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High-level abstractions: 
• Types 
• Structured control-flow 
• Verification, static analysis, etc.

Context

Correct Compiler

Unverified, untrusted, 
possibly full of bugs or 
even attacker-controlled
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Secure Compiler

High-level context

Intuition: existence of a 
high-level context “similar” 
to the low-level one
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Trace-based back-translation: 

given m, build a context                
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Implementing and verifying this back-translation

Decently easy:

• Manipulates one finite object (a trace)

• Simple logic: just emit the events one by one

• Proof by induction on the trace

• Less than 600 LoC (including comments)

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic 
Compromise)
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C 

If Pi↓ produces finite trace mi                           (for 0 ≤ i < n)

then there exists PiC such that produces mi

Yes!
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Compiler correctness and 
recomposition work 
pointwise, so we don’t need 
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However we need to adapt 
back-translation to generate 
one context and several 
programs
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Pi’
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CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

CS P’0 P’1 … P’n

New back-translation that 
must work for a finite 
collection of (finite) traces

= (m0, m1, …, mn)↑
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Traces m0, m1, …, mn 

can be represented by a 
tree T that branches on 

events from P
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Call C P 1

Call P C 2

Ret  C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

To back-translate: 

• Generalize the counter to record position 
in the tree 

• Context needs to look at argument and 
return value before updating its local 
counter 

• Also need to look at current local counter
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Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret  C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

• Context can only do one event

• No duplicate events

• Unicity of ctr

• To handle returns: well-bracketedness
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Back-translation in several steps

Tree T

Tree T’ with ctr

CS 

Tree T’ with stack record

Flattened representation (list of nodes) 

Passes as small as 
possible to simplify 

implementation and 
reasoning

P’0 P’1 … P’n
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Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting 
one event

• Languages add checks that correspond to (future) source-
language conditions

• Only one new check per step (simplifies reasoning)

• For instance, returns can only occur when the stack isn’t 
empty and the top stack-frame records the caller/callee s, stack ->e s’, stack’

stack = (C,P) :: stack’
e = Ret P C z

…

s ->e s’ with trees part of s and s’



Proving back-translation (3)

• Each pass: CompCert-style forward simulation 

• Small passes means individual proofs are not so complicated 

• What is difficult: “flattening” 

• Pass that goes from trees to list of nodes (closer to final code) 

• Unicity and determinacy conditions 

• In the actual implementation: multiples compartments, not just two

17
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much strong criterion

• Simplified implementation and 
proof by slicing the back-
translation into multiple steps

• Also helps with parallelizing 
the proof process
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