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Why Hylomorphisms in Rocq

1. Recursion schemes offer practical advantages:
• Abstracting common patterns of recursion.
• Reasoning about program transformations and optimisations.

2. Every recursion scheme is a (conjugate) hylomorphism.

3. Encoding hylomorphisms in Rocq offers three main benefits:
• Reduce the burden of termination/productivity proofs by structuring recursion

modularly so proofs can be reused.
• Use hylomorphism laws so program calculation and optimisation reduce to plain
rewrite.

• Code extraction.

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured
Recursion Schemes. POPL 2015.
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Hylomorphisms
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Folds as Initial Algebras

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr g b [] = b
foldr g b (x : xs) = g x (foldr g b xs)
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Folds as Initial Algebras

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f =>
(f x -> x) ->
Fix f -> x

fold a = c
where c (In e) = (a . fmap c) e

f (Fix f) f x

Fix f x

In a
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Folds as Initial Algebras

data LF a b = NilF | ConsF a b
type Ls a = Fix (LF a)

foldr :: (a -> b -> b) -> b -> Ls a -> b
foldr f z = fold a
where a NilF = z

a (ConsF a b) = f a b

LF a (Fix (LF a)) LF a b

Fix (LF a) b

In a
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Hylomorphisms: Divide-and-conquer Recursion

hylo :: Functor f =>
(f b -> b) ->
(a -> f a) ->
a -> b

hylo a c = a . fmap (hylo a c) . c

f a f b

a b

ac
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Folds as Hylomorphisms

data Fix f = In { inOp :: f (Fix f) }

fold :: Functor f =>
(f x -> x) ->
Fix f ->
x

fold a = a . fmap (fold a) . inOp

f (Fix f) f x

Fix f x

ainOp

f-algebra

f-coalgebra
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Conjugate Hylomorphisms

Every recursion scheme is a conjugate hylomorphism

recursion scheme adjunction conjugates para-hylo equation algebra

(hylo-shift law) Id a Id α a α x = a · (idMD x · α C · c) : A← C a : C×D A→ A

mutual recursion ∆ a (×) ccf x1= a1 · (idMD (x1M x2) · c) : A1← C
x2= a2 · (idMD (x1M x2) · c) : A2← C

a1: C×D (A1×A2)→ A1
a2: C×D (A1×A2)→ A2

accumulator −×P a (−)P ccf x = a · (outlM ((D (Λ x) · c)×P)) : A← C×P a : C×D (AP)×P→ A

course-of-values (§5.6) UD a CofreeD ccf x = a · (idMD (D∞ x · c ) · c) : A← C a : C×D (D∞ A)→ A

finite memo-table (§5.6) U∗ a Cofree∗ ccf x = a · (idMD (D∗ x · c ∗) · c) : A← C a : C×D (D∗ A)→ A

Table 1. Different types of para-hylos building on the canonical control functor (ccf); the coalgebra is c : C→D C in each case.

This allows us to frame catalan as an instance of (5.7), where the
coalgebra is simply in◦ : N→ Nat N, and the algebra implements a
convolution. Using the hylo-shift law with Nat◦nelist the algebra
can actually work directly on lists.

catalan ::Nat [N ]→ N
catalan (Zero) = 1
catalan (Succ xs) = sum (zipWith (∗) xs (reverse xs))

Chain matrix multiplication In chain matrix multiplication we
must find the minimum number of scalar operations required to
multiply a chain of matrices A0 . . . An, where each matrix Ak has
dimensions given by ak × ak+1. Multiplying a p× q matrix by
a q× r matrix yields a p× r matrix, costing (we assume) pqr
scalar operations. Matrix multiplication is associative, of course, but
different parenthesisations can lead to different costs.

The recurrence equation that solves this problem works by
considering all the different splits, and minimizing the combined
cost:

chain :: (N,N)→ N
chain (i, j) | i j = 0

| i< j = minimum [ai ∗ak+1 ∗aj+1 +
chain (i,k)+ chain (k+1, j) | k← [i . . j−1]] .

The final answer for this is held in chain (0,n−1), where n is the
number of matrices that are being multiplied.

This is quite unlike previous examples, since the input type is not
immediately inductive. To work around this, we can show that it is
isomorphic to an inductive type. Some bounds checking reveals that
the domain of chain is actually a subset of (N,N), since the function
is only defined when 0 6 i 6 j. Thus, the algebra needs access to
only a triangle of previous values that can be represented as a set
of pairs T = {(i, j) | 0 6 i 6 j}. It is easy to show that there is an
isomorphism tri : N∼= T : tri◦ between the set of triangle pairs and
the natural numbers, and this gives us that (tin,T) is initial, where
tin = tri · in · Nat tri◦. Thus, the coalgebra tin◦ is corecursive, and
with appropriate choice of tri, can be given by:

tin◦ :: T→ Nat T
tin◦ (0,0) = Zero
tin◦ (i, j) | i j = Succ (0, j−1)

| otherwise = Succ (i+1, j) .

Here we record an efficient version of tri◦ that is based on the
formula for triangle numbers, T (n) = ∑

n
i=1 i = n(n+1)/2:

tri◦ :: T→ N
tri◦ (i, j) = j∗ (j+1) ‘div‘ 2+ j− i .

The definition of the algebra chain requires particular attention to
the relative indices: the base case is straightforward, but when i< j

we must calculate the offset carefully.

chain :: (T,Nat (Nat∗ N))→ N
chain ((i, j),Zero) = 0
chain ((i, j),Succ table)
| i j = 0
| i< j = minimum [ai ∗ak+1 ∗aj+1 +u+ v | k← [i . . j−1],

Just u← [extract (i,k)],Just v← [extract (k+1, j)]]
where extract (r,s) = lookup∗ (tri◦ (i, j)− tri◦ (r,s)−1, table)

This definition closely mirrors the specification given by chain,
except that rather than being recalculated, results are now extracted
from the lookup table using lookup∗ :: (N,Nat∗ a) → Maybe a,
which, like its coinductive counterpart, is an accu-hylo. Although
we are certain to have a unique solution, not all proof obligations
are discharged: naturally, the correctness relies on whether the
appropriate elements are indexed in the intermediate table.

The two examples have shown that the arguments provided to the
algebra by para-recursive coalgebras are particularly convenient for
dynamic programming algorithms with tricky indices.

7. Related Work
Recursive coalgebras The study of recursive coalgebras goes
back to the work of Osius [25] on categorical set theory, where he
showed that every well-founded coalgebra of the powerset functor
is recursive. Taylor [27] generalized this result to set functors that
preserve inverse images. Adámek et al. [1] further demonstrated
that for finitary set functors preserving inverse images, recursive
coalgebras are equivalent to both parametrically recursive coalgebras
and to the existence of homomorphisms into the initial algebra.
Completely iterative algebras are dual to parametrically recursive
coalgebras, and were investigated by Milius [24], where we can
glean the dual of some of the technical material in Section 5.
Backhouse and Doornbos [2] worked on reductivity of recursive
relational coalgebras, including applications to hylo equations.

Rolling rule The origins of the rolling rule can be traced back at
least to the work of Freyd [9] on algebraically complete categories,
which was later extended by Backhouse et al. [3] to form the
categorical fixed-point calculus. However, they only considered
algebras and algebra-homomorphisms. Eppendahl [7] analyzed
Freyd’s proof of the Iterated Square Lemma and noticed that an
adjunction-like correspondence formed a core part of the proof. (He
calls the correspondence a pro-adjunction, as hylomorphisms form
a profunctor.) He further generalized (a weak form of) the Square
Lemma to recursive coalgebras.

Conjugate rule An early instance of the conjugate rule can be
found in the work of Bird and Paterson [5]. In order to show that
generalized folds are uniquely defined, they discuss conditions to
ensure that the equation x · L in = Ψ x (or equivalently, x = Ψ x ·

Conjugate Hylomorphisms 11 2014/7/22

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured
Recursion Schemes. POPL 2015.
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Challenges for Encoding Hylos in Rocq

1. Avoiding axioms and accepting program calculation closely resembling
pen-and-paper proofs.

2. Extracting idiomatic code.
3. Termination and (co)fixed-points of functors.

Our solutions (the remainder of this talk):

1. Machinery for building setoids and the use of decidable predicates.
2. Avoiding type families and indexed types.
3. Containers & recursive coalgebras
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“Extractable” Containers in Rocq
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Containers

Containers are defined by a pair S ◁ P :
• a type of shapes S : Type

• a family of positions, indexed by shape P : S → Type

A container extension is a functor defined as follows

JS ◁ P K X = Σs:SP s → X

JS ◁ P K f = λ(s, p). (s, f ◦ p)

Abbott, Altenkirch, Ghani: Categories of Containers. FoSSaCS 2003.
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Containers: Example

Consider the functor F X = 1 + X ×X

SF and PF define a container that is isomorphic to F

SF = 1 + 1
PF (inl •) = 0

PF (inr •) = 1 + 1

Examples of objects of types F N (left) and JSF ◁ PF K N (right):

inl • ∼= (inl •, !N)
inr (7, 9) ∼= (inr •, λx, case x { inl • ⇒ 7; inr • ⇒ 9 })
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Container Mechanisation for Clean Extraction

• We use A ~> B to denote proper morphisms, where A and B are setoids.
Avoids assuming functional extensionality

• A container C has three components, Shape, Pos, and valid.
• Shape C : Type and Pos C : Type represent shapes and all possible positions.
• valid C : Shape C * Pos C ~> bool is a decidable predicate stating when a

pair shape/position is valid.
Avoids UIP/Axiom K.
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Avoids assuming functional extensionality

• A container C has three components, Shape, Pos, and valid.
• Shape C : Type and Pos C : Type represent shapes and all possible positions.
• valid C : Shape C * Pos C ~> bool is a decidable predicate stating when a

pair shape/position is valid.
Avoids UIP/Axiom K.

Container extensions:
Record App C (X : Type)
:= MkCont { shape : Shape C;

contents : {p | valid C (shape, p)} -> X
}.

Extraction will treat contents equivalently to Pos C -> X: no unsafe coercions.
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Recursive Coalgebras & Hylomorphisms
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(Co)algebras & (co)fixpoints

The least/greatest fixed-points of a container extension App C are:
Inductive LFix C := Lin { lin_op : App C (LFix C) }.
CoInductive GFix C := Gin { gin_op : App C (GFix C) }.

Cata/anamorphisms
cata : (App C X ~> X) ~> LFix C ~> X
cata_univ : forall (a : App C X ~> X) (f : LFix C ~> X),

f \o Lin =e a \o fmap f <-> f =e cata a

ana : (X ~> App C X) ~> X ~> GFix C
ana_univ : forall (c : X ~> App C X) (f : X ~> GFix C),

gin_op \o f =e fmap f \o c <-> f =e ana c
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Recursive Coalgebras
We cannot use arbitrary coalgebras, because their hylomorphisms may not exist.

Recursive coalgebras: coalgebras (c : X ~> App C X) that terminate in all inputs.

We define RecF c x to represent that recursively applying c : X ~> App C X terminates
on input x : X.

1. Recursive coalgebras:
RCoAlg C X = {c | forall x, RecF c x}

2. Well-founded coalgebras, given a well-founded relation R,
WfCoalg C X = {c | forall x p, R (contents (c x) p) x}

• Definitions (1) and (2) are equivalent
• Termination proofs may be easier using (1) or (2), depending on the use case (e.g.

structural recursion is trivial using (1)).

J. Adámek, S. Milius, L.S. Moss: On Well-Founded and Recursive Coalgebras. FoSSaCS 2020.
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Recursive Hylomorphisms
The definition of recursive hylomorphisms is structural on RecF c x:

Definition hylo_def (a : App F B ~> B) (c : A ~> App F A)
: forall (x : A), RecF c x -> B :=
fix f x H :=

match c x as cx
return (forall e : Pos (shape cx), RecF c (contents cx e)) -> B

with
| MkCont sx cx => fun H => a (MkCont sx (fun e => f (cx e) (H e)))
end (RecF_inv H).

Recursive hylomorphisms are the unique solution to the hylomorphism equation:

hylo : (App C B ~> B) ~> {c : A ~> App C A | forall x, RecF c x} ~> A ~> B

hylo_unique : forall (f : A ~> B) (a : App C B ~> B) (c : A ~> App C A),
f =e a \o fmap f \o c <-> f = hylo a c
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Hylomorphism Fusion

The following laws are straightforward consequences of hylo_unique.

Lemma hylo_fusion_l
: h \o a =e b \o fmap h -> h \o hylo a c =e hylo b c.

Lemma hylo_fusion_r
: c \o h =e fmap h \o d -> hylo a c \o h =e hylo a d.

Lemma deforest
: f \o g =e id -> hylo a f \o hylo g c =e hylo a c.
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: c \o h =e fmap h \o d -> hylo a c \o h =e hylo a d.

Lemma deforest
: f \o g =e id -> hylo a f \o hylo g c =e hylo a c.

The Rocq proofs are exactly as the pen-and-paper proofs: By hylo_unique,
hylo b c is the only arrow making the outer square commute.

tb ta tc

f tb f ta f tc

h hylo a c

cb a

fmap h fmap (hylo a c)

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured
Recursion Schemes. POPL 2015.
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Extraction
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Example: Quicksort

Definition mergeF (x : App (TreeC int) (list int)) : list int :=
match t_out x with
| inl _ => nil
| inr (p, l, r) => List.app l (p :: r)
end.

Definition splitF (l : list int) : App (TreeC int) (list int) :=
match l with
| nil => a_leaf
| cons h t => let (l, r) := List.partition (fun x => x <=? h) t in

a_node h l r
end.
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Example: Quicksort

Definition qsort := hylo merge splitt.
Extraction qsort.

let rec qsort = function
| [] -> []
| h :: t ->
let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun e -> qsort (match e with

| Lbranch -> l
| Rbranch -> r) in

app (x0 Lbranch) (h :: (x0 Rbranch))
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Example: Quicksort

Definition qsort_times_two
: {f | f =e Lmap times_two \o hylo merge splitt}.
eapply exist. (* ... *) rewrite (hylo_fusion_l H); reflexivity.

Defined.

Extraction qsort_times_two.

let rec qsort_times_two = function
| [] -> []
| h :: t ->
let (l, r) = partition (fun x0 -> leb x0 h) t in
let x0 = fun p -> qsort_times_two (match p with

| Lbranch -> l
| Rbranch -> r) in

app (x0 Lbranch) ((mul (Uint63.of_int (2)) h) :: (x0 Rbranch))
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Further details in the paper

Coalgebras & Anamorphisms.
Further examples, e.g. shortcut deforestation & dynamorphisms.
Example correctness proof. Proving properties of algorithms implemented as
hylomorphisms is comparable to alternative non-structural recursion encodings.

Correctness proofs of encodings using hylomorphisms can exploit program
calculation. This can lead to more modular proofs. E.g. if we know that
∀x,Q(f(x)), and ∀x,Q(x) → P (g(x)), then we can conclude ∀x, P ((g ◦ f)(x)),
and then fuse (g ◦ f) into an optimised, extensionally equal version.
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Summary

• Modular specification of functions, without sacrificing performance thanks to
program calculation (hylo_fusion).

• Modular treatment of divide-and-conquer and termination proofs using recursive
coalgebras.

• Idiomatic code extraction.

Thank you!
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