Barendregt's Theory of the A-Calculus,
Refreshed and Formalized

Adrienne Lancelot!?, Beniamino Accattolil, Maxime
Vemclefs3

Ynria & LIX, Ecole Polytechnique
2|RIF, Université Paris Cité & CNRS
3Independent

September 29th 2025 - ITP

1/30

Outline

Barendregt's Theory of the Lambda Calculus

2/30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

3/30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f <prr g ifVneN, f(n)= L or f(n) =y g(n)

3/30

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f <prr g ifVneN, f(n)= L or f(n) =y g(n)

f1 : n— L is the minimum PRF function for <pgr

3/30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

4/30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

4/30

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.

4/30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

5/30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?

A computation that never ends? Q!

Q= (Axxx)(Ax.xx) =g (Axxx)(Ax.xx) =g - -

5/30

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?

A computation that never ends? Q!

Q= (Axxx)(Ax.xx) =g (Axxx)(Ax.xx) =g - -

Now, what is the equivalence class of undefined/2 7

5/30

A first naive attempt

Undefined represents a computation that never ends.

6/30

A first naive attempt

Undefined represents a computation that never ends.

» undefined terms = (-diverging terms?

6/30

A first naive attempt

Undefined represents a computation that never ends.
» undefined terms = (-diverging terms?

Surprisingly, this would lead to an inconsistency.

>> If all S-diverging terms are equated in an equational theory,
then this theory equates all terms.

6/30

[-diverging terms may be very different

Indeed, let us look at two (-diverging terms

fix and

¥ \%

NF.F (fix f) Q

¥ \%
AFF(F (fix F)) Q
¥ \%
AFF(F (F (fixf))) Q
¥ %

ML (F (F (F..)))) Q

T +8
Recursion does not carry the same meaning as looping on itself.

7/30

A second attempt

Instead, one might consider a more restrained reduction

8/30

A second attempt

Instead, one might consider a more restrained reduction

» undefined terms = head-diverging terms?

8/30

A second attempt

Instead, one might consider a more restrained reduction
» undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.

8/30

[-diverging terms may be very different

Fixpoint combinators are head-normalizing.

fix and Q
In dn
M. f (fix F) Q

Vh Ih

Recursion and looping are nicely separated by head reduction.

9/30

Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.

10/30

Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.

An equational theory is an equivalence relation =7 such that:
» Invariance under Computation: if t —3 u then t =7 u
» Stability by Contexts: if t =7 u then VC, C(t) =7 C(u).

10/30

Consistency

A relation R C A x Ais consistent if there exists t, u € A such that

(t,u) € R.

An equational theory is an equivalence relation =7 such that:
» Invariance under Computation: if t —3 u then t =7 u
» Stability by Contexts: if t =7 u then VC, C(t) =7 C(u).

To validate the choice of undefined terms: [s there a
consistent equational theory where undefined terms are collapsed?

10/30

What is Genericity?

Undefined terms are black holes for the evaluation process.

n *

11/30

What is Genericity?

Undefined terms are black holes for the evaluation process.
n *

If a program awaits the evaluation of an undefined sub-term

C

C

@

Then it will be unable to produce a result

C

C

C

n *
4> @ 7

11/30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

12/ 30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

C C .

" o 'n Then | s | ——=n

12 /30

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

C C .

" o 'n Then | s | ——=n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 /30

Refreshed and Formalized

We survey some results of Barendregt's theory of the A-calculus
(1984).

Refreshed:
» Takahashi's proof of genericity (1994)

» Accattoli et al. study of normalization

STUDIES INLOGIC
AND

The Tambde (2019)
Caleulus

Its Syntax and Semanties

13/30

Refreshed and Formalized

We survey some results of Barendregt's theory of the A-calculus
(1984).

Refreshed:
» Takahashi's proof of genericity (1994)

» Accattoli et al. study of normalization

STUDIES IN LOGIC
AND

The Lap®™da (2019)
. Cotclfus
@“"‘ Formalized with the Abella proof assistant:

P> Reasoning with binders close to paper

> Representing contexts (with possible
captures)

13/30

Proving/Formalizing Genericity

A Simple Proof of the Genericity Lemma

Masalo Takahashi
Department o Infermation Science

Abstract. A short dirct proo s given for th fordamental property of vt Mterms i A
s uneiable e 0 O] skt GIN] s st fo ey e . (e O |
Sands o o sebirary cont

1. Preliminaries

i wote s 1

term of the form Ax.yM (more precisly Gz M) D)) o some
nm 0 sl v Bk noma o (. o) o e o
e A1 e A1 i i T ohin s e ot s of i e (e

531- 1)
(1) A s solable if and anly i V2, 3x, 3Q((x.M)Q =5 P,
22 h2M i colabe i nd cnly i s 31
@il = N] e sl e s s 1.
(AT e st '

o in 8 normal form (-, o short) i ecarily defvd st o h form M5 where
M a (possibly null sequence of erms in 8-n

2. Propositions
First we prove special cassof the geneicty e

Kemma L. Lt A,,P bt with A wschoble and X n . Then Pl i 3] = N mpes

Ple = M =5 N lor any M

iy, W et emma by nduction onthe srcure o V. Suppoe Pl = M|

v - where n > 0 and each N, is ia A1 (Here, e s chen) T

Sree ¥ i slable, P i i slvable i) nhmc and b o bty hu

st be diffret. (Foorherwie Plz . MP for some P, and Ple
)

whete P: = Pz 1= M](
Church Rosser theorem that

1.2,

9) Shee A
Ni=12,

o nd o Wik ow of sty we oy

Juws N
s, we et

M =5 (u)fz
R e

Ol = M
M(Fife = M)..(Pulr = M)
=5 dy.2 N Na..No m N,

This proves the lemma. ©

18

Lemma 2. (1] 1432¢ Gy e, Lot M b sl rm C | b et ek
e G s i Ther ciir) or
ey e & semonc of e vals s MM Tae e it i n

C|M nor cwn. ik CEyT Than snce Ay M and 3.1 s cosed ter

re = antlm oy sl

Plei= dy.)= Cl0y M)
T e a0 e s Pl =)= L) _,mmmmn,;,, Here dy M is
unsolvable because 50 15 M. Hence by appiyng lemma 1 ve gt Plz = Ay, M’} =5 N, which implis
Chij = M. ©

orelley 8, M 1o wscable s CIM) s bl hen CAF] s bl o oy 1.

has a fat. Then
e (ppld o h conext oGl D) we v (o CIMIIN has 0 8 o ay M. T
meas (Ax CIM)N s salvable, and consequently C[M'] s solvabie,

on Bohm trees (€[] Chapters 10 and 14)

Reference
1] H. P. Basendregt, The Lambda Coleukss (North-Holland 1984).

14 /30

Proving/Formalizing Genericity

A Simple Proof of the Genericity Lemma

Masalo Takahashi

Depariment o oo Sce

Abstract. A short dirct proo s given for th fordamental property of vt Mterms i A
i an unscivable erm and CIM] i salvable,the, CIN] i soabl for any Mterm . (Hore Cf |
Sands for n arbirary comext

1. Preliminaries

A e in i note means o term, which b . or M, (e M, v erms nd
£ 16 variable) Unless otherwise staed, capital leters M abitrar M

o by ml) e of e 15 1ot a3 (pns ool s o
bl W e L] tesendd et n e Sl

e form AxyM (more precisely Gz M) D)) o some
o 01t b Feod ol o (. o Sk 165 s A s et B s 0 o
e A"), he M 1 alled st The v el v e o i v (1

1)

T
(2) Az M is solvable if and only i 50 is M.

((xM)Q =3 P)

nf for short) is recursively dofised as & trm of the form Jx.yM where
M a (possibly null) sequence of ferms in f-nt

2. Propositions

E " b i

Kemma L. Lt A,,P bt with A wschoble and X n . Then Pl i 3] = N mpes
Ple = M =5 N for any

P, WA e te e by Inductonon the st o . Sopgse Pl =)
. where n > 0 and cach N, is in A1t (Her e s chen) T
ince N s soiabl, P i ks sl by (3) o and e o i ey Mo . e 2 and o
must e diffrent. (For otherwise Pl P v some Pt Pl | o))
X prion.) Ple =] 4

1,2,..,p). Since Pfz := M] 2N, Ns o, e o o e
Ni(i=1,2,..,m) and p = . Without lossof gonerality we may also

A1 = Ol = M1 = duo = N
aad the inductive hypothesis, we et

shee 1 = Pl =
huch-Rosser theorem that

o e o P 1
ay M. In this case,

b Ple

T2
Plei= M mp QB Pl = M)

= MRz = MY(Psfe = M')...(Paf = M)
= NNy Nam N,

This proves the lemma. ©

"8

Lemma 2. (1] 1432¢ Gy e, Lot M b sl rm C | b et ek
G e G = i
'y be & sonc of e sls i AL Tk e it i

GOt v T e ' G en snc 3 s .41 s o v

re = antlm oy sl

Plei= dy.)= Cl0y M)
om0 berdr e le = M) =3 M) = X b e b . e b
unsolvable because o s M. Hence by applyng lemima 1 we g Pl = Ay M’} =5 N, which i
CiM =5l ©
Corslry . 1411 bl and I s e, ten A e oy '

gt Then

o e (ppld o h coment Dol D) v Evow (O M) N bas 2 Bt o 4 T

meas (Ax CIM)N s salvable, and consequently C[M'] s solvabie,

on Bohum trees (L[] Chapters 10 and 14)

Reference
1] H. P. Basendregt, The Lambda Coleukss (North-Holland 1984).

Main Lemma

~15 lines of text

~90 lines of Abella

~140 tactics

14 /30

Proving/Formalizing Genericity

18
A Simple Proof of the Genericity Lemma e 2. (1 14524 Gy) Lot b g bt e, C] e et v
G s e €] = O e
o e 1 b s seanc of o sls i A Tk e e e
Masabo Takahashi. c(m nor C[M?), and lot P = Cley]. Then since Ay.M and Ay. M’ are closed terms,
Deparient of Iformtion Since rem sttt el
Tt st of Techil ;
ctapios, et Tk 15 opan Ple = ay.M) = G020
hose-dp. The term Ay.M therefore satisfies P[x Ay.M) =5 C[M] =5 N for some N in f-nf. Here y. M
ansovable because 013 M. Hence by appving emna 1 we gt Pl = M1 5 N, whih i
Absteact, A shot it proo i givenfr 1he fndamental roperty of sl Mt i Al Cii=s clhr). o
o il o o CTM) e s, e, CLV) e i o s e . e €1 1
i o iy ot Corollary 3. If A is unschableand 1] s slvabl, then C(AF] s solabl fox any
ot S OIM) s by (1) s e e N etk Do CIVIA b 3. Then
by emma 2 (appied o the conext (1x G N, we know (1w CIMN has & o fo any M. This

meas (Ax CIM)N s salvable, and consequently C[M'] s solvabie,

1. Preliminaries
on Bohum trees (L[] Chapters 10 and 14)
e i i note mene o e, which it 51231 or AU, (nhee M ar s
£ it variable) Unless otherwise staed, capital letters i for acbitrary terms, M.,

o (pouity) seanences of s 130 o v, and X, (pot) e o Reference
el W et] thestendrd xt n e Bl

e of e fom M. (e el oy (ke (MM M) o ome U] H. P. Basendsegt, The Lambda Coleukus (North Holland 1084).
o 01t b Feod ol o (. o Sk 165 s A s et B s 0 o

e A1 e A1 i i T ohin s e ot s of i e (e

Py I . .
1? o “,’?QZTJ’“QL":‘ it A Preliminaries:
e s 1.

Mz := N] is solvab .
e § i bt e e e ~2000 lines of Abella

M a (possibly null sequence of erms in 8-n

2. Propositions

gy ———re—— Main Lemma

Lemma 1.

Plrim 3] =5 N to azy M
iy, W e th emma by ndcton o the srcae o . Seppose i =] .
e wher 3 e b . (v = i e e ch e T

inc i bl P s sl by () abore, and eves s b, sy A +FAP . e 2 and o -~ 1 n e S 0 eX
s be st (Fos cxberwie Pls < M] =5 W MP fo some B, and Ple o \ﬂwuld by @ i)
S sl Mk Cteis s i) Fie e Pl {P;. py

o P = Rl p

fi oy @Z,,i?;;‘;uﬁ:;;:,?f S ___9 0 'l_ l nes o f A b e 'l_ 'L a

g = . Tn s cae wobave Pl = M1 =y Ol = M1 2 huo =
0. then from the fact Py = 1] o e i b ve 5

1,2,...,m) for any M". In this ease, - .
i ~140 tactics
= Auwo(Pifz = MY(Polz = M))...(Pofz = M)
=5 Ay.:NiNa..Na

o

This proves the lemma. ©

14 /30

Proving/Formalizing Genericity

"8

e A b A it e e s
= dy.M') = Cl(Ay-M")y) =5 C[M'].
e asnies ~00 1ines of Abella vt

A Simple Proof of the Genericity Lemma Temma 2. (1] 14524 Generiiy esos) Let M be a sasolvable trm, as C]) be o contxt such
.) T 32 T =y Gy
Takahashi's trick i s GO e Con et i 34 s M e b
. . Plz = Xy.M] = C[(Ay.M)y] =5 C[M],
P
(Disentangling) i b e e e)y =13 e 35 e
o - e vy i s 1 oo 5 le o o M) s N i
B

e iy o Corslry . 1411 bl and I s e, ten A e oy '

ot Then

o e (ppld o h coment Dol D) v Evow (O M) N b ot oy 35 Th
means (x CIMAN i slvable, nd consequently G savable

1. Preliminaries
on Bohm trees (€[] Chapters 10 and 14)
e in i note means o e, wich it 5 or M, (e M, e erms nd
i for acbitrary terms, M.,
o (sl) sepences o Reference.

1] H. P. Basendregt, The Lambda Coleukss (North-Holland 1984).

at'e, M
m.,.. A), then s called sl Th lloin e imorn s of vt e (1
1)

32 ﬁi T A Preliminaries:

@i s

NJis en .
e § i bt e e e ~2000 lines of Abella

M a (possibly null sequence of erms in 8-n

2. Propositions

o .
JMMMMWWWMNMMMMWMW Main Lemma

Ple = M =5 N lor any M
Prof. W prose the e m.m Inducon on heseactue o . Suppose Pl =] = X, and ¥
n At (Her

e ~15 lines of text

wwwmﬁ%ﬁﬁmﬁ ~90 lines of Abella
~140 tactics

NI s (.
e llmn fom the hu Ple and the inductive hypothesis, e get
EEvit on) for aay ", In this

Ple = 3] =5 (u.oP P /-)-
= ARl
=3 dy.2 NN,

M)-.(Pofe = M)

M

This proves the lemma. ©

14 /30

Some Related Work

Many other formal developments of the theory of the A-calculus

<+ Formalization of parts of Krivine's book
(1990) in Rocq by Larchey-Wendling

» Countless formalized proofs of confluence
» The previous talk!
> ...

15 /30

Contextual Preorder

The head (open) contextual preorder is defined as:

t 3po u if for all contexts C, C(t) is h-normalizing implies
C(u) is h-normalizing.

16 /30

Contextual Preorder

The head (open) contextual preorder is defined as:

t 3po u if for all contexts C, C(t) is h-normalizing implies
C(u) is h-normalizing.

P A natural extensional inequational theory

The only non-trivial point is the inclusion of -conversion.

16 / 30

Contextual Preorder

The head (open) contextual preorder is defined as:
t 3po u if for all contexts C, C(t) is h-normalizing implies
C(u) is h-normalizing.

P A natural extensional inequational theory

The only non-trivial point is the inclusion of -conversion.

» Strongly Connected with Genericity:

Genericity says that “head diverging terms are minimums for
the head contextual preorder”.

16 / 30

Outline

Formalizing in Abella

17 /30

Formalizing A

TERMS t,u = x| Ax.t]|tu

18 /30

Formalizing A
TERMS t,u = x| Ax.t]|tu

A-terms and the predicate for inducting on them in Abella:

Kind tm type.

Type abs (tm -> tm) -> tm.
Type app tm -> tm -> tm.

Define is_tm : tm -> prop by
nabla x, is_tm x;
is_tm (abs T) := nabla x, is_tm (T x);
is_tm (app T U) := is_tm T /\ is_tm U.

18 /30

Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd

19/30

Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd

Define beta : tm -> tm -> prop by
beta (app (abs T) U) (T U);
beta (app T U) (app T’ U) := beta T T’;
beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);
beta (app T U) (app T U’) := beta U U’.

19/30

Formalizing A and (3

t—pt t—pt u—gu
(Ax.t)u =g t{x—u} tu—gtu Ix.t—gIxt tu—gtd

Define beta : tm -> tm -> prop by
beta (app (abs T) U) (T U);
beta (app T U) (app T’ U) := beta T T’;
beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);
beta (app T U) (app T U’) := beta U U’.

t —nhu t—nu
(Ax.t)u —n t{x<u} ts —p US AX.t —n AX.u

19/30

Formalizing \-theories

A A-theory is stable by contexts...

20/30

Formalizing A-theories

A A-theory is stable by contexts...

Contextual equivalence...

20/30

Formalizing A-theories

A A-theory is stable by contexts...
Contextual equivalence...

We need to formalize contexts

20/30

Formalizing Contexts

A context is a term with a hole?

21/30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

21/30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

ctx T CT holds iff there exists a context C such that C(T) = CT.

21/30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

ctx T CT holds iff there exists a context C such that C(T) = CT.

Define ctx : tm -> tm —-> prop by
ctx T T;
ctx T (app P Q) := ctx TP \/ ctx T Q;
nabla x, ctx (T x) (abs CT) :=
nabla x, ctx (T x) (CT x).

21/30

Formalizing Contexts

A context is a term with a hole? Not really...
Set C := Ax.(-), then C(y) = Ax.y and C(x) = Ax.x = I.

ctx T CT holds iff there exists a context C such that C(T) = CT.

Define ctx : tm -> tm —-> prop by
ctx T T;
ctx T (app P Q) := ctx TP \/ ctx T Q;
nabla x, ctx (T x) (abs CT) :=
nabla x, ctx (T x) (CT x).

How to apply a context to two different terms?

21/30

Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C(T) = CT and C(U) = CU.

22 /30

Formalizing Contexts

ctxs T CT U CU holds
iff there exists a context C such that C(T) = CT and C(U) = CU.

Define ctxs : tm -> tm -> tm -> tm -> prop by
ctxs T T U U;
ctxs T (app A B) U (app C D) :=
(ctxs TAUC /\ B=D /\ tm D)
\/ (ctxs TBUD /\ A=C/\ tm C);
nabla x, ctxs (T x) (abs CT) (U x) (abs CU):=
nabla y, ctxs (T y) (CT y) (U y) (CU y).

22 /30

Formalizing Contextual Preorder

Define ctx_preord : tm -> tm -> prop by
ctx_preord P Q := forall CP CQ,
tm P -> tm Q ->
ctxs P CP Q CQ -> head_terminating CP ->
head_terminating CQ.

P> ctx_preord is stable by contexts.

v

ctx_preord is invariant under computation.

P> ctx_preord has h-diverging terms as minimums.

23 /30

Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

24 /30

Light Genericity

Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.

Unfolded statement:

Light Genericity: let v be head-diverging and C such that C(u) is
head-normalizing then C(t) is head-normalizing for all t € A.

24 /30

Light Genericity
Light Genericity: head-diverging terms are minimum for the head
open contextual preorder.
Unfolded statement:
Light Genericity: let v be head-diverging and C such that C(u) is

head-normalizing then C(t) is head-normalizing for all t € A.

Main difficulty: reasoning with contexts and reduction.

24 /30

Direct proof of Light Genericity

Takahashi proves Barendregt's heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

25 /30

Direct proof of Light Genericity

Takahashi proves Barendregt's heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!

25 /30

Direct proof of Light Genericity

Takahashi proves Barendregt's heavy genericity with a very short
proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!
Light genericity as substitution: let v be h-diverging and t such

that t{x«<u} is h-normalizing then t{x«s} is h-normalizing for all
se.

25 /30

Takahashi's Trick in CbN

C(u) > tc{x<uc}
C(s) <> tc{xesch

Trick:
Let fv(u) Ufv(s) = {x1,..., Xk}, and y a fresh variable.

» uc = Axq.... xk.u and s¢ = Axy....Ax,.s are closed terms.

» Consider tc := C(yx1...xx), and note that:

tc{y<uc} = Cluexy ... xk)
= C{(Ax1.... Axk.u)x1...xk)
—>/’§ C(u)

» v is h-diverging implies that uc is also h-diverging.
» C(u) is h-normalizing if and only if t{y<uc} is. (also true for
s and s¢)

by the Head Normalization Theorem (and confluence, etc.)

26 /30

Formalizing Takahashi's Trick
C(u) < tc{x<uc}

Disentangling:
For any context C, there exist t¢ and a variable x ¢ £v(C) such
that:
> for all terms u there exists uc such that tc{x<uc} —3 C{u).
(Moreover, if u is head divergent then uc is head divergent.)

Some small technicalities in Abella...

27 /30

Formalizing Takahashi's Trick

C(u) < tc{x<uc}

Disentangling:
For any context C, there exist t¢ and a variable x ¢ £v(C) such
that:
> for all terms u there exists uc such that tc{x<uc} —3 C{u).
(Moreover, if u is head divergent then uc is head divergent.)

Some small technicalities in Abella...

Substitution Preorder:
u 3% s holds if
for all terms t, variables x, and lists of variables y1, ..., y,
with n > 0,
t{x<Ay1....A\yn.u} —y-terminating implies that
t{x<Ay1....A\yn.S} is —p-terminating

The substitution preorder coincides with the contextual preorder.

27 /30

Maximality

Another result in Barendregt's book:

Maximality of the Head Contextual Preorder:
if ZBo C <7 then <7 is inconsistent.

<« The head contextual preorder is the largest sensible theory to
study. >

28 /30

Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If THt<uandt 28, u
Then 3C such that
» C(t) is h-normalizing and
» C(u) is h-diverging.

29/30

Constructive Contextual Equivalence?

Proofs of maximality always starts by:

If THt<uandt 28, u
Then 3C such that
» C(t) is h-normalizing and
» C(u) is h-diverging.

In general, not valid in intuistionistic logic

V¢ # 3¢

29 /30

Conclusions

» A small subset of Barendregt's book formalized (many
rewriting theorems hidden in this presentation)

» Easy proofs that rely mostly on rewriting/operational results
» Faithful formalization of the pen-and-paper proofs

Future work:
» Constructive Contextual (In)Equivalence?

» Many results adapt to the theory of the Call-by-Value calculus
(haven't formalized these)

» Other results on program equivalence to be made formal
(mechanizing Bohm trees and Bohm 's theorem?
= intensional presentation of contextual equivalence)

30/30

Conclusions

» A small subset of Barendregt's book formalized (many
rewriting theorems hidden in this presentation)

» Easy proofs that rely mostly on rewriting/operational results
» Faithful formalization of the pen-and-paper proofs

Future work:
» Constructive Contextual (In)Equivalence?

» Many results adapt to the theory of the Call-by-Value calculus
(haven't formalized these)

» Other results on program equivalence to be made formal
(mechanizing Bohm trees and Bohm 's theorem?
= intensional presentation of contextual equivalence)

Thank you!

30/30

ﬁ Masako Takahashi.
A simple proof of the genericity lemma, pages 117-118.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

30/30

	Barendregt's Theory of the Lambda Calculus
	Formalizing in Abella

