Program Optimisations via
Hylomorphisms for Extraction

of Executable Code

David Castro-Perez, Marco Paviotti, and Michael Vollmer

d.castro-perez@kent.ac.uk University of

7P 2025 Kent

mailto: d.castro-perez@kent.ac.uk

Why Hylomorphisms in Rocq

1. Recursion schemes offer practical advantages:
o Abstracting common patterns of recursion.
» Reasoning about program transformations and optimisations.

2. Every recursion scheme is a (conjugate) hylomorphism.

3. Encoding hylomorphisms in Rocq offers three main benefits:

* Reduce the burden of termination/productivity proofs by structuring recursion
modularly so proofs can be reused.

e Use hylomorphism laws so program calculation and optimisation reduce to plain
rewrite.

e Code extraction.

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured
Recursion Schemes. POPL 2015.

2/21

Hylomorphisms

3/21

Folds as Initial Algebras

foldr :: (a -=> b ->b) ->b ->[a] -> b
foldr g b [1 = b
foldr g b (x : xs) = g x (foldr g b xs)

4/21

Folds as Initial Algebras

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f => f (Fix f) S
(f x ->x) -> Ini J’a
Fix f -> x]

fold a = ¢ Fix f X

where ¢ (In e) = (a . fmap c) e

4/21

Folds as Initial Algebras

Least Fixed-Point
Fix f= f (Fix f)

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f => f (Fix f) s f x
(f x ->x) -> I"l J’a
Fix f -> x)

fold a = ¢ Fix f X

where ¢ (In e) = (a . fmap c) e

4/21

Folds as Initial Algebras

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f => f (Fix f) s f x
(f x ->x) -> I"l J’a
Fix f -> x)

fold a = ¢ Fix f R

where ¢ (In e) = (a_. fmap c) e

f-algebra

4/21

Folds as Initial Algebras

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f => f (Fix f)
(f x =>x) -> Inl
Fix f -> x .

fold a = ¢ Fix f

where ¢ (In_e) = (a . fmap c) e

initial f-algebra

4/21

Folds as Initial Algebras

data LF a b = NilF | ConsF a b
type Ls a = Fix (LF a)
LF a (Fix (LF a))

foldr :: (a => b =>Db) =>b -=>Ls a ->b Ini
foldr f z = fold a .
where a NilF =z Fix (LF a)

a (ConsF a b) =

|
—
Q
o

4/21

Hylomorphisms: Divide-and-conquer Recursion

hylo :: Functor f => f 3
(fb->b) ->
(a -> f a) -> CT la
a->b

hylo a c =a . fmap (hylo a c) . c

5/21

Hylomorphisms: Divide-and-conquer Recursion

hylo :: Functor f => f 3 s f b
(f b => b) ->
(a -> f a) -> CT la
a->b a > b

hylo a ¢ =a . fmap (hylo a c) . ¢

f-coalgebra
“divide”

5/21

Hylomorphisms: Divide-and-conquer Recursion

hylo :: Functor f => f 3 s f b
(f b => b) ->
(a -> f a) -> CT la
a->b a > b

hylo a ¢ = a . fmap (hylo a c) . ¢

f-algebra
“conquer”

5/21

Folds as Hylomorphisms
f-coalgebra

data Fix f = In { inOp :: f (Fix f) }

f (Fix f)
fold :: Functor f => .
(f x => x) -> moﬂ
Fix f -> Fix f
X

fold a = a . fmap (fold a) . inOp

f-algebra

6/21

Conjugate Hylomorphisms

Every recursion scheme is a conjugate hylomorphism

recursion scheme adjunction conjugates
(hylo-shift law) Id-Id o
mutual recursion A (x) cef
accumulator —xPA(=)P ccf

course-of-values (§5.6) Up - Cofreep ccf
finite memo-table (§5.6) U, - Cofree, ccf

para-hylo equation

x=a-(idADx-aC-c) : A~ C

xi=ay - (idAD (x; Axz) -¢) : Ay C
x3=ay - (idAD (x;Axp) -¢) : Ay« C

x=a- (outl A((D(Ax)-c)xP)) : A«~CxP
x=a-(idAD (Dex-[c])-c) : A« C
x=a-(idAD (Dyx-[c],) ¢c) : A« C

algebra

a:CxDA—A

a;: CxD (A xAp) = Ay
ay: CxD (A] xAp) — Ay

a:CxDAP)xP—A
a:CxD(DwA)—A
a:CxD(DsA)—A

Table 1. Different types of para-hylos building on the canonical control functor (ccf); the coalgebra is ¢ : C — D C in each case.

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured

Recursion Schemes. POPL 2015.

7/21

Challenges for Encoding Hylos in Rocq

1. Avoiding axioms and accepting program calculation closely resembling
pen-and-paper proofs.

2. Extracting idiomatic code.

3. Termination and (co)fixed-points of functors.

8/21

Challenges for Encoding Hylos in Rocq

1. Avoiding axioms and accepting program calculation closely resembling
pen-and-paper proofs.

2. Extracting idiomatic code.

3. Termination and (co)fixed-points of functors.

Our solutions (the remainder of this talk):

1. Machinery for building setoids and the use of decidable predicates.
2. Avoiding type families and indexed types.

3. Containers & recursive coalgebras

8/21

“Extractable” Containers in Rocq

9/21

Containers

Containers are defined by a pair S < P:
* a type of shapes S : Type
« a family of positions, indexed by shape P : S — Type

Abbott, Altenkirch, Ghani: Categories of Containers. FoSSaCS 2003.

10/21

Containers

Containers are defined by a pair S < P:
* a type of shapes S : Type
« a family of positions, indexed by shape P : S — Type

A container extension is a functor defined as follows
[SaP] X =3%usPs— X
[S<P)f =As,p). (s, fop)

Abbott, Altenkirch, Ghani: Categories of Containers. FoSSaCS 2003.

10/21

Containers: Example

Consider the functor F X = 1 + X x X

SF and Pr define a container that is isomorphic to F

PF (inl ') =0

SrP=1+1
F Pp (inre)=1+1

Examples of objects of types F' N (left) and [Sr < Pr] N (right):

(ml * 'N)
(inre, Ax,case x { inl+=7; inr+=9 })

inl e

inr (7,9)

|t

11/21

Containers: Example

Consider the functor F X = 1 + X x X

. . . . T “sh “
SF and Pr define a container that is isomorphic to F DENEE N BT M)

PF (inl ') =0

Sr=1+1
F Pp (inre)=1+1

Examples of objects of types F' N (left) and [Sr < Pr] N (right):

(ml * 'N)
(inre, Ax,case x { inl+=7; inr+=9 })

inl e

inr (7,9)

|t

11/21

Containers: Example
No positions on the left shape

Consider the functor F X = 1 + X x X

SF and Pr define a container that is isomorphic to F

Pp (inl+) =0

Sp=11+1
F Pp (inre)=1+1

Examples of objects of types F' N (left) and [Sr < Pr] N (right):

(ml * 'N)
(inre, Ax,case x { inl+=7; inr+=9 })

inl e

inr (7,9)

|t

11/21

Containers: Example
Two positions on the right shape

Consider the functor F X = 1 + X x X

SF and Pr define a container that is isomorphic to F

PF (inl ') =0

SrP=1+11
F Pp(inre)=1+1

Examples of objects of types F' N (left) and [Sr < Pr] N (right):

(ml * 'N)
(inre, Ax,case x { inl+=7; inr+=9 })

inl e

inr (7,9)

|t

11/21

Container Mechanisation for Clean Extraction

We use A ~> B to denote proper morphisms, where A and B are setoids.
Avoids assuming functional extensionality

o A container C has three components, Shape, Pos, and valid.

Shape C : Type and Pos C : Type represent shapes and all possible positions.

valid C : Shape C * Pos C ~> bool is a decidable predicate stating when a
pair shape/position is valid.

Avoids UIP/Axiom K.

12/21

Container Mechanisation for Clean Extraction

We use A ~> B to denote proper morphisms, where A and B are setoids.
Avoids assuming functional extensionality

A container C has three components, Shape, Pos, and valid.

Shape C : Type and Pos C : Type represent shapes and all possible positions.
valid C : Shape C * Pos C ~> bool is a decidable predicate stating when a
pair shape/position is valid.

Avoids UIP/Axiom K.

Container extensions:
Record App C (X : Type)
:= MkCont { shape : Shape C;
contents : {p | valid C (shape, p)} -> X
}.

Extraction will treat contents equivalently to Pos C -> X: no unsafe coercions.

12/21

Recursive Coalgebras & Hylomorphisms

13/21

‘ (Co)algebras & (co)fixpoints

The least/greatest fixed-points of a container extension App C are:

Inductive LFix C := Lin { lin_op : App C (LFix C) }.
CoInductive GFix C := Gin { gin_op : App C (GFix C) }.

Cata/anamorphisms

cata : (App C X ~> X) ~> LFix C ~> X

cata_univ : forall (a : App C X ~> X) (f : LFix C ~> X),
f \o Lin =e a \o fmap f <-> f =e cata a

ana : (X ~> App C X) ~> X ~> GFix C
ana_univ : forall (c : X ~> App C X) (f : X ~> GFix C),
gin_op \o f =e fmap f \o ¢ <-> f =e ana ¢

14/21

Recursive Coalgebras

We cannot use arbitrary coalgebras, because their hylomorphisms may not exist.

J. Adamek, S. Milius, L.S. Moss: On Well-Founded and Recursive Coalgebras. FoSSaCS 2020.

15 /21

Recursive Coalgebras

We cannot use arbitrary coalgebras, because their hylomorphisms may not exist.

Recursive coalgebras: coalgebras (¢ : X ~> App C X) that terminate in all inputs.

J. Adamek, S. Milius, L.S. Moss: On Well-Founded and Recursive Coalgebras. FoSSaCS 2020.

15 /21

Recursive Coalgebras

We cannot use arbitrary coalgebras, because their hylomorphisms may not exist.
Recursive coalgebras: coalgebras (¢ : X ~> App C X) that terminate in all inputs.

We define RecF ¢ x to represent that recursively applying ¢ : X ~> App C X terminates
on input x : X

1. Recursive coalgebras:
RCoAlg C X = {c | forall x, RecF c x}

2. Well-founded coalgebras, given a well-founded relation R,
WfCoalg C X = {c | forall x p, R (contents (c x) p) x}

J. Adamek, S. Milius, L.S. Moss: On Well-Founded and Recursive Coalgebras. FoSSaCS 2020.

15 /21

Recursive Coalgebras

We cannot use arbitrary coalgebras, because their hylomorphisms may not exist.
Recursive coalgebras: coalgebras (¢ : X ~> App C X) that terminate in all inputs.

We define RecF ¢ x to represent that recursively applying ¢ : X ~> App C X terminates
on input x : X

1. Recursive coalgebras:
RCoAlg C X = {c | forall x, RecF c x}

2. Well-founded coalgebras, given a well-founded relation R,
WfCoalg C X = {c | forall x p, R (contents (c x) p) x}

¢ Definitions (1) and (2) are equivalent
e Termination proofs may be easier using (1) or (2), depending on the use case (e.g.
structural recursion is trivial using (1)).

J. Adamek, S. Milius, L.S. Moss: On Well-Founded and Recursive Coalgebras. FoSSaCS 2020.

15 /21

Recursive Hylomorphisms

The definition of recursive hylomorphisms is structural on RecF ¢ x:

Definition hylo_def (a : App F B ~> B) (c : A ~> App F A)

: forall (x : A), RecF ¢ x -> B :=

fix f x H :=
match c x as cx
return (forall e : Pos (shape cx), RecF c (contents cx e)) -> B
with
(H e)))

| MkCont sx cx => fun H => a (MkCont sx (fun e => f (cx e)
end (RecF_inv H).

Recursive hylomorphisms are the unique solution to the hylomorphism equation:

hylo : (App C B ~>B) ~> {c : A ~> App C A | forall x, RecF ¢ x} ~>~ A ~> B

hylo_unique : forall (f : A~>B) (a : App CB ~>B) (c : A ~> App C A),
f =e a\o fmap f \o c <-> f = hylo a ¢

16 /21

Hylomorphism Fusion

The following laws are straightforward consequences of hylo_unique.

Lemma hylo_fusion_1
: h \oa=eb\o fmap h -> h \o hylo a c =e hylo b c.

Lemma hylo_fusion_r
: ¢ \o h =e fmap h \o d -> hylo a c \o h =e hylo a d.

Lemma deforest
: T \o g = id -> hylo a f \o hylo g c =e hylo a c.

17/21

Hylomorphism Fusion

The following laws are straightforward consequences of hylo_unique.

Lemma hylo_fusion_1

h \o a = b \o fmap h -> h \o hylo a ¢ =e hylo b c.

The Rocq proofs are exactly as the pen-and-paper proofs: By hylo_unique,

hylo b cis the only arrow making the outer square commute.

1 th h LU —
] | ’
—_— —
f tb fmap h ‘f ia fmap (hylo a c) f e

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured

Recursion Schemes. POPL 2015.

17 /21

Extraction

18/21

Example: Quicksort

Definition mergeF (x : App (TreeC int)

(list int)) : list int :=
match t_out x with
| inl = => nil
| inr (p, 1, r) => List.app U (p :: r)
end.
Definition splitF (1 : list int) : App (TreeC int) (list int) :=
match 1 with

| nil => a_leaf
| cons h t => let (1, r) :=

List.partition (fun x => x <=? h) t in
a_node h 1 r
end.

19/21

Example: Quicksort

Definition gsort := hylo merge splitt.
Extraction gsort.

let rec gsort = function
| 11 -> [1
| h:: t ->
let (1, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun e -> gsort (match e with
| Lbranch -> 1

| Rbranch -> r) in
app (x0 Lbranch) (h :: (x0 Rbranch))

19/21

Example: Quicksort

Definition gsort_times_two

: {f | f =e Lmap times_two \o hylo merge splitt}.
eapply exist. (* ...
Defined.

Extraction gsort_times_two.

let rec gsort_times_two = function
| [1 -> 11l
[h:: t ->
let (1, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun p -> gsort_times_two (match p with
| Lbranch -> 1

| Rbranch -> r) in
(x0 Rbranch))

app (x0 Lbranch) ((mul (Uint63.of_int (2)) h)

x) rewrite (hylo_fusion_1 H); reflexivity.

19/21

Further details in the paper

Coalgebras & Anamorphisms.

Further examples, e.g. shortcut deforestation & dynamorphisms.

Example correctness proof. Proving properties of algorithms implemented as
hylomorphisms is comparable to alternative non-structural recursion encodings.

Correctness proofs of encodings using hylomorphisms can exploit program
calculation. This can lead to more modular proofs. E.g. if we know that

Va,Q(f(x)), and Va, Q(x) — P(g(x)), then we can conclude Vz, P((g o f)(x)),
and then fuse (g o f) into an optimised, extensionally equal version.

20/21

Summary

o Modular specification of functions, without sacrificing performance thanks to
program calculation (hylo_fusion).

o Modular treatment of divide-and-conquer and termination proofs using recursive
coalgebras.

e |diomatic code extraction.

21/21

Summary

o Modular specification of functions, without sacrificing performance thanks to
program calculation (hylo_fusion).

o Modular treatment of divide-and-conquer and termination proofs using recursive
coalgebras.

e |diomatic code extraction.

Possible extensions:
o Effects.
* Dealing with setoids & equalities.

 Corecursive algebras. (use of guarded recursion?)

21/21

Summary

o Modular specification of functions, without sacrificing performance thanks to
program calculation (hylo_fusion).

o Modular treatment of divide-and-conquer and termination proofs using recursive
coalgebras.

e |diomatic code extraction.

Possible extensions:
o Effects.
* Dealing with setoids & equalities.

 Corecursive algebras. (use of guarded recursion?)

Thank you!

21/21

