—

Nanopass Back-Translation of Call-
Return Trees for Mechanized Secure
Compilation Proofs

MAX PLANCK INSTITUTE \(¥
FOR SECURITY AND PRIVACY

Jérémy Thibault, Joseph Lenormand, Catalin Hritcu



Source code



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Compiler

Low-level code



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Compiler

Low-level code No high-level abstraction anymore



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code No high-level abstraction anymore



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code High-level abstractions preserved?



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code Low-level libraries



High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler not enough

Unverified, untrusted,
possibly full of bugs or
even attacker-controlled

Low-level code Low-level libraries



Source code

Compiler

High-level
abstractions

Low-level code Low-level libraries



Source code

Secure Compiler

Low-level code Low-level libraries



Source code High-level context

Intuition: of @
Secure Compiler high-level context
to the low-level one
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= preservation of safety properties

D such that ' oroduces m

Trace-based back-translation:

given m, build a context D
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Implementing and veritying

Decently easy:
- Manipulates one finite object (a trace)
- Simple logic: just emit the events one by one
- Proof by induction on the trace

. Less than 600 LoC (including comments)

10N

ransla

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)
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nhypersatety (observational equivalence)

- Can we adapt the proof technigue to obtain a stronger criterion than RSP?

Ves| hi . oroduces finite trace mj (forO <i<n)
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Structure of the traces

the sam

Traces are produced by
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can be represented by a

tree T that branches on
events from P

e context but
Nt programs

.M) h .M) h

Determinacy property:

traces can only differ
because the programs
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ctr — 0

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr — 4

Ret CP3l

ctr —

3

ctr — 5

k-translating trees is haraer

if (ctr = K &8 call_arg = V) {
ctr := NEXT CTR(K, V):
DO EVENT(K, V);
C();

}

Back-translation function is not triviall
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Proving the back-translation is also harder

ctr — 0 Non-trivial invariants!
Call C P 11 - Context can only do one event
ctr — 1 - No duplicate events

Call P C 2 Call P C 200 o
call |p c 20 - Unicity of ctr

ctr — 2 ctr — 4 ctr — 5

. To handle returns: well-bracketedness
Ret CP 31

ctr — 3

14



Bac

k-trans

ation in severa

steps



Bac

k-trans

ation in severa

steps



Bac

k-trans

ation in severa

Tree T

steps



Bac

k-trans

ation in severa

Tree T' with ctr

T

Tree T

steps



Bac

k-trans

ation in severa

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

steps



Bac

k-trans

ation in several steps

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T



Bac

k-trans

ation in several steps

pef) o
T

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T



Bac

k-trans

ation in several steps

pef) o
T

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

Passes as small as

nossible to sim
implementatior
reasoning

olity

ana



Proving bac

-trans.

ation (2)



Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics



Proving bac

-trans.

ation (2)

. All intermediate languages equipped with small-step semantics

- Execution guided by trace: steps reduce the tree by emitting s —,

one event

S

?

with trees partof s and s’



Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions




Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)



Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't
empty and the top stack-frame records the caller/callee




“TovVIiNng back-translation (2)

All intermediate languages equipped with small-step semantics

Execution guided by trace: steps reduce the tree by emitting
one event

_anguages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't
empty and the top stack-frame records the caller/callee

S —e¢

S,

S

?

with trees partof s and s’

!

stack . s’, stack’



Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions stack = (C,P) :: stack’

e = Ret P C z

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't

empty and the top stack-frame records the caller/callee s, stack —¢ s’, stack’

?



“Toving back-translation (3)

- Each pass: CompCert-style forward simulation

- Small passes means individual proofs are not so complicated
- What is difficult: “flattening”

- Pass that goes from trees to list of nodes (closer to final code)
- Unicity and determinacy conditions

. In the actual implementation: multiples compartments, not just two
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Conclusion

Adapted a proof to obtain
much strong criterion

Simplitied implementation ana
oroof by slicing the back-
translation into multiple steps

Intermediate
oresentations to
Ty implementation
and proof

Also helps with parallelizing
the proof process



