—

Nanopass Back-Translation of Call-
Return Trees for Mechanized Secure
Compilation Proofs

MAX PLANCK INSTITUTE \(¥
FOR SECURITY AND PRIVACY

Jérémy Thibault, Joseph Lenormand, Catalin Hritcu

Source code

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Compiler

Low-level code

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Compiler

Low-level code No high-level abstraction anymore

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code No high-level abstraction anymore

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code High-level abstractions preserved?

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler

Low-level code Low-level libraries

High-level abstractions:

¢ Types

« Structured control-flow
 Verification, static analysis, etc.

Source code

Correct Compiler not enough

Unverified, untrusted,
possibly full of bugs or
even attacker-controlled

Low-level code Low-level libraries

Source code

Compiler

High-level
abstractions

Low-level code Low-level libraries

Source code

Secure Compiler

Low-level code Low-level libraries

Source code High-level context

Intuition: of @
Secure Compiler high-level context
to the low-level one

Low-level code Low-level libraries

Ropust Saf

Example:

oty

Preservation (.

<ol

Ropust Saf

Example: .

oty

Preservation (.

<ol

Ropust Saf

Example: .

I . oroduces finite trace m

oty

Preservation (.

<ol

Ropust Saf

Example: .

oty

Preservation (.

RO

P)

I . oroduces finite trace m (witness of a violation of a certain safety property)

Ropust Saf

Example: .

oty

Preservation (.

RO

P)

I . oroduces finite trace m (witness of a violation of a certain safety property)

then there exists

U

Example:

Robust Saf

oty

Preservation (

RO

P)

. oroduces finite trace m (witness of a violation of a certain safety property)

then there exists

D such that ' oroduces m

Example:

Robust Satety

Preservation (

RO

P)

. oroduces finite trace m (witness of a violation of a certain safety property)

then there exists

= preservation of safety properties

D such that ' oroduces m

Example:

Robust Satety

Preservation (

RO

P)

. oroduces finite trace m (witness of a violation of a certain safety property)

then there exists

= preservation of safety properties

D such that ' oroduces m

Trace-based back-translation:

given m, build a context D

Proof

or RSP

[echnicue:

A Proof Technicque for RSP

Prior work: proof technigue for RSP designed to be mechanized

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technicque for RSP

Prior work: proof technigue for RSP designed to be mechanized

Source

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technigue for RSP

Prior work: proof technigue for RSP designed to be mechanized

Source

Back-translation

Target

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technigue for RSP

Prior work: proof technigue for RSP designed to be mechanized

Source

Compiler
(Correctness

Back-translation

Target

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technigue for RSP

Prior work: proof technigue for RSP designed to be mechanized

Source

Compiler
(Correctness

Back-translation

Target

Recomposition

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technicque for RSP

Prior work: proof technigue for RSP designed to be mechanized

= o
Source
Compiler Compiler
Correctness Correctness
Back-translation
Target
~ M

Recomposition

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A Proof Technicque for RSP

Prior work: proof technigue for RSP designed to be mechanized

= o
Source
Compiler Compiler
Correctness Correctness
Back-translation
Target
~ M

Recomposition

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic
Compromise)

A SImpl

Call C P 1;
Call P C 2;
Ret C P 3;
Ret P C 4;

Baci

[Tans.

ation t

Ol

<ol

A Simple Back-Translation for RSP

Call C P 1;
Call P C 2;
Ret C P 3;
Ret P C 4;

ctr — 0 ctr — 0

A Simple Back-Translation for RSP

Call C P 1;
Call P C 2;
Ret C P 3;
Ret P C 4;

ctr — 0 ctr — 0

—

A Simple Back-Translation for RSP

C():
if (ctr = 0) {
Call C P 1;
Call P C 2;
Ret C P 3;
Ret P C 4;

ctr — 0 ctr — 0

A Simple Back-Translation for RSP

C():
if (ctr = 0) {
Call P C 2;
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 0

A Simple Back-Translation for RSP

C():
if (ctr = 0) {
Call P C 2; P(1);

Ret C P 3;
Ret P C 4;

A Simple Back-Translation for RSP

C():
if (ctr = 0) {
Call P C 2; P(1);
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 0

A Simple Back-Translation for RSP

C(): P():
if (ctr = 0) {
Call P C 2; P(1);
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 0

A Simple Back-Translation for RSP

C(): P():
if (ctr = 0) { if (ctr = 0) {
Call P C 2; P(1);
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 0

A Simple Back-Translation for RSP

C(): P():
if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1);
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 1

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
call P C 2; P(1); C(2);

Ret C P 3;
Ret P C 4;

A Simple Back-Translation for RSP

C(): P():
if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 1

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

C();
Ret C P 3;
Ret P C 4;
ctr — 1 ctr — 1

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

| C();
Ret C P 33 } else if (ctr = 1) {
Ret P C 4;
ctr — 1 ctr — 1

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; Ctr++;
Call P C 2; P(1); C(2);

| C();
Ret C P33 } else if (ctr = 1) {
Ret P C 4; ctr++;
ctr — 2 ctr — 1

C P

—

A Simple Back-Translation for RSP

C(): P():
if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; Ctr++;
Call P C 2; P(1); C(2);
C();
Ret C P 33 } else if (ctr = 1) {
Ret P C 4; ctr++;
return 3

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

| C();
Ret C P33 } else if (ctr = 1) {
Ret P C 4; ctr++;
return 3
+
ctr — 2 ctr — 1

C P

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

| C(); P();
Ret C P33 } else if (ctr = 1) {
Ret P C 4; ctr++;
return 3
+
ctr — 2 ctr — 1

C P

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

| C(); P();
Ret C P 33 } else if (ctr = 1) { } else if (ctr = 1) {
Ret P C 4; Ctr++;
return 3
+
ctr — 2 ctr — 1

C P

—

A Simple Back-Translation for RSP

C(): P():

if (ctr = 0) { if (ctr = 0) {
Call C P 1; ctr++; CLr++;
Call P C 2; P(1); C(2);

| C(); P();
Ret C P 33 } else if (ctr = 1) { } else if (ctr = 1) {
Ret P C 4; ctr++; Ctr++;
return 3
+
ctr — 2 ctr — 2

C P

A SImpl

Call C P 1;

Call P C 2;

Ret
Ret

C P 3;
P C 4,

Bac

k-

C():
if (ctr = 0) A
Ctr++;

P(1);

C();

else if (ctr
Ctr++;
return 3

—

[Tans.

or RSP

ation:

= 1) {

P():

if (ctr = 0) {
Ctr++;
C(2);
P();

} else if (ctr
Ctr++;
return 4

1) {

Implemen

1ng and vertl

Nis back-

VINGg

ranslat

10N

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

7

Implemen

Decently easy:

1ng and vertl

Nis back-

VINGg

ranslat

10N

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

7

Implementing and veri

Decently easy:

- Manipulates one finite object (a trace)

Nis back-

VINGg

10N

ransla

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

Nis back-

Implementing and veritying

Decently easy:
- Manipulates one finite object (a trace)

- Simple logic: just emit the events one by one

10N

ransla

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

Implementing and veri

Decently easy:
- Manipulates one finite object (a trace)
- Simple logic: just emit the events one by

- Proof by induction on the trace

Nis back-

VINGg

one

10N

ransla

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

Nis back-

Implementing and veritying

Decently easy:
- Manipulates one finite object (a trace)
- Simple logic: just emit the events one by one
- Proof by induction on the trace

. Less than 600 LoC (including comments)

10N

ransla

(Abate et al. (2018), When Good Components Go Bad: Formally Secure Compilation Despite Dynamic

Compromise)

Can we get a stronger resul

Can we get a stronger result?

- So far: safety properties only

« Some security properties are more than safety: hypersafety (noninterference), relational
nypersafety (observational equivalence)

- Can we adapt the proof technigue to obtain a stronger criterion than RSP?

Can we get a stronger result?

- So far: safety properties only

« Some security properties are more than safety: hypersafety (noninterference), relational
nypersafety (observational equivalence)

- Can we adapt the proof technigue to obtain a stronger criterion than RSP?

Yes!

Can we get a stronger result?

- So far: safety properties only

- Some security properties are more than safety: hypersafety (noninterference), relational
nhypersatety (observational equivalence)

- Can we adapt the proof technigue to obtain a stronger criterion than RSP?

Ves| hi . oroduces finite trace mj (forO <i<n)
esS!
then there exists D such that n oroduces m;

Adapting the proot tor multiple programs

= o
Source
Compiler Compiler
Correctness Correctness
Back-translation
Target

Recomposition

I)

Adapting the proot tor multiple programs

= o
Source
Compiler Compiler
Correctness Correctness
Back-translation
Target
~ Mj

Compiler correctness and
Recomposition ’eCO”ﬂpOSitiOﬂ Wwork
nointwise, so we don’t need
to modity them

I)

Adapting the proo:

Source

Compiler
(Correctness

Back-translation

Target

However we need to adapt
oack-translation to generate Recomposition
one context and several

Orograms

LO

[or multiple programs

Compiler
Correctness

Compiler correctness and
‘ecomposition work
ele]

ntwise so we don’t need

modify them

I)

Adapting the proo:

Hn e e

Compiler
(Correctness

Back-translation

Source

Target

However we need to adapt
oack-translation to generate Recomposition
one context and several

Orograms

LO

[or multiple programs

Compiler
Correctness

Compiler correctness and
‘ecomposition work
ele]

ntwise so we don’t need

modify them

Bac

k-trans

O severa

ation:

races

Bac

k-transl!

\New back-translation that
Mmust wor
collectior

[O1 S@V@l"a

< for afinite
of (finite) traces

[races

Bac

k-transl!

\New back-translation that
Mmust wor
collectior

[O1 S@V@l"a

< for afinite
of (finite) traces

[races

Structure of the traces

Structure of the traces

Traces are produced by
the same context but
different programs

.M) h .M) h

11

Structure of the traces

Determinacy property:

traces can only differ
because the programs
did something different

.M))

Traces are produced by
the same context but
different programs

.M) h .M) h

Structure of the traces

the sam

Traces are produced by

differe

lracesmg, m1, .., My

can be represented by a

tree T that branches on
events from P

e context but
Nt programs

.M) h .M) h

Determinacy property:

traces can only differ
because the programs
did something different

.M))

11

Bac

k-trans

CallCPll

ating trees is harder

Call P C 2 Call P C 200
Call |P C 20

Ret CP3l

Back-translating trees is harder

ctr — 0

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr — 4 ctr — 5

Ret CP31

ctr — 3

Back-translating trees is harder

ctr — 0 To back-translate:
Catl C P 11 - Generalize the counter to record position
N the tree
ctr — 1
11 p oo b e 00 - Context needs to look at qrgboment ano
Call P C 20 return value before updating its loca
ctr — 2 ctr — 4 ctr — 5 counter
Ret C P 3 . Also need to look at current local counter

ctr — 3

Bac

ctr — 0

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2

Ret CP3l

ctr —

ctr — 4

3

ctr — 5

k-translating trees is haraer

if (ctr = K &8 call_arsg

}

ctr := NEXT CTR(K, V);:
DO EVENT(K, V):
C();

V) 1

13

Bac

ctr — 0

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr — 4

Ret CP3l

ctr —

3

ctr — 5

k-translating trees is haraer

if (ctr = K &8 call_arg = V) {
ctr := NEXT CTR(K, V):
DO EVENT(K, V);
C();

}

Back-translation function is not triviall

13

Proving the back-translation is also harder

ctr — 0

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr — 4 ctr — 5

Ret CP31

ctr — 3

Proving the back-translation is also harder

ctr — 0 Non-trivial invariants!

CallCPll

ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr > 4 ctr — 5

Ret CP3l

ctr — 3

Proving the back-translation is also harder

_ _ctr = 0__ Non-trivial invariants!
I i
: att ©F 11 : - Context can only do one event
‘ ---------- .
ctr — 1

Call P C 2 Call P C 200
Call |P C 20

ctr — 2 ctr > 4 ctr — 5

Ret CP3l

ctr — 3

Proving the back-translation is also harder

ctr — 0 Non-trivial invariants!
catb ©f 11 . Context can only do one event
pm == o G e . » No duplicate events
. callpc/l\m‘zw :
) call |p c 20 I
[] [

Ret CP3l

ctr — 3

Proving the back-translation is also harder

ictr > 0, Non-trivial invariants!
Y ' m = m O m =
Call C P 11 - Context can only do one event
Al I =m'Em = =)
iIctr — 1, - No duplicate events

Y m m m
Call P C 2 Call P C 200
Call [P C 20 « Unicity of ctr

ictr > 2, Ictr > 4y Mctr > 5,

14

Proving the back-translation is also harder

ctr — 0 Non-trivial invariants!
Call C P 11 - Context can only do one event
ctr — 1 - No duplicate events

Call P C 2 Call P C 200 o
call |p c 20 - Unicity of ctr

ctr — 2 ctr — 4 ctr — 5

. To handle returns: well-bracketedness
Ret CP 31

ctr — 3

14

Bac

k-trans

ation in severa

steps

Bac

k-trans

ation in severa

steps

Bac

k-trans

ation in severa

Tree T

steps

Bac

k-trans

ation in severa

Tree T' with ctr

T

Tree T

steps

Bac

k-trans

ation in severa

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

steps

Bac

k-trans

ation in several steps

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

Bac

k-trans

ation in several steps

pef) o
T

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

Bac

k-trans

ation in several steps

pef) o
T

Flattened representation (list of nodes)

|

Tree T' with stack record

|

Tree T' with ctr

T

Tree T

Passes as small as

nossible to sim
implementatior
reasoning

olity

ana

Proving bac

-trans.

ation (2)

Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

Proving bac

-trans.

ation (2)

. All intermediate languages equipped with small-step semantics

- Execution guided by trace: steps reduce the tree by emitting s —,

one event

S

?

with trees partof s and s’

Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions

Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)

Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't
empty and the top stack-frame records the caller/callee

“TovVIiNng back-translation (2)

All intermediate languages equipped with small-step semantics

Execution guided by trace: steps reduce the tree by emitting
one event

_anguages add checks that correspond to (future) source-
anguage conditions

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't
empty and the top stack-frame records the caller/callee

S —e¢

S,

S

?

with trees partof s and s’

!

stack . s’, stack’

Proving pack-translation (2)

. All intermediate languages equipped with small-step semantics

» Execution guided by trace: steps reduce the tree by emitting s —, s’ withtrees partof s and s’
one event

- Languages add checks that correspond to (future) source-
anguage conditions stack = (C,P) :: stack’

e = Ret P C z

- Only one new check per step (simplifies reasoning)

- For instance, returns can only occur when the stack isn't

empty and the top stack-frame records the caller/callee s, stack —¢ s’, stack’

?

“Toving back-translation (3)

- Each pass: CompCert-style forward simulation

- Small passes means individual proofs are not so complicated
- What is difficult: “flattening”

- Pass that goes from trees to list of nodes (closer to final code)
- Unicity and determinacy conditions

. In the actual implementation: multiples compartments, not just two

conc.

usion

|
O

Ntermediate

resentations to

Ty implementation

and proof

18

Conclusion

Adapted a proo

" to obtain a

much strong cri

eron

|
O

Ntermediate

resentations to

Ty implementation

and proof

18

conc.

Adapted a proo
much strong cri

O

S

mplified

‘oot by sli
translation into multiple steps

usion

" to obtain a

imple

eron

mentation and

CciNg

‘he back-

|
O

Ntermediate

resentations to

Ty implementation

and proof

18

Conclusion

Adapted a proof to obtain
much strong criterion

Simplitied implementation ana
oroof by slicing the back-
translation into multiple steps

Intermediate
oresentations to
Ty implementation
and proof

Also helps with parallelizing
the proof process

