= We lift existing measure-theoretic lemmas to this level of
abstraction.
e Helper lemmas aid expressivity and improve Sledgehammer
performance.

26.4

Formalizing the HNP

Hiding ¢ in locale

Formalizing the HNP

Hiding ¢ in locale

e «x fixedin locale.

27.1

Formalizing the HNP

Hiding ¢ in locale

e o fixedinlocale.
e Adversary defined as function in locale.

27.2

Formalizing the HNP

Hiding ¢ in locale

e «x fixedin locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

27.3

Formalizing the HNP

Hiding ¢ in locale

e «x fixed in locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

e Can manually inspect that adversary does not use .

27.4

Formalizing the HNP
Hiding ¢ in locale

e «x fixed in locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

e Can manually inspect that adversary does not use .

= Not satisfying; not in spirit of formal verification.

27.5

Formalizing the HNP

Hiding ¢ in locale

e «x fixed in locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

e Can manually inspect that adversary does not use .
= Not satisfying; not in spirit of formal verification.

e |nstead, we use locale hierarchy; define adversary before «
Is fixed.

27.6

Formalizing the HNP

Hiding ¢ in locale

e «x fixed in locale.

e Adversary defined as function in locale.
e How to ensure «x is "hidden" from adversary?

e Can manually inspect that adversary does not use .
= Not satisfying; not in spirit of formal verification.
e |nstead, we use locale hierarchy; define adversary before «

iIs fixed.
= Simple, but streamlines manual verification.

27.7

Future work

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

28.1

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.
e Other hidden number problems:

28.2

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

e Other hidden number problems:
= Elliptic curve HNP

s Extended HNP
= Modular inverse HNP
= ..many more!

28.3

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

e Other hidden number problems:
= Elliptic curve HNP

= Extended HNP
= Modular inverse HNP
= ..many more!
e Formalize time complexity of adversary

28.4

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

e Other hidden number problems:
= Elliptic curve HNP

= Extended HNP
= Modular inverse HNP
= ..many more!
e Formalize time complexity of adversary
= Need to formalize complexity of Babai.

28.5

Future work

e Explore further library and automation support for game-
based and probabilistic reasoning.

e Other hidden number problems:
= Elliptic curve HNP

= Extended HNP
= Modular inverse HNP
= ..many more!
e Formalize time complexity of adversary
= Need to formalize complexity of Babai.
= Luckily, LLL complexity is formalized.

28.6

