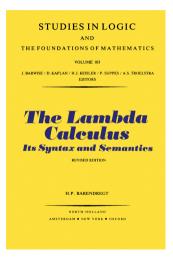
Mechanising Böhm Trees and $\lambda\eta$ -Completeness

Chun Tian¹ Michael Norrish¹

¹School of Computing, The Australian National University (ANU)

September 29, 2025

Project Context

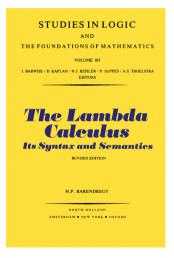


Long term, slow motion campaign to mechanise \sim 600pp of famous fundamental computer science.

Title notwithstanding, very much the untyped λ -calulus.

Proofs mostly from this original; some use of more recent contributions (e.g., Takahashi).

Project Context



Long term, slow motion campaign to mechanise \sim 600pp of famous fundamental computer science.

Title notwithstanding, very much the untyped λ -calulus.

Proofs mostly from this original; some use of more recent contributions (e.g., Takahashi).

Earlier work proved standardisation, finiteness of developments, CR, ...

The set of λ -terms Λ is defined inductively:

- $x \in \Lambda$; (x is an arbitrary variable)
- $M \in \Lambda \Rightarrow (\lambda x. M) \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$;

Assert α -conversion, a syntactic identity :

• $\lambda x. M \equiv \lambda y. M[x := y]$

where y is not free or bound in M, so $(\lambda x. x) \equiv (\lambda y. y)$

The set of λ -terms Λ is defined inductively:

- $x \in \Lambda$; (x is an arbitrary variable)
- $M \in \Lambda \Rightarrow (\lambda x. M) \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$;

The theory λ has as formulas M = N where $M, N \in \Lambda$ and is axiomatized by the following axioms (rules):

- $(\lambda x. M)N = M[x := N];$ $(\beta$ -conversion)
- \bullet M=M:
- $\bullet \ M = N \Rightarrow N = M;$
- $M = N \wedge N = L \Rightarrow M = L$;
- $\bullet \ \ M=N\Rightarrow MZ=NZ;$
- $M = N \Rightarrow ZM = ZN$;
- $M = N \Rightarrow \lambda x. M = \lambda x. N.$

Assert α -conversion, a syntactic identity :

 $\lambda x. M \equiv \lambda y. M[x := y]$

where y is not free or bound in M, so $(\lambda x. x) \equiv (\lambda y. y)$

The set of λ -terms Λ is defined inductively:

- $x \in \Lambda$; (x is an arbitrary variable)
- $M \in \Lambda \Rightarrow (\lambda x. M) \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$;

The theory λ has as formulas M = N where $M, N \in \Lambda$ and is axiomatized by the following axioms (rules):

- $(\lambda x. M)N = M[x := N];$ $(\beta$ -conversion)
- \bullet M = M;
- $\bullet \ M = N \Rightarrow N = M;$
- $M = N \wedge N = L \Rightarrow M = L$;
- $M = N \Rightarrow MZ = NZ$;
- $M = N \Rightarrow ZM = ZN$;
- $M = N \Rightarrow \lambda x. M = \lambda x. N.$

Assert α -conversion, a syntactic identity :

• $\lambda x. M \equiv \lambda y. M[x := y]$

where y is not free or bound in M, so $(\lambda x. x) \equiv (\lambda y. y)$

The theory $\lambda \eta$ is defined by adding one rule into λ :

• λx . Mx = M (x is not free in M); (η -conversion)

The set of λ -terms Λ is defined inductively:

- $x \in \Lambda$; (x is an arbitrary variable)
- $M \in \Lambda \Rightarrow (\lambda x. M) \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$;

The theory λ has as formulas M = N where $M, N \in \Lambda$ and is axiomatized by the following axioms (rules):

- $(\lambda x. M)N = M[x := N];$ (β -conversion)
- \bullet M = M;
- $\bullet \ M = N \Rightarrow N = M;$
- $M = N \wedge N = L \Rightarrow M = L$;
- $M = N \Rightarrow MZ = NZ$;
- $M = N \Rightarrow ZM = ZN$;
- $M = N \Rightarrow \lambda \times M = \lambda \times N$

Assert α -conversion, a syntactic identity :

• $\lambda x. M \equiv \lambda y. M[x := y]$

where y is not free or bound in M, so $(\lambda x. x) \equiv (\lambda y. y)$

The theory $\lambda \eta$ is defined by adding one rule into λ :

• λx . Mx = M (x is not free in M); (η -conversion)

Provability in λ of an equation M=N is denoted by $\lambda \vdash M=N$, or $M=_{\beta}N$. Similarly, provability in $\lambda \eta$ is denoted by $\lambda \eta \vdash M=N$, or $M=_{\beta \eta}N$.

Other λ -theories \mathcal{T} are λ with different extra axioms, e.g. $\lambda + (P = Q)$ is the theory adding P = Q into λ . In this case, e.g., $\lambda + (P = Q) \vdash \lambda x$. $P = \lambda x$. Q.

Consistency and Completeness of λ -theories

Consistency ("theory is not useless/vacuous")

A formal theory \mathcal{T} (with equations as formulas) is consistent (notation: $\operatorname{Con}(\mathcal{T})$) if \mathcal{T} does not prove every closed equation. Else \mathcal{T} is inconsistent.

If equal in \mathcal{T} , Church-Rosser (formalised in many systems) would give combinators S and K a common reduct. As both are in β -normal form, the common reduct would be themselves. But S $\not\equiv$ K, so $\lambda \not\vdash S = K$, and so $\operatorname{Con}(\lambda)$ (and $\operatorname{Con}(\lambda \eta)$ similarly).

Consistency and Completeness of λ -theories

Consistency ("theory is not useless/vacuous")

A formal theory \mathcal{T} (with equations as formulas) is consistent (notation: $\operatorname{Con}(\mathcal{T})$) if \mathcal{T} does not prove every closed equation. Else \mathcal{T} is inconsistent.

If equal in \mathcal{T} , Church-Rosser (formalised in many systems) would give combinators S and K a common reduct. As both are in β -normal form, the common reduct would be themselves. But S $\not\equiv$ K, so $\lambda \not\vdash S = K$, and so $\operatorname{Con}(\lambda)$ (and $\operatorname{Con}(\lambda \eta)$ similarly).

(Hilbert-Post) Completeness of $\lambda\eta$ ("you can prove anything that's right" or "Equational theory is 'full'")

Suppose M, N have $\beta \eta$ -normal forms. Then either $\lambda \eta \vdash M = N$ or $\lambda \eta + (M = N)$ is inconsistent. This is an (easy) corollary of Böhm's separability theorem from 1968^a, never formalised.

^aC. Böhm. Alcune proprietà delle forme β - η -normali nel λ -k-calcolo. Pubblicazioni dell'Instituto per le Applicazioni del Calcolo, 696:1–19, 1968

Outline of this work

- We (first ever) successfully formalised (mechanised) $\lambda\eta$ -completeness in HOL4, following Barendregt¹.
- We did NOT fully formalise Böhm's separability theorem (full version is still in progress), but only
 obtained (with less effort) a restricted version (with extra antecedents), sufficient to prove
 completeness.
- From this restricted version of the separability theorem to $\lambda \eta$ -completeness, we have a novel proof, differing from Barendregt (and Böhm).
- The modern proof of the separability theorem (retold by Barendregt) involves a coinductive data structure called the Böhm tree, which is hard to formalise. We formally defined it in a "first-order" style, and used it to prove the separability theorem.
- Our formal Böhm trees require a novel (smart) way of allocating fresh names, possibly useful for other purposes.

C. Tian and M. Norrish (ANU)

¹H. P. Barendregt. *The Lambda Calculus, its Syntax and Semantics*, volume 40 of *Studies in Logic*. North-Holland Publishing Company, 1984

Preliminaries: λ -terms by Nominal Datatype

The existing 2 λ -calculus mechanisation in HOL4 provides the type term with three constructors:

- VAR x for the λ -term made of a single variable x (whose type is string);
- LAM x t for the abstraction λx . t where t is another λ -term and x is a string;
- $t \cdot t'$ (or APP $t \cdot t'$) for an applications such as $t \cdot t'$ where t and t' are λ -terms.

The type term is *nominal*: terms which are α -equivalent are equal, e.g.,

$$(\lambda x. x) = (\lambda y. y)$$

or (as a theorem in HOL4):

$$\vdash$$
 LAM "x" (VAR "x") = LAM "y" (VAR "y")

 $^{^2}$ M. Norrish. Mechanising λ -calculus using a classical first order theory of terms with permutations. Higher-Order and Symbolic Computation, 19(2-3):169–195, Sept. 2006

Preliminaries: λ -terms by Nominal Datatype

The existing 2 λ -calculus mechanisation in HOL4 provides the type term with three constructors:

- VAR x for the λ -term made of a single variable x (whose type is string);
- LAM x t for the abstraction λx . t where t is another λ -term and x is a string;
- $t \cdot t'$ (or APP $t \cdot t'$) for an applications such as $t \cdot t'$ where t and t' are λ -terms.

The type term is *nominal*: terms which are α -equivalent are equal, e.g.,

$$(\lambda x. x) = (\lambda y. y)$$

or (as a theorem in HOL4):

$$\vdash$$
 LAM "x" (VAR "x") = LAM "y" (VAR "y")

Proof (by the following basic theorem derived from the nominal package):

$$\vdash$$
 LAM u t_1 = LAM v t_2 \Longleftrightarrow u = v \land t_1 = t_2 \lor u \neq v \land u \sharp t_2 \land t_1 = t_2 t_2

 $^{^2}$ M. Norrish. Mechanising λ -calculus using a classical first order theory of terms with permutations. Higher-Order and Symbolic Computation, 19(2-3):169–195, Sept. 2006

Preliminaries: free names and substitutions

- The set of free names occurring in a term M is FV M. $x \notin FV(M)$ is denoted by $x \sharp M$.
- The result of substituting N for the free occurrences of x in M (textbook notation M[x := N]) is denoted by [N/x] M. For example,

Lemma (Barendregt 2.1.16 (Substitution lemma))

```
If x \not\equiv y and x \notin FV(L), then M[x := N][y := L] \equiv M[y := L][x := N[y := L]].

\vdash x \not\equiv y \land x \not\parallel L \Rightarrow [L/y] ([N/x] M) = [[L/y] N/x] ([L/y] M)
```

Preliminaries: free names and substitutions

- The set of free names occurring in a term M is FV M. $x \notin FV(M)$ is denoted by $x \sharp M$.
- The result of substituting N for the free occurrences of x in M (textbook notation M[x := N]) is denoted by [N/x] M. For example,

Lemma (Barendregt 2.1.16 (Substitution lemma))

```
If x \not\equiv y and x \notin FV(L), then M[x := N][y := L] \equiv M[y := L][x := N[y := L]].

\vdash x \not\equiv y \land x \not\parallel L \Rightarrow [L/y] ([N/x] M) = [[L/y] N/x] ([L/y] M)
```

We also use iterated substitution (ISUB):

```
M ISUB [] \stackrel{\text{def}}{=} M
M ISUB ((s,x)::sxs) \stackrel{\text{def}}{=} [s/x] M ISUB sxs
```

One-step head-reduction is inductively defined by:

$$\frac{M_1 \stackrel{h}{\rightarrow} M_2}{(\lambda v. M) N \stackrel{h}{\rightarrow} M[v := N]} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{\lambda v. M_1 \stackrel{h}{\rightarrow} \lambda v. M_2} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{M_1 N \stackrel{h}{\rightarrow} M_2 N}$$

One-step head-reduction is inductively defined by:

$$\frac{M_1 \stackrel{h}{\rightarrow} M_2}{(\lambda v. M) N \stackrel{h}{\rightarrow} M[v := N]} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{\lambda v. M_1 \stackrel{h}{\rightarrow} \lambda v. M_2} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{M_1 N \stackrel{h}{\rightarrow} M_2 N}$$

• For any λ -term, the above rules uniquely determine a head reduction path, either finite or infinite.

One-step head-reduction is inductively defined by:

$$\frac{M_1 \stackrel{h}{\rightarrow} M_2}{(\lambda v. M) N \stackrel{h}{\rightarrow} M[v := N]} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{\lambda v. M_1 \stackrel{h}{\rightarrow} \lambda v. M_2} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{M_1 N \stackrel{h}{\rightarrow} M_2 N}$$

- For any λ -term, the above rules uniquely determine a head reduction path, either finite or infinite.
- A term M is in head normal form (hnf) if M is of the form $M \equiv \lambda x_0 x_1 \dots x_{n-1}$. $y M_0 M_1 \cdots M_{m-1}$.

One-step head-reduction is inductively defined by:

$$\frac{M_1 \stackrel{h}{\rightarrow} M_2}{(\lambda v. M) N \stackrel{h}{\rightarrow} M[v := N]} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{\lambda v. M_1 \stackrel{h}{\rightarrow} \lambda v. M_2} \frac{M_1 \stackrel{h}{\rightarrow} M_2}{M_1 N \stackrel{h}{\rightarrow} M_2 N}$$

- For any λ -term, the above rules uniquely determine a head reduction path, either finite or infinite.
- A term M is in head normal form (hnf) if M is of the form $M \equiv \lambda x_0 x_1 \dots x_{n-1}$. $y M_0 M_1 \cdots M_{m-1}$.
- A term M has hnf if it's β -equivalent to a head normal form.

Lemma (Barendregt 11.4.8, corollary of the Standardisation Theorem)

A λ -term has hnf iff its head reduction path is finite:

$$\vdash \forall M.$$
 has_hnf $M \iff$ finite (head_reduction_path M)

• Multi-step head reduction $(M \rightarrow_h N)$ is the RTC of one-step head reduction $(M \rightarrow_h N)$.

Principal Head Normal Forms

A term may be β -equivalent to multiple head normal forms (hnf), the principal hnf is particularly important (in the definition of Böhm trees).

Definition (Barendregt 8.3.20)

If M has a hnf, then the last term of the terminating head reduction of M is called the principal head normal form (principal hnf) of M.

```
principal_hnf \stackrel{\mathsf{def}}{=} last \circ head_reduction_path
```

Some properties of principal hnf

$$\vdash$$
 has_hnf $M \Rightarrow$ (principal_hnf $M = N \iff M \rightarrow_h N \land \text{hnf } N$)

$$\vdash$$
 has_hnf $M \Rightarrow \mathrm{FV}$ (principal_hnf M) $\subseteq \mathrm{FV}$ M

$$\vdash$$
 hnf $t \Rightarrow$ principal_hnf (LAM1 xs $t \cdot \cdot MAP \ VAR \ xs) = t$

Solvable Terms; Wadsworth's Theorem

Definition (Barendregt 8.3.1)

A closed term M is solvable if there exist $N_1 \cdots N_n$ such that $M N_1 \cdots N_n =_{\beta} I$ (= $\lambda x.x$). An arbitrary M is solvable if a closure $\lambda \vec{x}$. M of M is solvable (this is independent of the choice of \vec{x}).

```
solvable M \stackrel{\mathsf{def}}{=} \exists M' \ \mathsf{Ns}. \ M' \in \mathsf{closures} \ M \wedge M' \cdots \mathsf{Ns} =_{\beta} \mathsf{I} closures M \stackrel{\mathsf{def}}{=} \{\mathsf{LAMl} \ \mathsf{vs} \ M \ | \ \mathsf{vs} \ | \ \mathsf{ALL\_DISTINCT} \ \mathsf{vs} \wedge \mathsf{FV} \ M \subseteq \mathsf{set} \ \mathsf{vs} \}
```

An example of unsolvable term $((\lambda x. xx)(\lambda x. xx))$:

```
\vdash unsolvable Ω

\vdash Ω = LAM "x" (VAR "x" • VAR "x") • LAM "x" (VAR "x" • VAR "x")
```

Theorem (Barendregt 8.3.14, Wadsworth)

A λ -term is solvable iff it has hnf:

 \vdash solvable $M \iff$ has hnf M

Solvable Terms; Wadsworth's Theorem

Definition (Barendregt 8.3.1)

A closed term M is solvable if there exist $N_1 \cdots N_n$ such that $M N_1 \cdots N_n =_{\beta} I$ (= $\lambda x.x$). An arbitrary M is solvable if a closure $\lambda \vec{x}$. M of M is solvable (this is independent of the choice of \vec{x}).

```
solvable M \stackrel{\mathsf{def}}{=} \exists M' \ \mathsf{Ns}. \ M' \in \mathsf{closures} \ M \land M' \cdots \mathsf{Ns} =_{\beta} \mathsf{I} closures M \stackrel{\mathsf{def}}{=} \{ \mathsf{LAM1} \ \mathit{vs} \ M \ | \ \mathit{vs} \ | \ \mathsf{ALL\_DISTINCT} \ \mathit{vs} \land \mathsf{FV} \ M \subseteq \mathsf{set} \ \mathit{vs} \}
```

An example of unsolvable term $((\lambda x. xx)(\lambda x. xx))$:

```
\vdash unsolvable Ω

\vdash Ω = LAM "x" (VAR "x" • VAR "x") • LAM "x" (VAR "x" • VAR "x")
```

Theorem (Barendregt 8.3.14, Wadsworth)

A λ -term is solvable iff it has hnf:

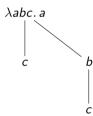
 \vdash solvable $M \iff \text{has_hnf } M$

Two first mechanisations of this announced today!

(Talk after this on paper by Lancelot et al.)

- If a term M is unsolvable, then its Böhm tree, denoted by BT(M), is \bot .
- Otherwise the term has principal hnf $\lambda \vec{x}$. $yM_0 \cdots M_{m-1}$. The root of BT(M) is $\lambda \vec{x}$. y, and the subtrees are $BT(M_0), \dots BT(M_{m-1})$.

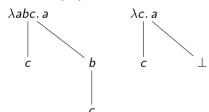
Böhm tree examples for $S \equiv \lambda abc. ac(bc)$,



³Note that $Yf =_{\beta} f(Yf)$ and $Y =_{\beta} \lambda f. f(Yf)$.

- If a term M is unsolvable, then its Böhm tree, denoted by BT(M), is \bot .
- Otherwise the term has principal hnf $\lambda \vec{x}$. $yM_0 \cdots M_{m-1}$. The root of BT(M) is $\lambda \vec{x}$. y, and the subtrees are $BT(M_0), \dots BT(M_{m-1})$.

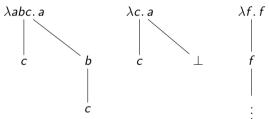
Böhm tree examples for $S \equiv \lambda abc. ac(bc)$, $Sa\Omega = \lambda c. ac\Omega$



³Note that $Yf =_{\beta} f(Yf)$ and $Y =_{\beta} \lambda f. f(Yf)$.

- If a term M is unsolvable, then its Böhm tree, denoted by BT(M), is \bot .
- Otherwise the term has principal hnf $\lambda \vec{x}$. $yM_0 \cdots M_{m-1}$. The root of BT(M) is $\lambda \vec{x}$. y, and the subtrees are $BT(M_0), \dots BT(M_{m-1})$.

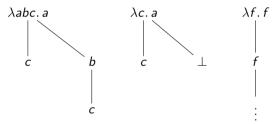
Böhm tree examples for $S \equiv \lambda abc.\ ac(bc),\ Sa\Omega = \lambda c.\ ac\Omega$ and $Y \equiv \lambda f.\ (\lambda x.\ f(xx))(\lambda x.\ f(xx)).^3$



³Note that $Yf =_{\beta} f(Yf)$ and $Y =_{\beta} \lambda f. f(Yf)$.

- If a term M is unsolvable, then its Böhm tree, denoted by BT(M), is \bot .
- Otherwise the term has principal hnf $\lambda \vec{x}$. $yM_0 \cdots M_{m-1}$. The root of BT(M) is $\lambda \vec{x}$. y, and the subtrees are $BT(M_0), \dots BT(M_{m-1})$.

Böhm tree examples for $S \equiv \lambda abc.\ ac(bc),\ Sa\Omega = \lambda c.\ ac\Omega$ and $Y \equiv \lambda f.\ (\lambda x.\ f(xx))(\lambda x.\ f(xx)).^3$



By α -equivalence, different (informal) Böhm trees can be generated from the same term, by choosing different bound variables. (Barendregt suggests Böhm Trees should use de Bruijn indices.)

³Note that $Yf =_{\beta} f(Yf)$ and $Y =_{\beta} \lambda f. f(Yf)$.

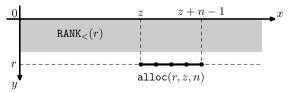
Rank-based fresh name allocation (1)

Given any finite set of names (as strings) X, it's easy to define "NEWS n X" which returns a list of n names excluding X (simply because the set of all strings is infinite.) But this is not enough. The set of all strings is actually countably infinite, therefore can be filled into a 2-dimensional space, indexed by two natural numbers. To define Böhm tree formally, we need "RNEWS r n X", which returns n names at row r while excluding X. This function is based on alloc:

Definition (alloc)

The allocation function alloc allocates n names in the row r, starting at position (r, z). Thus the n allocated names are at coordinates $(r, z), (r, z + 1), \ldots, (r, z + n - 1)$:

alloc
$$r z n \stackrel{\text{def}}{=} \text{GENLIST} (\lambda i. \text{ n2s} (r \otimes (z + i))) n$$



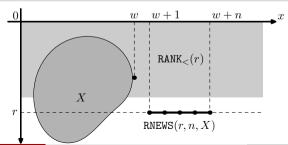
Rank-based fresh name allocation (2)

Definition (RNEWS and RANK<)

```
RNEWS r n X \stackrel{\text{def}}{=} (let z = SUC (string_width X) in alloc r z n) string_width X \stackrel{\text{def}}{=} MAX_SET (IMAGE (nsnd \circ s2n) X)
```

RANK< r is the set of all names whose row is smaller than r:

$$RANK < r \stackrel{\text{def}}{=} \{ v \mid \exists i \ j. \ v = n2s \ (i \otimes j) \land i < r \}$$



```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

Steps for generating one Böhm node (when M is solvable):

1 M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
       in
          (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1 \mathsf{tree\_unfold} (BT_generator X)
```

Steps for generating one Böhm node (when M is solvable):

- **1** M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- n is the length of vs;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

Steps for generating one Böhm node (when M is solvable):

- **1** M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- 2 *n* is the length of *vs*;
- $\mathbf{3}$ vs is allocated at row r, excluding X;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=}  ltree unfold (BT generator X)
```

The type of generated Böhm tree is "BT_node ltree",

Steps for generating one Böhm node (when M is solvable):

- M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- n is the length of vs;
- $\mathbf{3}$ vs is allocated at row r, excluding X;
- 4 M_1 is in form of VAR $y \cdot \cdot M_s$;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

Steps for generating one Böhm node (when M is solvable):

- M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- **2** *n* is the length of *vs*;
- $\mathbf{3}$ vs is allocated at row r, excluding X;
- 4 M_1 is in form of VAR $y \cdot \cdot M_s$;
- **5** Ms is finally obtained from M_1 ;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

Steps for generating one Böhm node (when M is solvable):

- M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- n is the length of vs;
- $\mathbf{3}$ vs is allocated at row r, excluding X;
- 4 M_1 is in form of VAR $y \cdot \cdot \cdot Ms$;
- **5** Ms is finally obtained from M_1 ;
- **6** y is finally obtained from M_1 ;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

Steps for generating one Böhm node (when M is solvable):

- M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- n is the length of vs;
- $\mathbf{3}$ vs is allocated at row r, excluding X;
- 4 M_1 is in form of VAR $y \cdot \cdot \cdot Ms$;
- **5** Ms is finally obtained from M_1 ;
- **6** y is finally obtained from M_1 ;
- 7 I is the list of hnf children as seeds for generating subtrees, each paired with r + 1;

```
BT_generator X (M,r) \stackrel{\mathsf{def}}{=}
   if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1;
         y = hnf_headvar M_1;
         I = MAP (\lambda e. (e,SUC r)) Ms
      in
         (SOME (vs, v), fromList /))
  else (NONE, [])
BT X \stackrel{\mathsf{def}}{=} 1tree unfold (BT generator X)
```

The type of generated Böhm tree is "BT_node ltree", where BT_node is (string list \times string) option.

Steps for generating one Böhm node (when M is solvable):

- M_0 is the principal hnf of M, in form (alpha-equivalent to) LAM1 vs (VAR $y \cdot \cdot \cdot Ms$);
- 2 n is the length of vs;
- $\mathbf{3}$ vs is allocated at row r, excluding X;
- 4 M_1 is in form of VAR $y \cdot \cdot \cdot Ms$;
- **5** Ms is finally obtained from M_1 ;
- **6** y is finally obtained from M_1 ;
- 7 *I* is the list of hnf children as seeds for generating subtrees, each paired with r + 1;
- Instead of LAM1 vs y, the tree node is SOME (vs, y) (or NONE for \bot).

Subterm (dual concept of Böhm tree)

```
subterm X M \cap r \stackrel{\mathsf{def}}{=} SOME (M,r)
subterm X M (i::is) r \stackrel{\mathsf{def}}{=}
  if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAM1_{size} M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1:
         m = I.ENGTH Ms
      in
         if i < m then subterm X (EL i Ms) is (SUC r) else NONE)
  else NONE
```

If M is already in hnf, say LAM1 vs ($y \cdot \cdot Ms$), then "subterm X M [i] r" essentially returns the i-th child of Ms, i.e. EL i Ms, paired with r+1.

Subterm (dual concept of Böhm tree)

```
subterm X M [] r \stackrel{\mathsf{def}}{=} SOME (M.r)
subterm X M (i::is) r \stackrel{\mathsf{def}}{=}
  if solvable M then
     (let
         M_0 = \text{principal\_hnf } M;
         n = LAMl_size M_0;
         vs = RNEWS r n X:
         M_1 = \text{principal\_hnf} (M_0 \cdot \cdot \text{MAP VAR } vs);
         Ms = hnf_children M_1:
         m = LENGTH Ms
      in
         if i < m then subterm X (EL i Ms) is (SUC r) else NONE)
  else NONE
```

If M is already in hnf, say LAM1 vs ($y \cdot \cdot \cdot Ms$), then "subterm X M [i] r" essentially returns the i-th child of Ms, i.e. EL i Ms, paired with r+1.

Connection between Böhm trees and subterms (Barendregt 10.1.15):

```
⊢ FINITE X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land \text{subterm } X M \text{ is } r \neq \text{NONE} \Rightarrow \text{ltree\_lookup (BT' } X M \text{ } r) \text{ is } \neq \text{NONE } \land \text{BT } X \text{ (THE (subterm } X M \text{ } is \text{ } r)) = \text{THE (ltree\_lookup (BT' } X M \text{ } r) \text{ } is)
```

Basic properties of Böhm trees

• Two β -equivalent terms must have literally the same Böhm tree (Barendregt 10.1.6):

```
⊢ FINITE X \wedge \text{FV } M \subseteq X \cup \text{RANK}_{<} r \wedge \text{FV } N \subseteq X \cup \text{RANK}_{<} r \wedge M =_{\beta} N \Rightarrow
BT' X M r = \text{BT'} X N r
```

Basic properties of Böhm trees

- Two β -equivalent terms must have literally the same Böhm tree (Barendregt 10.1.6):
 - ⊢ FINITE $X \wedge \text{FV } M \subseteq X \cup \text{RANK}_{<} r \wedge \text{FV } N \subseteq X \cup \text{RANK}_{<} r \wedge M =_{\beta} N \Rightarrow$ BT' X M r = BT' X N r
- If a term is in β -normal form (bnf), then its Böhm tree must be finite, and without any \perp s:
 - \vdash FINITE $X \land FV M \subseteq X \cup RANK < r \land bnf M <math>\Rightarrow$ ltree_finite (BT' X M r)
 - ⊢ FINITE $X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land \text{bnf } M \land p \in \text{ltree_paths (BT' } X M r) \Rightarrow \text{ltree_el (BT' } X M r) p ≠ SOME ⊥$

Basic properties of Böhm trees

- Two β -equivalent terms must have literally the same Böhm tree (Barendregt 10.1.6):
 - ⊢ FINITE $X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land \text{FV } N \subseteq X \cup \text{RANK}_{<} r \land M =_{\beta} N \Rightarrow$ BT' $X \land M = \text{BT'} X \land N = \text{BT'}$
- If a term is in β -normal form (bnf), then its Böhm tree must be finite, and without any \perp s:
 - \vdash FINITE $X \land FV M \subseteq X \cup RANK_{<} r \land bnf M \Rightarrow ltree_finite (BT', X M r)$
 - ⊢ FINITE $X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land \text{bnf } M \land p \in \text{ltree_paths (BT' } X M r) \Rightarrow \text{ltree_el (BT' } X M r) p ≠ SOME ⊥$
- Free names of hnf children (in subterms) have the same "shape" as the parent term: (this is essential for (co)induction proofs of Böhm tree properties)
 - ⊢ FINITE $X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land \text{solvable } M \land M_0 = \text{principal_hnf } M \land n = \text{LAM1_size } M_0 \land m = \text{hnf_children_size } M_0 \land vs = \text{RNEWS } r \land X \land M_1 = \text{principal_hnf } (M_0 \cdot \cdot \text{MAP VAR } vs) \land Ms = \text{hnf_children } M_1 \land h < m \Rightarrow \text{FV } (\text{EL } h \text{ } Ms) \subset X \cup \text{RANK}_{<} (\text{SUC } r)$

Böhm Transformations and the "Böhm out" technique

Atomic transforms add a variable to the right, or perform a substitution. A transformation is a list of these composed together:

```
solving_transform f \stackrel{\text{def}}{=} (\exists x. \ f = (\lambda p. \ p \cdot \text{VAR} \ x)) \lor \exists x \ N. \ f = [N/x]
Boehm_transform \pi \stackrel{\text{def}}{=} \text{EVERY} solving_transform \pi apply \pi \stackrel{\text{def}}{=} \text{FOLDR} (\circ) I \pi
```

Böhm Transformations and the "Böhm out" technique

Atomic transforms add a variable to the right, or perform a substitution.

A transformation is a list of these composed together:

solving_transform
$$f \stackrel{\text{def}}{=} (\exists x. \ f = (\lambda p. \ p \cdot \text{VAR} \ x)) \lor \exists x \ N. \ f = [N/x]$$

Boehm_transform $\pi \stackrel{\text{def}}{=} \text{EVERY}$ solving_transform π
apply $\pi \stackrel{\text{def}}{=} \text{FOLDR}$ (\circ) I π

Transformed equal terms remain equal:

$$\vdash$$
 Boehm_transform π \land $M =_{eta} N \Rightarrow$ apply π $M =_{eta}$ apply π N

"Böhm out" technique for single term (Barendregt 10.3.6)

subterm X (apply π M) q $r \neq \text{NONE } \land$

A "ready" term is one that head-reduces to a term with y free at the head of an application, and where y doesn't appear elsewhere. (A prime target for a substitution IOW.)

```
is_ready M \stackrel{\text{def}}{=} unsolvable M \vee \exists y \; Ns. \; M \rightarrow h \; \text{VAR} \; y \cdots Ns \; \land \; \text{EVERY} \; (\lambda \, e. \; y \; \sharp \; e) \; Ns is_ready M \stackrel{\text{def}}{=} \; \text{is}_{\text{ready}} \; M \; \land \; \text{solvable} \; M
```

We can construct a Böhm transformation that

- makes the result is_ready'; and
- given a path p, guarantees that original and transformed subterms along p differ only by one closed substitution.

```
⊢ FINITE X \land \text{FV } M \subseteq X \cup \text{RANK}_{<} r \land p \neq [] \land \text{subterm } X \land M \mid p \mid r \neq \text{NONE} \Rightarrow \exists \pi. \text{Boehm\_transform } \pi \land \text{is\_ready'} \text{ (apply } \pi \land M) \land \text{FV (apply } \pi \land M) \subseteq X \cup \text{RANK}_{<} \text{ (SUC } r) \land \exists v \mid P.
closed P \land \forall g. \ g \preccurlyeq p \land g \neq [] \Rightarrow \emptyset
```

subterm' X (apply π M) q r = [P/v] (subterm' X M q r)

"Böhm out" technique for multiple λ -terms (1)

Two Böhm tree nodes (either from the same or different trees) are head equivalent if:

- They are either both \bot or both not \bot ;
- In case they are not \bot , the two tree nodes can be written as $\langle \lambda x_1 \cdots x_n, y, m \rangle$ and $\langle \lambda x_1 \cdots x_{n'}, y', m' \rangle$, with m and m' the number of children at that node, and it is required that $y \equiv y'$ and n m = n' m'.

"Böhm out" technique for multiple λ -terms (1)

Two Böhm tree nodes (either from the same or different trees) are head equivalent if:

- They are either both \bot or both not \bot ;
- In case they are not \bot , the two tree nodes can be written as $\langle \lambda x_1 \cdots x_n, y, m \rangle$ and $\langle \lambda x_1 \cdots x_{n'}, y', m' \rangle$, with m and m' the number of children at that node, and it is required that $y \equiv y'$ and n m = n' m'.

This is a very local notion; only comparing superficial structure:

- the head variables must be equal; and
- extra variables in the binding list correspond to extra children (smells of $\eta!$)

"Böhm out" technique for multiple λ -terms (1)

Two Böhm tree nodes (either from the same or different trees) are head equivalent if:

- They are either both \bot or both not \bot ;
- In case they are not \bot , the two tree nodes can be written as $\langle \lambda x_1 \cdots x_n, y, m \rangle$ and $\langle \lambda x_1 \cdots x_{n'}, y', m' \rangle$, with m and m' the number of children at that node, and it is required that $y \equiv y'$ and n m = n' m'.

This is a very local notion; only comparing superficial structure:

- the head variables must be equal; and
- extra variables in the binding list correspond to extra children (smells of $\eta!$)

Extend this to equivalence at a particular path p:

```
subtree_equiv X M N p r \stackrel{\text{def}}{=} ltree_equiv (ltree_el (BT' X M r) p) (ltree_el (BT' X N r) p)
```

and to terms that have hnfs (equivalent).

"Böhm out" technique for multiple λ -terms (2)

Let \mathcal{F} be finite non-empty set of λ -terms, $\forall M \in \mathcal{F}. \alpha \in \mathrm{BT}(M)$ (shared path of all involved Böhm trees). Then there exists a Böhm transformation π such that:

- $\forall M \in \mathcal{F}. M^{\pi}$ is ready (and solvable);
- $\forall M \in \mathcal{F}. \alpha \in \mathrm{BT}(M^{\pi});$
- $\forall M \in \mathcal{F}, \beta \leq \alpha$. M_{β} solvable iff M_{β}^{π} solvable;
- $\forall M, N \in \mathcal{F}, \beta \leq \alpha$. $M \sim_{\beta} N \text{ iff } M^{\pi} \sim_{\beta} N^{\pi}$.

"Böhm out" technique for multiple λ -terms (2)

Let \mathcal{F} be finite non-empty set of λ -terms, $\forall M \in \mathcal{F}$. $\alpha \in \mathrm{BT}(M)$ (shared path of all involved Böhm trees). Then there exists a Böhm transformation π such that:

- $\forall M \in \mathcal{F}. M^{\pi}$ is ready (and solvable);
- $\forall M \in \mathcal{F}. \alpha \in \mathrm{BT}(M^{\pi});$
- $\forall M \in \mathcal{F}, \beta \leq \alpha$. M_{β} solvable iff M_{β}^{π} solvable;
- $\forall M, N \in \mathcal{F}, \beta \leq \alpha$. $M \sim_{\beta} N \text{ iff } M^{\pi} \sim_{\beta} N^{\pi}$.

```
\vdash FINITE X \land p \neq [] \land 0 < r \land Ms \neq [] \land
   [] (IMAGE FV (set Ms)) \subseteq X \cup RANK_{<} r \land
   EVERY (\lambda M. p \in ltree_paths (BT, X, M, r)) Ms \Rightarrow
   \exists \pi. Boehm_transform \pi \land \text{EVERY is\_ready'} (apply \pi Ms) \land
        EVERY (\lambda M. \text{ FV } M \subset X \cup \text{RANK}_{<} r) (apply \pi Ms) \wedge
        EVERY (\lambda M. p \in \text{ltree\_paths } (BT' X M r)) \text{ (apply } \pi Ms) \land
        (∀ a M.
            MEM M Ms \land q \leq p \Rightarrow
             (solvable (subterm' X M a r) \iff
              solvable (subterm' X (apply \pi M) q r))) \wedge
        \forall q M N.
           MEM M Ms \wedge MEM N Ms \wedge a \leq p \Rightarrow
           (subtree_equiv X \ M \ N \ g \ r \iff
             subtree_equiv X (apply \pi M) (apply \pi N) q r)
```

(The above lemma has a single big proof of 4,000+ lines.)

Separability of λ -terms (a restricted version)

Theorem

If M, N both have bnf (and also have the same set of Böhm tree paths) and M \neq_{β} N, then for any two terms P and Q there exists Böhm transformation π such that $M^{\pi} =_{\beta} P$ and $N^{\pi} =_{\beta} Q$:

```
⊢ FINITE X \wedge \text{FV } M \cup \text{FV } N \subseteq X \cup \text{RANK}_{<} r \wedge 0 < r \wedge \text{ltree_paths (BT' } X M r) = \text{ltree_paths (BT' } X N r) \wedge \text{has_bnf } M \wedge \text{has_bnf } N \wedge M \neq_{\beta} N \Rightarrow \forall P Q. \exists \pi. \text{Boehm_transform } \pi \wedge \text{apply } \pi M =_{\beta} P \wedge \text{apply } \pi N =_{\beta} Q
```

If the antecedent ltree_paths (BT' X M r) = ltree_paths (BT' X N r) gets removed, then the resulting theorem is Böhm's original separability theorem⁴.

Pubblicazioni dell'Instituto per le Applicazioni del Calcolo, 696:1-19, 1968

⁴C. Böhm. Alcune proprietà delle forme β - η -normali nel λ -k-calcolo.

η -separability and $\lambda\eta$ -completeness

Theorem (η -separability)

Two distinct terms having $\beta \eta$ -normal forms are η -separable:

$$\vdash$$
 has_benf $M \land$ has_benf $N \land M \neq_{\beta\eta} N \Rightarrow \forall P \ Q. \ \exists \pi.$ Boehm_transform $\pi \land$ apply $\pi \ M =_{\beta\eta} P \land$ apply $\pi \ N =_{\beta\eta} Q$

Proof of $\lambda \eta$ -completess by η -separability.

Fix P and Q. Assuming $M \neq_{\beta\eta} N$, the goal is to prove $\lambda\eta + (M = N) \vdash P = Q$. By η -separability, there exists a Böhm transformation π such that $M^{\pi} =_{\beta n} P$ and $N^{\pi} =_{\beta n} Q$, therefore $\lambda \eta + (M = N) \vdash M^{\pi} = P$ and $\lambda \eta + (M = N) \vdash N^{\pi} = Q$. By induction on π . $\lambda \eta + (M = N) \vdash M^{\pi} = N^{\pi}$ can be proved (the base case is M = N, an axiom in $\lambda \eta + (M = N)$). Therefore $\lambda \eta + (M = N) \vdash P = Q$ by symmetry and transitivity of (all) λ -equational theories.

22 / 25

Removing Our Restriction

Given different terms M and N, need to deal with restriction ltree_paths (BT' X M r) = ltree_paths (BT' X N r)

Thanks to η , any M is equal to λx . Mx with x fresh.

Removing Our Restriction

Given different terms M and N, need to deal with restriction ltree_paths (BT' X M r) = ltree_paths (BT' X N r)

Thanks to η , any M is equal to λx . M x with x fresh.

When M has a hnf, this gives the corresponding Böhm tree extra paths to the right and/or downwards.

Removing Our Restriction

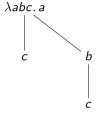
Given different terms M and N, need to deal with restriction ltree_paths (BT' X M r) = ltree_paths (BT' X N r)

Thanks to η , any M is equal to λx . M x with x fresh.

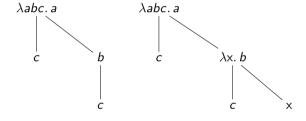
When M has a hnf, this gives the corresponding Böhm tree extra paths to the right and/or downwards.

So, if finite BT' X M r and BT' X N r don't share the same paths they can be η -converted so that they do!

From (restricted) separability to η -separability



From (restricted) separability to η -separability



From (restricted) separability to η -separability

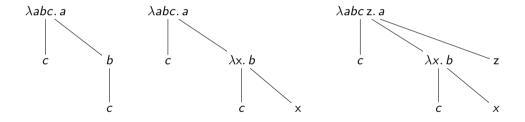


Figure: One-step η -expansion of (informal) Böhm trees.

Conclusion and future work

Done:

- Proved famous results; mostly following Barendregt
- Developed technology for working with Böhm trees

Not Done Yet:

- Other Böhm-like trees (Lévy-Longo trees, Berarducci trees, etc.) can be formalised similarly.
- Generally: denotational semantics for λ -calculus (D_{∞}, P_{ω})
- Polishing the result:
 - inequal terms without $\beta\eta$ -normal lead to inconsistency;
 - Böhm's original statement showing all terms can be separated
 - . . .