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Outline

Barendregt's Theory of the Lambda Calculus
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Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.
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Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f <prr g ifVneN, f(n)= L or f(n) =y g(n)

f1 : n— L is the minimum PRF function for <pgr
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Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.
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Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.
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Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.
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Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?

A computation that never ends? Q!

Q= (Axxx)(Ax.xx) =g (Axxx)(Ax.xx) =g - -
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Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?

A computation that never ends? Q!

Q= (Axxx)(Ax.xx) =g (Axxx)(Ax.xx) =g - -

Now, what is the equivalence class of undefined/2 7
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A first naive attempt

Undefined represents a computation that never ends.
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A first naive attempt

Undefined represents a computation that never ends.

» undefined terms = (-diverging terms?
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A first naive attempt

Undefined represents a computation that never ends.
» undefined terms = (-diverging terms?

Surprisingly, this would lead to an inconsistency.

>> If all S-diverging terms are equated in an equational theory,
then this theory equates all terms.
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[-diverging terms may be very different

Indeed, let us look at two (-diverging terms

fix and

¥ \%

NF.F (fix f) Q

¥ \%
AFF(F (fix F)) Q
¥ \%
AFF(F (F (fixf))) Q
¥ %

ML (F (F (F..)))) Q

T +8
Recursion does not carry the same meaning as looping on itself.
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A second attempt

Instead, one might consider a more restrained reduction
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A second attempt

Instead, one might consider a more restrained reduction

» undefined terms = head-diverging terms?
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A second attempt

Instead, one might consider a more restrained reduction
» undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.
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[-diverging terms may be very different

Fixpoint combinators are head-normalizing.

fix and Q
In dn
M. f (fix F) Q

Vh Ih

Recursion and looping are nicely separated by head reduction.
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Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.
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Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.

An equational theory is an equivalence relation =7 such that:
» Invariance under Computation: if t —3 u then t =7 u
» Stability by Contexts: if t =7 u then VC, C(t) =7 C(u).
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Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.

An equational theory is an equivalence relation =7 such that:
» Invariance under Computation: if t —3 u then t =7 u
» Stability by Contexts: if t =7 u then VC, C(t) =7 C(u).

To validate the choice of undefined terms: [s there a
consistent equational theory where undefined terms are collapsed?
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What is Genericity?

Undefined terms are black holes for the evaluation process.

n *
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What is Genericity?

Undefined terms are black holes for the evaluation process.
n *

If a program awaits the evaluation of an undefined sub-term

C

C

@

Then it will be unable to produce a result

C

C

C

n *
4> @ 7
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What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.
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Genericity says: (n is a normal form and s is any term)

C C .
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What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

C C .

" o 'n Then | s | ——=n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 /30



Refreshed and Formalized

We survey some results of Barendregt's theory of the A-calculus
(1984).

Refreshed:
» Takahashi's proof of genericity (1994)

» Accattoli et al. study of normalization

STUDIES INLOGIC
AND

The Tambde (2019)
Caleulus

Its Syntax and Semanties
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Refreshed and Formalized

We survey some results of Barendregt's theory of the A-calculus
(1984).

Refreshed:
» Takahashi's proof of genericity (1994)

» Accattoli et al. study of normalization

STUDIES IN LOGIC
AND

The Lap®™da (2019)
. Cotclfus
@“"‘ Formalized with the Abella proof assistant:

P> Reasoning with binders close to paper

> Representing contexts (with possible
captures)
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Proving/Formalizing Genericity

A Simple Proof of the Genericity Lemma

Masalo Takahashi
Department o Infermation Science
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Main Lemma

~15 lines of text

~90 lines of Abella

~140 tactics
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Some Related Work

Many other formal developments of the theory of the A-calculus

<+ Formalization of parts of Krivine's book
(1990) in Rocq by Larchey-Wendling

» Countless formalized proofs of confluence
» The previous talk!
> ...
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Contextual Preorder

The head (open) contextual preorder is defined as:

t 3po u if for all contexts C, C(t) is h-normalizing implies
C(u) is h-normalizing.
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Contextual Preorder

The head (open) contextual preorder is defined as:
t 3po u if for all contexts C, C(t) is h-normalizing implies
C(u) is h-normalizing.

P A natural extensional inequational theory

The only non-trivial point is the inclusion of -conversion.

» Strongly Connected with Genericity:

Genericity says that “head diverging terms are minimums for
the head contextual preorder”.

16 / 30



Outline

Formalizing in Abella
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Formalizing A

TERMS t,u = x| Ax.t]|tu
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Formalizing A
TERMS t,u = x| Ax.t]|tu

A-terms and the predicate for inducting on them in Abella:

Kind tm  type.

Type abs (tm -> tm) -> tm.
Type app tm -> tm -> tm.

Define is_tm : tm -> prop by
nabla x, is_tm x;
is_tm (abs T) := nabla x, is_tm (T x);
is_tm (app T U) := is_tm T /\ is_tm U.
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Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd
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Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd

Define beta : tm -> tm -> prop by
beta (app (abs T) U) (T U);
beta (app T U) (app T’ U) := beta T T’;
beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);
beta (app T U) (app T U’) := beta U U’.
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Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd

Define beta : tm -> tm -> prop by
beta (app (abs T) U) (T U);
beta (app T U) (app T’ U) := beta T T’;
beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);
beta (app T U) (app T U’) := beta U U’.

t —nhu t—nu
(Ax.t)u —n t{x<u} ts —p US AX.t —n AX.u
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Formalizing \-theories

A A-theory is stable by contexts...
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Formalizing A-theories

A A-theory is stable by contexts...
Contextual equivalence...

We need to formalize contexts
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Formalizing Contexts

A context is a term with a hole?
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Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

ctx T CT holds iff there exists a context C such that C(T) = CT.

Define ctx : tm -> tm —-> prop by
ctx T T;
ctx T (app P Q) := ctx TP \/ ctx T Q;
nabla x, ctx (T x) (abs CT) :=
nabla x, ctx (T x) (CT x).
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Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

ctx T CT holds iff there exists a context C such that C(T) = CT.

Define ctx : tm -> tm —-> prop by
ctx T T;
ctx T (app P Q) := ctx TP \/ ctx T Q;
nabla x, ctx (T x) (abs CT) :=
nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21/30



Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C(T) = CT and C(U) = CU.

22 /30



Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C(T) = CT and C(U) = CU.

Define ctxs : tm -> tm -> tm -> tm -> prop by
ctxs T T U U;
ctxs T (app A B) U (app C D) :=
(ctxs TAUC /\ B=D /\ tm D)
\/ (ctxs TBUD /\ A=C/\ tm C);
nabla x, ctxs (T x) (abs CT) (U x) (abs CU):=
nabla y, ctxs (T y) (CT y) (U y) (CU y).

22 /30



Formalizing Contextual Preorder

Define ctx_preord : tm -> tm -> prop by
ctx_preord P Q := forall CP CQ,
tm P -> tm Q ->
ctxs P CP Q CQ -> head_terminating CP ->
head_terminating CQ.

P> ctx_preord is stable by contexts.

v

ctx_preord is invariant under computation.

P> ctx_preord has h-diverging terms as minimums.
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Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.
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Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

Unfolded statement:

Light Genericity: let v be head-diverging and C such that C(u) is
head-normalizing then C(t) is head-normalizing for all t € A.
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Light Genericity
Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.
Unfolded statement:
Light Genericity: let v be head-diverging and C such that C(u) is

head-normalizing then C(t) is head-normalizing for all t € A.

Main difficulty: reasoning with contexts and reduction.
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Direct proof of Light Genericity

Takahashi proves Barendregt's heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.
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Direct proof of Light Genericity

Takahashi proves Barendregt's heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!
Light genericity as substitution: let v be h-diverging and t such

that t{x«<u} is h-normalizing then t{x«s} is h-normalizing for all
se.
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Takahashi's Trick in CbN

C(u) > tc{x<uc}
C(s) <> tc{xesch

Trick:
Let fv(u) Ufv(s) = {x1,..., Xk}, and y a fresh variable.

» uc = Axq.... xk.u and s¢ = Axy....Ax,.s are closed terms.

» Consider tc := C(yx1...xx), and note that:

tc{y<uc} = Cluexy ... xk)
= C{(Ax1.... Axk.u)x1...xk)
—>/’§ C(u)

» v is h-diverging implies that uc is also h-diverging.
» C(u) is h-normalizing if and only if t{y<uc} is. (also true for
s and s¢)

by the Head Normalization Theorem (and confluence, etc.)

26 /30



Formalizing Takahashi's Trick
C(u) < tc{x<uc}

Disentangling:
For any context C, there exist t¢ and a variable x ¢ £v(C) such
that:
> for all terms u there exists uc such that tc{x<uc} —3 C{u).
(Moreover, if u is head divergent then uc is head divergent.)

Some small technicalities in Abella...
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Formalizing Takahashi's Trick

C(u) < tc{x<uc}

Disentangling:
For any context C, there exist t¢ and a variable x ¢ £v(C) such
that:
> for all terms u there exists uc such that tc{x<uc} —3 C{u).
(Moreover, if u is head divergent then uc is head divergent.)

Some small technicalities in Abella...

Substitution Preorder:
u 3% s holds if
for all terms t, variables x, and lists of variables y1, ..., y,
with n > 0,
t{x<Ay1....A\yn.u} —y-terminating implies that
t{x<Ay1....A\yn.S} is —p-terminating

The substitution preorder coincides with the contextual preorder.
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Maximality

Another result in Barendregt's book:

Maximality of the Head Contextual Preorder:
if ZBo C <7 then <7 is inconsistent.

<« The head contextual preorder is the largest sensible theory to
study. >
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Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If THt<uandt 28, u
Then 3C such that
» C(t) is h-normalizing and
» C(u) is h-diverging.
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Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If THt<uandt 28, u
Then 3C such that
» C(t) is h-normalizing and
» C(u) is h-diverging.

In general, not valid in intuistionistic logic

V¢ # 3¢
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Conclusions

» A small subset of Barendregt's book formalized (many
rewriting theorems hidden in this presentation)

» Easy proofs that rely mostly on rewriting/operational results
» Faithful formalization of the pen-and-paper proofs

Future work:
» Constructive Contextual (In)Equivalence?

» Many results adapt to the theory of the Call-by-Value calculus
(haven't formalized these)

» Other results on program equivalence to be made formal
(mechanizing Bohm trees and Bohm 's theorem?
= intensional presentation of contextual equivalence)
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» A small subset of Barendregt's book formalized (many
rewriting theorems hidden in this presentation)

» Easy proofs that rely mostly on rewriting/operational results
» Faithful formalization of the pen-and-paper proofs

Future work:
» Constructive Contextual (In)Equivalence?

» Many results adapt to the theory of the Call-by-Value calculus
(haven't formalized these)

» Other results on program equivalence to be made formal
(mechanizing Bohm trees and Bohm 's theorem?
= intensional presentation of contextual equivalence)

Thank you!
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ﬁ Masako Takahashi.
A simple proof of the genericity lemma, pages 117-118.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.
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