
Jérémy Thibault, Joseph Lenormand, Catalin Hritcu 1

Nanopass Back-Translation of Call-
Return Trees for Mechanized Secure
Compilation Proofs

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Source code

2

Source code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

2

Source code

Low-level code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

Compiler

2

Source code

Low-level code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

No high-level abstraction anymore

Compiler

2

Source code

Low-level code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

No high-level abstraction anymore

Correct Compiler

2

Source code

Low-level code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

Correct Compiler

High-level abstractions preserved?

2

Source code

Low-level code

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

Correct Compiler

2

Source code

Low-level code Low-level libraries

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

Context

Correct Compiler

2

Source code

Low-level code Low-level libraries

High-level abstractions:
• Types
• Structured control-flow
• Verification, static analysis, etc.

Context

Correct Compiler

Unverified, untrusted,
possibly full of bugs or
even attacker-controlled

2

not enough

Secure Compiler

Source code

Low-level code Low-level libraries

High-level
abstractions
preserved

Context
3

Source code

Low-level code Low-level libraries

Context
3

Secure Compiler

Source code

Low-level code Low-level libraries

Context
3

Secure Compiler

High-level context

Intuition: existence of a
high-level context “similar”
to the low-level one

Example: Robust Safety Preservation (RSP)

4

C

Example: Robust Safety Preservation (RSP)

If P↓

4

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m

4

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m (witness of a violation of a certain safety property)

4

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m (witness of a violation of a certain safety property)

then there exists C

4

C

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m (witness of a violation of a certain safety property)

then there exists PC such that produces m

4

C

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m (witness of a violation of a certain safety property)

then there exists PC such that produces m

⇒ preservation of safety properties

4

C

C

Example: Robust Safety Preservation (RSP)

If P↓ produces finite trace m (witness of a violation of a certain safety property)

then there exists PC such that produces m

⇒ preservation of safety properties

4

C

Trace-based back-translation:

given m, build a context

A Proof Technique for RSP

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise) 5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓ ⇝ m

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓

CS P’∃

Back-translation

⇝ m

⇝ m

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓

CS P’

CS↓ P’↓

∃

Back-translation

Compiler  
Correctness

⇝ m

⇝ m

⇝ m

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓

CS P’

CS↓ P’↓ CS↓ P↓

∃

Recomposition

Back-translation

Compiler  
Correctness

⇝ m

⇝ m

⇝ m

⇝ m

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓

CS CS P’

CS↓ P’↓

P

CS↓ P↓

∃

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ m

⇝ m

⇝ m

⇝ m

⇝ m

5

Prior work: proof technique for RSP designed to be mechanized

A Proof Technique for RSP

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Source

Target
CT P↓

CS CS P’

CS↓ P’↓

P

CS↓ P↓

∃

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ m

⇝ m

⇝ m

⇝ m

⇝ m

5

A Simple Back-Translation for RSP

Call C P 1;

Call P C 2;

Ret C P 3;

Ret P C 4;

6

A Simple Back-Translation for RSP

Call C P 1;

C P

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0 ctr |-> 0

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0 ctr |-> 0

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0 ctr |-> 0

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

Call C P 1

ctr |-> 0ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0ctr |-> 1

P():

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 0ctr |-> 1

P():
if (ctr = 0) {

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 1

P():
if (ctr = 0) {
 ctr++;

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 1

P():
if (ctr = 0) {
 ctr++;
 C(2);

Call P C 2

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 1

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 1

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {

Call P C 2;

Ret C P 3;

Ret P C 4;

ctr |-> 1

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 2 ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 2

Ret C P 3

ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);

ctr |-> 2 ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);
 P();

ctr |-> 2 ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);
 P();
} else if (ctr = 1) {

ctr |-> 2 ctr |-> 1

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);
 P();
} else if (ctr = 1) {
 ctr++;

ctr |-> 2 ctr |-> 2

6

A Simple Back-Translation for RSP

Call C P 1;

C P

C():
if (ctr = 0) {
 ctr++;
 P(1);
 C();
} else if (ctr = 1) {
 ctr++;
 return 3
}

Call P C 2;

Ret C P 3;

Ret P C 4;

P():
if (ctr = 0) {
 ctr++;
 C(2);
 P();
} else if (ctr = 1) {
 ctr++;
 return 4
}

ctr |-> 2 ctr |-> 2

Ret P C 4

6

Implementing and verifying this back-translation

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Implementing and verifying this back-translation

Decently easy:

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Implementing and verifying this back-translation

Decently easy:

• Manipulates one finite object (a trace)

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Implementing and verifying this back-translation

Decently easy:

• Manipulates one finite object (a trace)

• Simple logic: just emit the events one by one

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Implementing and verifying this back-translation

Decently easy:

• Manipulates one finite object (a trace)

• Simple logic: just emit the events one by one

• Proof by induction on the trace

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Implementing and verifying this back-translation

Decently easy:

• Manipulates one finite object (a trace)

• Simple logic: just emit the events one by one

• Proof by induction on the trace

• Less than 600 LoC (including comments)

7(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

Can we get a stronger result?

8

Can we get a stronger result?

• So far: safety properties only

• Some security properties are more than safety: hypersafety (noninterference), relational
hypersafety (observational equivalence)

• Can we adapt the proof technique to obtain a stronger criterion than RSP?

8

Can we get a stronger result?

• So far: safety properties only

• Some security properties are more than safety: hypersafety (noninterference), relational
hypersafety (observational equivalence)

• Can we adapt the proof technique to obtain a stronger criterion than RSP?

Yes!

8

Can we get a stronger result?

• So far: safety properties only

• Some security properties are more than safety: hypersafety (noninterference), relational
hypersafety (observational equivalence)

• Can we adapt the proof technique to obtain a stronger criterion than RSP?

C

C

If Pi↓ produces finite trace mi (for 0 ≤ i < n)

then there exists PiC such that produces mi

Yes!

8

Adapting the proof for multiple programs

Source

Target
CT Pi↓

CS CS P’

CS↓ Pi’↓

Pi

CS↓ Pi↓

∃

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ mi

⇝ mi

⇝ mi

⇝ mi

⇝ mi

9

Adapting the proof for multiple programs

Source

Target
CT Pi↓

CS CS P’

CS↓ Pi’↓

Pi

CS↓ Pi↓

∃

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ mi

⇝ mi

⇝ mi

⇝ mi

⇝ mi

Compiler correctness and
recomposition work
pointwise, so we don’t need
to modify them

9

Adapting the proof for multiple programs

Source

Target
CT Pi↓

CS CS P’

CS↓ Pi’↓

Pi

CS↓ Pi↓

∃

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ mi

⇝ mi

⇝ mi

⇝ mi

⇝ mi

Compiler correctness and
recomposition work
pointwise, so we don’t need
to modify them

However we need to adapt
back-translation to generate
one context and several
programs

9

Adapting the proof for multiple programs

Source

Target
CT Pi↓

CS CS

CS↓ Pi’↓

Pi

CS↓ Pi↓

Recomposition

Back-translation

Compiler  
Correctness

Compiler  
Correctness

⇝ mi

⇝ mi

⇝ mi

⇝ mi

⇝ mi

Compiler correctness and
recomposition work
pointwise, so we don’t need
to modify them

However we need to adapt
back-translation to generate
one context and several
programs

∃ C P0’ … Pn’

Pi’

9

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

10

Back-translation for several traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

CS P’0 P’1 … P’n

New back-translation that
must work for a finite
collection of (finite) traces

10

Back-translation for several traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

CS P’0 P’1 … P’n

New back-translation that
must work for a finite
collection of (finite) traces

= (m0, m1, …, mn)↑

10

Back-translation for several traces

Structure of the traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

11

Structure of the traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Traces are produced by
the same context but

different programs

11

Structure of the traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Traces are produced by
the same context but

different programs

Determinacy property:
traces can only differ

because the programs
did something different

11

Structure of the traces

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Traces are produced by
the same context but

different programs

Determinacy property:
traces can only differ

because the programs
did something different

11

Traces m0, m1, …, mn

can be represented by a
tree T that branches on

events from P

Back-translating trees is harder

Call C P 1

Call P C 2

Ret C P 3

Call P C 20
Call P C 200

12

Back-translating trees is harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

12

Back-translating trees is harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

To back-translate:

• Generalize the counter to record position
in the tree

• Context needs to look at argument and
return value before updating its local
counter

• Also need to look at current local counter

12

Back-translating trees is harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

13

if (ctr = K && call_arg = V) {
 ctr := NEXT_CTR(K, V);
 DO_EVENT(K, V);
 C();
}
…

Back-translating trees is harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

13

if (ctr = K && call_arg = V) {
 ctr := NEXT_CTR(K, V);
 DO_EVENT(K, V);
 C();
}
…

Back-translation function is not trivial!

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

14

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

14

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

• Context can only do one event

14

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

• Context can only do one event

• No duplicate events

14

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

• Context can only do one event

• No duplicate events

• Unicity of ctr

14

Proving the back-translation is also harder

Call C P 1

Call P C 2

Ret C P 3

ctr |-> 0

ctr |-> 1

ctr |-> 2 ctr |-> 4 ctr |-> 5

ctr |-> 3

Call P C 20
Call P C 200

Non-trivial invariants!

• Context can only do one event

• No duplicate events

• Unicity of ctr

• To handle returns: well-bracketedness

14

Back-translation in several steps

Back-translation in several steps
CS P’0 P’1 … P’n

Back-translation in several steps

Tree T

CS P’0 P’1 … P’n

Back-translation in several steps

Tree T

Tree T’ with ctr

CS P’0 P’1 … P’n

Back-translation in several steps

Tree T

Tree T’ with ctr

CS

Tree T’ with stack record

P’0 P’1 … P’n

Back-translation in several steps

Tree T

Tree T’ with ctr

CS

Tree T’ with stack record

Flattened representation (list of nodes)

P’0 P’1 … P’n

Back-translation in several steps

Tree T

Tree T’ with ctr

CS

Tree T’ with stack record

Flattened representation (list of nodes)

P’0 P’1 … P’n

Back-translation in several steps

Tree T

Tree T’ with ctr

CS

Tree T’ with stack record

Flattened representation (list of nodes)

Passes as small as
possible to simplify

implementation and
reasoning

P’0 P’1 … P’n

Proving back-translation (2)

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

s ->e s’ with trees part of s and s’

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

• Languages add checks that correspond to (future) source-
language conditions

s ->e s’ with trees part of s and s’

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

• Languages add checks that correspond to (future) source-
language conditions

• Only one new check per step (simplifies reasoning)

s ->e s’ with trees part of s and s’

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

• Languages add checks that correspond to (future) source-
language conditions

• Only one new check per step (simplifies reasoning)

• For instance, returns can only occur when the stack isn’t
empty and the top stack-frame records the caller/callee

s ->e s’ with trees part of s and s’

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

• Languages add checks that correspond to (future) source-
language conditions

• Only one new check per step (simplifies reasoning)

• For instance, returns can only occur when the stack isn’t
empty and the top stack-frame records the caller/callee s, stack ->e s’, stack’

s ->e s’ with trees part of s and s’

Proving back-translation (2)

• All intermediate languages equipped with small-step semantics

• Execution guided by trace: steps reduce the tree by emitting
one event

• Languages add checks that correspond to (future) source-
language conditions

• Only one new check per step (simplifies reasoning)

• For instance, returns can only occur when the stack isn’t
empty and the top stack-frame records the caller/callee s, stack ->e s’, stack’

stack = (C,P) :: stack’
e = Ret P C z

…

s ->e s’ with trees part of s and s’

Proving back-translation (3)

• Each pass: CompCert-style forward simulation

• Small passes means individual proofs are not so complicated

• What is difficult: “flattening”

• Pass that goes from trees to list of nodes (closer to final code)

• Unicity and determinacy conditions

• In the actual implementation: multiples compartments, not just two

17

Conclusion

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Tree T

CS

…

Intermediate
representations to

simplify implementation
and proof

P’0 P’1 … P’n

18

Conclusion

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Tree T

CS

…

Intermediate
representations to

simplify implementation
and proof

P’0 P’1 … P’n• Adapted a proof to obtain a
much strong criterion

18

Conclusion

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Tree T

CS

…

Intermediate
representations to

simplify implementation
and proof

P’0 P’1 … P’n• Adapted a proof to obtain a
much strong criterion

• Simplified implementation and
proof by slicing the back-
translation into multiple steps

18

Conclusion

CT P0↓ ⇝ m0 CT P1↓ ⇝ m1 CT Pn↓ ⇝ mn…

Tree T

CS

…

Intermediate
representations to

simplify implementation
and proof

P’0 P’1 … P’n• Adapted a proof to obtain a
much strong criterion

• Simplified implementation and
proof by slicing the back-
translation into multiple steps

• Also helps with parallelizing
the proof process

18

