
Barendregt’s Theory of the λ-Calculus,
Refreshed and Formalized

Adrienne Lancelot12, Beniamino Accattoli1, Maxime
Vemclefs3

1Inria & LIX, École Polytechnique
2IRIF, Université Paris Cité & CNRS

3Independent

September 29th 2025 - ITP

1 / 30

Outline

Barendregt’s Theory of the Lambda Calculus

Formalizing in Abella

2 / 30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f ≤prf g if ∀n ∈ N, f (n) = ⊥ or f (n) =N g(n)

f⊥ : n 7→ ⊥ is the minimum PRF function for ≤prf

3 / 30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f ≤prf g if ∀n ∈ N, f (n) = ⊥ or f (n) =N g(n)

f⊥ : n 7→ ⊥ is the minimum PRF function for ≤prf

3 / 30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f ≤prf g if ∀n ∈ N, f (n) = ⊥ or f (n) =N g(n)

f⊥ : n 7→ ⊥ is the minimum PRF function for ≤prf

3 / 30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.

4 / 30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.

4 / 30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.

4 / 30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?
A computation that never ends? Ω!

Ω := (λx .xx)(λx .xx)→β (λx .xx)(λx .xx)→β · · ·

Now, what is the equivalence class of undefined/Ω ?

5 / 30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?
A computation that never ends? Ω!

Ω := (λx .xx)(λx .xx)→β (λx .xx)(λx .xx)→β · · ·

Now, what is the equivalence class of undefined/Ω ?

5 / 30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?
A computation that never ends? Ω!

Ω := (λx .xx)(λx .xx)→β (λx .xx)(λx .xx)→β · · ·

Now, what is the equivalence class of undefined/Ω ?

5 / 30

A first naive attempt

Undefined represents a computation that never ends.

▶ undefined terms = β-diverging terms?

Surprisingly, this would lead to an inconsistency.

>> If all β-diverging terms are equated in an equational theory,
then this theory equates all terms.

6 / 30

A first naive attempt

Undefined represents a computation that never ends.

▶ undefined terms = β-diverging terms?

Surprisingly, this would lead to an inconsistency.

>> If all β-diverging terms are equated in an equational theory,
then this theory equates all terms.

6 / 30

A first naive attempt

Undefined represents a computation that never ends.

▶ undefined terms = β-diverging terms?

Surprisingly, this would lead to an inconsistency.

>> If all β-diverging terms are equated in an equational theory,
then this theory equates all terms.

6 / 30

β-diverging terms may be very different

Indeed, let us look at two β-diverging terms

fix and Ω
↓β ↓β

λf .f (fix f) Ω
↓β ↓β

λf .f (f (fix f)) Ω
↓β ↓β

λf .f (f (f (fix f))) Ω
↓β ↓β

λf .f (f (f (f . . .))) Ω
↓β ↓β
...

...

Recursion does not carry the same meaning as looping on itself.

7 / 30

A second attempt

Instead, one might consider a more restrained reduction

▶ undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.

8 / 30

A second attempt

Instead, one might consider a more restrained reduction

▶ undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.

8 / 30

A second attempt

Instead, one might consider a more restrained reduction

▶ undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.

8 / 30

β-diverging terms may be very different

Fixpoint combinators are head-normalizing.

fix and Ω
↓h ↓h

λf .f (fix f) Ω
̸↓h ↓h

...

Recursion and looping are nicely separated by head reduction.

9 / 30

Consistency

A relation R ⊆ Λ× Λ is consistent if there exists t, u ∈ Λ such that
(t, u) ̸∈ R.

An equational theory is an equivalence relation =T such that:

▶ Invariance under Computation: if t →β u then t =T u

▶ Stability by Contexts: if t =T u then ∀C , C ⟨t⟩ =T C ⟨u⟩.

To validate the choice of undefined terms: Is there a
consistent equational theory where undefined terms are collapsed?

10 / 30

Consistency

A relation R ⊆ Λ× Λ is consistent if there exists t, u ∈ Λ such that
(t, u) ̸∈ R.

An equational theory is an equivalence relation =T such that:

▶ Invariance under Computation: if t →β u then t =T u

▶ Stability by Contexts: if t =T u then ∀C , C ⟨t⟩ =T C ⟨u⟩.

To validate the choice of undefined terms: Is there a
consistent equational theory where undefined terms are collapsed?

10 / 30

Consistency

A relation R ⊆ Λ× Λ is consistent if there exists t, u ∈ Λ such that
(t, u) ̸∈ R.

An equational theory is an equivalence relation =T such that:

▶ Invariance under Computation: if t →β u then t =T u

▶ Stability by Contexts: if t =T u then ∀C , C ⟨t⟩ =T C ⟨u⟩.

To validate the choice of undefined terms: Is there a
consistent equational theory where undefined terms are collapsed?

10 / 30

What is Genericity?
Undefined terms are black holes for the evaluation process.

u u1
n un * ...

If a program awaits the evaluation of an undefined sub-term

...
C

u
C
u1

Then it will be unable to produce a result

C
u

C
u1

n
C
un * ...

11 / 30

What is Genericity?
Undefined terms are black holes for the evaluation process.

u u1
n un * ...

If a program awaits the evaluation of an undefined sub-term

...
C

u
C
u1

Then it will be unable to produce a result

C
u

C
u1

n
C
un * ...

11 / 30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

If

C
u *n Then

C
s *n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 / 30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

If

C
u *n Then

C
s *n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 / 30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

If

C
u *n Then

C
s *n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 / 30

Refreshed and Formalized

We survey some results of Barendregt’s theory of the λ-calculus
(1984).

Refreshed:

▶ Takahashi’s proof of genericity (1994)

▶ Accattoli et al. study of normalization
(2019)

Formalized with the Abella proof assistant:

▶ Reasoning with binders close to paper

▶ Representing contexts (with possible
captures)

13 / 30

Refreshed and Formalized

We survey some results of Barendregt’s theory of the λ-calculus
(1984).

Refreshed:

▶ Takahashi’s proof of genericity (1994)

▶ Accattoli et al. study of normalization
(2019)

Formalized with the Abella proof assistant:

▶ Reasoning with binders close to paper

▶ Representing contexts (with possible
captures)

13 / 30

Proving/Formalizing Genericity

14 / 30

Proving/Formalizing Genericity

14 / 30

Proving/Formalizing Genericity

14 / 30

Proving/Formalizing Genericity

14 / 30

Some Related Work

Many other formal developments of the theory of the λ-calculus

← Formalization of parts of Krivine’s book
(1990) in Rocq by Larchey-Wendling

▶ Countless formalized proofs of confluence

▶ The previous talk!

▶ ...

15 / 30

Contextual Preorder

The head (open) contextual preorder is defined as:

t ≾h
CO u if for all contexts C , C ⟨t⟩ is h-normalizing implies

C ⟨u⟩ is h-normalizing.

▶ A natural extensional inequational theory
The only non-trivial point is the inclusion of β-conversion.

▶ Strongly Connected with Genericity:

Genericity says that “head diverging terms are minimums for
the head contextual preorder”.

16 / 30

Contextual Preorder

The head (open) contextual preorder is defined as:

t ≾h
CO u if for all contexts C , C ⟨t⟩ is h-normalizing implies

C ⟨u⟩ is h-normalizing.

▶ A natural extensional inequational theory
The only non-trivial point is the inclusion of β-conversion.

▶ Strongly Connected with Genericity:

Genericity says that “head diverging terms are minimums for
the head contextual preorder”.

16 / 30

Contextual Preorder

The head (open) contextual preorder is defined as:

t ≾h
CO u if for all contexts C , C ⟨t⟩ is h-normalizing implies

C ⟨u⟩ is h-normalizing.

▶ A natural extensional inequational theory
The only non-trivial point is the inclusion of β-conversion.

▶ Strongly Connected with Genericity:

Genericity says that “head diverging terms are minimums for
the head contextual preorder”.

16 / 30

Outline

Barendregt’s Theory of the Lambda Calculus

Formalizing in Abella

17 / 30

Formalizing λ

Terms t, u := x | λx .t | tu

λ-terms and the predicate for inducting on them in Abella:

Kind tm type.

Type abs (tm -> tm) -> tm.

Type app tm -> tm -> tm.

Define is_tm : tm -> prop by

nabla x, is_tm x;

is_tm (abs T) := nabla x, is_tm (T x);

is_tm (app T U) := is_tm T /\ is_tm U.

18 / 30

Formalizing λ

Terms t, u := x | λx .t | tu

λ-terms and the predicate for inducting on them in Abella:

Kind tm type.

Type abs (tm -> tm) -> tm.

Type app tm -> tm -> tm.

Define is_tm : tm -> prop by

nabla x, is_tm x;

is_tm (abs T) := nabla x, is_tm (T x);

is_tm (app T U) := is_tm T /\ is_tm U.

18 / 30

Formalizing λ and β

(λx .t)u 7→β t{x�u}
t →β t ′

tu →β t ′u

t →β t ′

λx .t →β λx .t ′
u →β u′

tu →β tu′

Define beta : tm -> tm -> prop by

beta (app (abs T) U) (T U);

beta (app T U) (app T’ U) := beta T T’;

beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);

beta (app T U) (app T U’) := beta U U’.

(λx .t)u →h t{x�u}
t →h u
ts →h us

t →h u
λx .t →h λx .u

19 / 30

Formalizing λ and β

(λx .t)u 7→β t{x�u}
t →β t ′

tu →β t ′u

t →β t ′

λx .t →β λx .t ′
u →β u′

tu →β tu′

Define beta : tm -> tm -> prop by

beta (app (abs T) U) (T U);

beta (app T U) (app T’ U) := beta T T’;

beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);

beta (app T U) (app T U’) := beta U U’.

(λx .t)u →h t{x�u}
t →h u
ts →h us

t →h u
λx .t →h λx .u

19 / 30

Formalizing λ and β

(λx .t)u 7→β t{x�u}
t →β t ′

tu →β t ′u

t →β t ′

λx .t →β λx .t ′
u →β u′

tu →β tu′

Define beta : tm -> tm -> prop by

beta (app (abs T) U) (T U);

beta (app T U) (app T’ U) := beta T T’;

beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);

beta (app T U) (app T U’) := beta U U’.

(λx .t)u →h t{x�u}
t →h u
ts →h us

t →h u
λx .t →h λx .u

19 / 30

Formalizing λ-theories

A λ-theory is stable by contexts...

Contextual equivalence...

We need to formalize contexts

20 / 30

Formalizing λ-theories

A λ-theory is stable by contexts...

Contextual equivalence...

We need to formalize contexts

20 / 30

Formalizing λ-theories

A λ-theory is stable by contexts...

Contextual equivalence...

We need to formalize contexts

20 / 30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := λx .⟨·⟩, then C ⟨y⟩ = λx .y and C ⟨x⟩ = λx .x = I.

ctx T CT holds iff there exists a context C such that C ⟨T⟩ = CT.

Define ctx : tm -> tm -> prop by

ctx T T;

ctx T (app P Q) := ctx T P \/ ctx T Q;

nabla x, ctx (T x) (abs CT) :=

nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21 / 30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := λx .⟨·⟩, then C ⟨y⟩ = λx .y and C ⟨x⟩ = λx .x = I.

ctx T CT holds iff there exists a context C such that C ⟨T⟩ = CT.

Define ctx : tm -> tm -> prop by

ctx T T;

ctx T (app P Q) := ctx T P \/ ctx T Q;

nabla x, ctx (T x) (abs CT) :=

nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21 / 30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := λx .⟨·⟩, then C ⟨y⟩ = λx .y and C ⟨x⟩ = λx .x = I.

ctx T CT holds iff there exists a context C such that C ⟨T⟩ = CT.

Define ctx : tm -> tm -> prop by

ctx T T;

ctx T (app P Q) := ctx T P \/ ctx T Q;

nabla x, ctx (T x) (abs CT) :=

nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21 / 30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := λx .⟨·⟩, then C ⟨y⟩ = λx .y and C ⟨x⟩ = λx .x = I.

ctx T CT holds iff there exists a context C such that C ⟨T⟩ = CT.

Define ctx : tm -> tm -> prop by

ctx T T;

ctx T (app P Q) := ctx T P \/ ctx T Q;

nabla x, ctx (T x) (abs CT) :=

nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21 / 30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := λx .⟨·⟩, then C ⟨y⟩ = λx .y and C ⟨x⟩ = λx .x = I.

ctx T CT holds iff there exists a context C such that C ⟨T⟩ = CT.

Define ctx : tm -> tm -> prop by

ctx T T;

ctx T (app P Q) := ctx T P \/ ctx T Q;

nabla x, ctx (T x) (abs CT) :=

nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21 / 30

Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C ⟨T⟩ = CT and C ⟨U⟩ = CU.

Define ctxs : tm -> tm -> tm -> tm -> prop by

ctxs T T U U;

ctxs T (app A B) U (app C D) :=

(ctxs T A U C /\ B = D /\ tm D)

\/ (ctxs T B U D /\ A = C /\ tm C);

nabla x, ctxs (T x) (abs CT) (U x) (abs CU):=

nabla y, ctxs (T y) (CT y) (U y) (CU y).

22 / 30

Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C ⟨T⟩ = CT and C ⟨U⟩ = CU.

Define ctxs : tm -> tm -> tm -> tm -> prop by

ctxs T T U U;

ctxs T (app A B) U (app C D) :=

(ctxs T A U C /\ B = D /\ tm D)

\/ (ctxs T B U D /\ A = C /\ tm C);

nabla x, ctxs (T x) (abs CT) (U x) (abs CU):=

nabla y, ctxs (T y) (CT y) (U y) (CU y).

22 / 30

Formalizing Contextual Preorder

Define ctx_preord : tm -> tm -> prop by

ctx_preord P Q := forall CP CQ,

tm P -> tm Q ->

ctxs P CP Q CQ -> head_terminating CP ->

head_terminating CQ.

▶ ctx preord is stable by contexts.

▶ ctx preord is invariant under computation.

▶ ctx preord has h-diverging terms as minimums.

23 / 30

Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

Unfolded statement:

Light Genericity: let u be head-diverging and C such that C ⟨u⟩ is
head-normalizing then C ⟨t⟩ is head-normalizing for all t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

24 / 30

Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

Unfolded statement:

Light Genericity: let u be head-diverging and C such that C ⟨u⟩ is
head-normalizing then C ⟨t⟩ is head-normalizing for all t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

24 / 30

Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

Unfolded statement:

Light Genericity: let u be head-diverging and C such that C ⟨u⟩ is
head-normalizing then C ⟨t⟩ is head-normalizing for all t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

24 / 30

Direct proof of Light Genericity

Takahashi proves Barendregt’s heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!

Light genericity as substitution: let u be h-diverging and t such
that t{x�u} is h-normalizing then t{x�s} is h-normalizing for all
s ∈ Λ.

25 / 30

Direct proof of Light Genericity

Takahashi proves Barendregt’s heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!

Light genericity as substitution: let u be h-diverging and t such
that t{x�u} is h-normalizing then t{x�s} is h-normalizing for all
s ∈ Λ.

25 / 30

Direct proof of Light Genericity

Takahashi proves Barendregt’s heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!

Light genericity as substitution: let u be h-diverging and t such
that t{x�u} is h-normalizing then t{x�s} is h-normalizing for all
s ∈ Λ.

25 / 30

Takahashi’s Trick in CbN

C ⟨u⟩ ↔ tC{x�uC}
C ⟨s⟩ ↔ tC{x�sC}

Trick:
Let fv(u) ∪ fv(s) = {x1, . . . , xk}, and y a fresh variable.

▶ uC := λx1. . . . λxk .u and sC := λx1. . . . λxk .s are closed terms.

▶ Consider tC := C ⟨yx1 . . . xk⟩, and note that:

tC{y�uC} = C ⟨uCx1 . . . xk⟩
= C ⟨(λx1. . . . λxk .u)x1 . . . xk⟩
→k

β C ⟨u⟩
▶ u is h-diverging implies that uC is also h-diverging.

▶ C ⟨u⟩ is h-normalizing if and only if t{y�uC} is. (also true for
s and sC)
by the Head Normalization Theorem (and confluence, etc.)

26 / 30

Formalizing Takahashi’s Trick

C ⟨u⟩ ↔ tC{x�uC}

Disentangling:
For any context C , there exist tC and a variable x /∈ fv(C) such
that:

▶ for all terms u there exists uC such that tC{x�uC} →∗
β C ⟨u⟩.

(Moreover, if u is head divergent then uC is head divergent.)

Some small technicalities in Abella...

Substitution Preorder:

u ≾h
S s holds if

for all terms t, variables x , and lists of variables y1, . . . , yn
with n ≥ 0,
t{x�λy1. . . . λyn.u} →h-terminating implies that
t{x�λy1. . . . λyn.s} is →h-terminating

The substitution preorder coincides with the contextual preorder.

27 / 30

Formalizing Takahashi’s Trick

C ⟨u⟩ ↔ tC{x�uC}

Disentangling:
For any context C , there exist tC and a variable x /∈ fv(C) such
that:

▶ for all terms u there exists uC such that tC{x�uC} →∗
β C ⟨u⟩.

(Moreover, if u is head divergent then uC is head divergent.)

Some small technicalities in Abella...

Substitution Preorder:

u ≾h
S s holds if

for all terms t, variables x , and lists of variables y1, . . . , yn
with n ≥ 0,
t{x�λy1. . . . λyn.u} →h-terminating implies that
t{x�λy1. . . . λyn.s} is →h-terminating

The substitution preorder coincides with the contextual preorder.

27 / 30

Maximality

Another result in Barendregt’s book:

Maximality of the Head Contextual Preorder:
if ≾h

CO ⊊≤T then ≤T is inconsistent.

≪ The head contextual preorder is the largest sensible theory to
study. ≫

28 / 30

Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If T ⊢ t ≤ u and t ̸≾h
CO u

Then ∃C such that

▶ C ⟨t⟩ is h-normalizing and

▶ C ⟨u⟩ is h-diverging.
. . .

In general, not valid in intuistionistic logic

¬∀ϕ ̸⇒ ∃¬ϕ

29 / 30

Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If T ⊢ t ≤ u and t ̸≾h
CO u

Then ∃C such that

▶ C ⟨t⟩ is h-normalizing and

▶ C ⟨u⟩ is h-diverging.
. . .

In general, not valid in intuistionistic logic

¬∀ϕ ̸⇒ ∃¬ϕ

29 / 30

Conclusions

▶ A small subset of Barendregt’s book formalized (many
rewriting theorems hidden in this presentation)

▶ Easy proofs that rely mostly on rewriting/operational results

▶ Faithful formalization of the pen-and-paper proofs

Future work:

▶ Constructive Contextual (In)Equivalence?

▶ Many results adapt to the theory of the Call-by-Value calculus
(haven’t formalized these)

▶ Other results on program equivalence to be made formal
(mechanizing Böhm trees and Böhm ’s theorem?
⇒ intensional presentation of contextual equivalence)

Thank you!

30 / 30

Conclusions

▶ A small subset of Barendregt’s book formalized (many
rewriting theorems hidden in this presentation)

▶ Easy proofs that rely mostly on rewriting/operational results

▶ Faithful formalization of the pen-and-paper proofs

Future work:

▶ Constructive Contextual (In)Equivalence?

▶ Many results adapt to the theory of the Call-by-Value calculus
(haven’t formalized these)

▶ Other results on program equivalence to be made formal
(mechanizing Böhm trees and Böhm ’s theorem?
⇒ intensional presentation of contextual equivalence)

Thank you!

30 / 30

Masako Takahashi.
A simple proof of the genericity lemma, pages 117–118.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

30 / 30

	Barendregt's Theory of the Lambda Calculus
	Formalizing in Abella

