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Introduction

Project Context

Long term, slow motion campaign to
mechanise ∼600pp of famous
fundamental computer science.

Title notwithstanding, very much
the untyped λ-calulus.

Proofs mostly from this original; some
use of more recent contributions
(e.g., Takahashi).

Earlier work proved standardisation,
finiteness of developments, CR, . . .
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Introduction

Untyped (type-free) λ-calculus and λ-theories

The set of λ-terms Λ is defined inductively:

x ∈ Λ; (x is an arbitrary variable)

M ∈ Λ ⇒ (λx .M) ∈ Λ;

M,N ∈ Λ ⇒ (MN) ∈ Λ;

The theory λ has as formulas M = N where M,N ∈ Λ
and is axiomatized by the following axioms (rules):

(λx .M)N = M[x := N]; (β-conversion)

M = M;

M = N ⇒ N = M;

M = N ∧ N = L ⇒ M = L;

M = N ⇒ MZ = NZ ;

M = N ⇒ ZM = ZN;

M = N ⇒ λx .M = λx .N.

Assert α-conversion, a syntactic identity :

λx .M ≡ λy .M[x := y ]

where y is not free or bound in M, so (λx . x) ≡ (λy . y)

The theory λη is defined by adding one rule into λ:

λx .Mx = M (x is not free in M); (η-conversion)

Provability in λ of an equation M = N is denoted by
λ ⊢ M = N, or M =β N.
Similarily, provability in λη is denoted by λη ⊢ M = N,
or M =βη N.

Other λ-theories T are λ with different extra axioms,
e.g. λ+ (P = Q) is the theory adding P = Q into λ.
In this case, e.g., λ+ (P = Q) ⊢ λx .P = λx .Q.
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Introduction

Consistency and Completeness of λ-theories

Consistency (“theory is not useless/vacuous”)

A formal theory T (with equations as formulas) is consistent (notation: Con(T )) if T does not prove
every closed equation. Else T is inconsistent.
If equal in T , Church-Rosser (formalised in many systems) would give combinators S and K a common
reduct. As both are in β-normal form, the common reduct would be themselves. But S ̸≡ K, so
λ ̸⊢ S = K, and so Con(λ) (and Con(λη) similarly).

(Hilbert-Post) Completeness of λη (“you can prove anything that’s right” or “Equational theory is ‘full’ ”)

Suppose M,N have βη-normal forms. Then either λη ⊢ M = N or λη + (M = N) is inconsistent.
This is an (easy) corollary of Böhm’s separability theorem from 1968a, never formalised.

aC. Böhm. Alcune proprietà delle forme β-η-normali nel λ-k-calcolo.
Pubblicazioni dell’Instituto per le Applicazioni del Calcolo, 696:1–19, 1968
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Introduction

Outline of this work

We (first ever) successfully formalised (mechanised) λη-completeness in HOL4, following
Barendregt1.
We did NOT fully formalise Böhm’s separability theorem (full version is still in progress), but only
obtained (with less effort) a restricted version (with extra antecedents), sufficient to prove
completeness.
From this restricted version of the separability theorem to λη-completeness, we have a novel proof,
differing from Barendregt (and Böhm).
The modern proof of the separability theorem (retold by Barendregt) involves a coinductive data
structure called the Böhm tree, which is hard to formalise. We formally defined it in a “first-order”
style, and used it to prove the separability theorem.
Our formal Böhm trees require a novel (smart) way of allocating fresh names, possibly useful for
other purposes.

1H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 40 of Studies in Logic.
North-Holland Publishing Company, 1984
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HOL Preliminaries

Preliminaries: λ-terms by Nominal Datatype

The existing2 λ-calculus mechanisation in HOL4 provides the type term with three constructors:
VAR x for the λ-term made of a single variable x (whose type is string);
LAM x t for the abstraction λx . t where t is another λ-term and x is a string;
t • t ′ (or APP t t ′) for an applications such as t t ′ where t and t ′ are λ-terms.

The type term is nominal: terms which are α-equivalent are equal, e.g.,

(λx . x) = (λy . y)

or (as a theorem in HOL4):

⊢ LAM “x” (VAR “x”) = LAM “y” (VAR “y”)

Proof (by the following basic theorem derived from the nominal package):

⊢ LAM u t1 = LAM v t2 ⇐⇒
u = v ∧ t1 = t2 ∨ u ̸= v ∧ u ♯ t2 ∧ t1 = tpm [(u,v)] t2

2M. Norrish. Mechanising λ-calculus using a classical first order theory of terms with permutations.
Higher-Order and Symbolic Computation, 19(2-3):169–195, Sept. 2006
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HOL Preliminaries

Preliminaries: free names and substitutions

The set of free names occurring in a term M is FV M. x /∈ FV(M) is denoted by x ♯ M.
The result of substituting N for the free occurrences of x in M (textbook notation M[x := N]) is
denoted by [N/x] M. For example,

Lemma (Barendregt 2.1.16 (Substitution lemma))

If x ̸≡ y and x /∈ FV(L), then M[x := N][y := L] ≡ M[y := L][x := N[y := L]].
⊢ x ̸= y ∧ x ♯ L ⇒ [L/y] ([N/x] M) = [[L/y] N/x] ([L/y] M)

We also use iterated substitution (ISUB):

M ISUB [] def
= M

M ISUB ((s,x)::sxs) def
= [s/x] M ISUB sxs

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 7 / 25
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HOL Preliminaries

Head Reduction and Head Normal Forms

One-step head-reduction is inductively defined by:

(λv .M)N
h→ M[v := N]

M1
h→ M2

λv .M1
h→ λv .M2

M1
h→ M2 M1 is not abstraction

M1N
h→ M2N

For any λ-term, the above rules uniquely determine a head reduction path, either finite or infinite.
A term M is in head normal form (hnf) if M is of the form M ≡ λx0x1 . . . xn−1. y M0M1 · · ·Mm−1.
A term M has hnf if it’s β-equivalent to a head normal form.

Lemma (Barendregt 11.4.8, corollary of the Standardisation Theorem)

A λ-term has hnf iff its head reduction path is finite:
⊢ ∀M. has_hnf M ⇐⇒ finite (head_reduction_path M)

Multi-step head reduction (M ↠h N) is the RTC of one-step head reduction (M →h N).

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 8 / 25
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HOL Preliminaries

Principal Head Normal Forms

A term may be β-equivalent to multiple head normal forms (hnf), the principal hnf is particularly
important (in the definition of Böhm trees).

Definition (Barendregt 8.3.20)

If M has a hnf, then the last term of the terminating head reduction of M is called the principal head
normal form (principal hnf) of M.

principal_hnf
def
= last ◦ head_reduction_path

Some properties of principal hnf

⊢ has_hnf M ⇒ (principal_hnf M = N ⇐⇒ M ↠h N ∧ hnf N)

⊢ has_hnf M ⇒ FV (principal_hnf M) ⊆ FV M

⊢ hnf t ⇒ principal_hnf (LAMl xs t • • MAP VAR xs) = t

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 9 / 25



HOL Preliminaries

Solvable Terms; Wadsworth’s Theorem

Definition (Barendregt 8.3.1)

A closed term M is solvable if there exist N1 · · ·Nn such that M N1 · · ·Nn =β I (= λx .x). An arbitrary
M is solvable if a closure λx⃗ .M of M is solvable (this is independent of the choice of x⃗).

solvable M def
= ∃M ′ Ns. M ′ ∈ closures M ∧ M ′ • • Ns =β I

closures M def
= {LAMl vs M | vs | ALL_DISTINCT vs ∧ FV M ⊆ set vs }

An example of unsolvable term ((λx . xx)(λx . xx)):

⊢ unsolvable Ω
⊢ Ω = LAM “x” (VAR “x” • VAR “x”) • LAM “x” (VAR “x” • VAR “x”)

Theorem (Barendregt 8.3.14, Wadsworth)

A λ-term is solvable iff it has hnf:

⊢ solvable M ⇐⇒ has_hnf M

Two first mechanisations of this announced
today!
(Talk after this on paper by Lancelot et al.)
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Böhm Trees

Informal Böhm Trees (textbook definitions)

If a term M is unsolvable, then its Böhm tree, denoted by BT(M), is ⊥.
Otherwise the term has principal hnf λx⃗ . yM0 · · ·Mm−1. The root of BT(M) is λx⃗ . y , and the
subtrees are BT(M0), . . .BT(Mm−1).

Böhm tree examples for S ≡ λabc. ac(bc),

SaΩ = λc . acΩ and Y ≡ λf . (λx . f (xx))(λx . f (xx)).3

λabc. a

c b

c

λc . a

c ⊥

λf . f

f

...

By α-equivalence, different (informal) Böhm trees can be generated from the same term, by choosing
different bound variables. (Barendregt suggests Böhm Trees should use de Bruijn indices.)

3Note that Yf =β f (Yf ) and Y =β λf . f (Yf ).
C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 11 / 25
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Böhm Trees Rank Based Name Allocation

Rank-based fresh name allocation (1)

Given any finite set of names (as strings) X , it’s easy to define “NEWS n X ” which returns a list of n
names excluding X (simply because the set of all strings is infinite.) But this is not enough.
The set of all strings is actually countably infinite, therefore can be filled into a 2-dimensional space,
indexed by two natural numbers. To define Böhm tree formally, we need “RNEWS r n X ”, which returns
n names at row r while excluding X . This funcion is based on alloc:

Definition (alloc)

The allocation function alloc allocates n names in the row r , starting at position (r , z). Thus the n
allocated names are at coordinates (r , z), (r , z + 1), . . . , (r , z + n − 1):

alloc r z n def
= GENLIST (λ i. n2s (r ⊗ (z + i))) n

RANK<(r)

0 x

y

r

z z + n− 1

alloc(r, z, n)
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Böhm Trees Rank Based Name Allocation

Rank-based fresh name allocation (2)

Definition (RNEWS and RANK<)

RNEWS r n X def
= (let z = SUC (string_width X) in alloc r z n)

string_width X def
= MAX_SET (IMAGE (nsnd ◦ s2n) X)

RANK< r is the set of all names whose row is smaller than r :

RANK< r def
= {v | ∃ i j. v = n2s (i ⊗ j) ∧ i < r }

RANK<(r)

0 x

y

X

w w + 1

r

w + n

RNEWS(r, n,X)
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Böhm Trees Formally

Böhm Trees: The Formal definition

BT_generator X (M,r) def
=

if solvable M then
(let

M0 = principal_hnf M;
n = LAMl_size M0;
vs = RNEWS r n X;
M1 = principal_hnf (M0 • • MAP VAR vs);
Ms = hnf_children M1;
y = hnf_headvar M1;
l = MAP (λ e. (e,SUC r)) Ms

in
(SOME (vs,y),fromList l))

else (NONE,[||])

BT X def
= ltree_unfold (BT_generator X)

The type of generated Böhm tree is “BT_node ltree”,
where BT_node is (string list × string) option.

Steps for generating one Böhm node (when M is
solvable):

1 M0 is the principal hnf of M, in form
(alpha-equivalent to) LAMl vs (VAR y • • Ms);

2 n is the length of vs;
3 vs is allocated at row r , excluding X ;
4 M1 is in form of VAR y • • Ms;
5 Ms is finally obtained from M1;
6 y is finally obtained from M1;
7 l is the list of hnf children as seeds for

generating subtrees, each paired with r + 1;
8 Instead of LAMl vs y , the tree node is

SOME (vs,y) (or NONE for ⊥).
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Böhm Trees Formally

Subterm (dual concept of Böhm tree)

subterm X M [] r def
= SOME (M,r)

subterm X M (i::is) r def
=

if solvable M then
(let

M0 = principal_hnf M;
n = LAMl_size M0;
vs = RNEWS r n X;
M1 = principal_hnf (M0 • • MAP VAR vs);
Ms = hnf_children M1;
m = LENGTH Ms

in
if i < m then subterm X (EL i Ms) is (SUC r) else NONE)

else NONE

Connection between Böhm trees and subterms (Barendregt 10.1.15):

⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ subterm X M is r ̸= NONE ⇒
ltree_lookup (BT’ X M r) is ̸= NONE ∧
BT X (THE (subterm X M is r)) = THE (ltree_lookup (BT’ X M r) is)

If M is already in hnf, say
LAMl vs (y • • Ms), then
“subterm X M [i] r ”
essentially returns the i-th
child of Ms, i.e. EL i Ms,
paired with r + 1.
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Böhm Trees Formally

Basic properties of Böhm trees

Two β-equivalent terms must have literally the same Böhm tree (Barendregt 10.1.6):
⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ FV N ⊆ X ∪ RANK< r ∧ M =β N ⇒

BT’ X M r = BT’ X N r

If a term is in β-normal form (bnf), then its Böhm tree must be finite, and without any ⊥s:
⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ bnf M ⇒ ltree_finite (BT’ X M r)
⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ bnf M ∧ p ∈ ltree_paths (BT’ X M r) ⇒

ltree_el (BT’ X M r) p ̸= SOME ⊥
Free names of hnf children (in subterms) have the same “shape” as the parent term: (this is
essential for (co)induction proofs of Böhm tree properties)
⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ solvable M ∧ M0 = principal_hnf M ∧

n = LAMl_size M0 ∧ m = hnf_children_size M0 ∧ vs = RNEWS r n X ∧
M1 = principal_hnf (M0 • • MAP VAR vs) ∧ Ms = hnf_children M1 ∧ h < m ⇒
FV (EL h Ms) ⊆ X ∪ RANK< (SUC r)
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Böhm Trees Böhm Transformations & “Böhm out”

Böhm Transformations and the “Böhm out” technique

Atomic transforms add a variable to the right, or perform a substitution.
A transformation is a list of these composed together:

solving_transform f def
= (∃ x. f = (λ p. p • VAR x)) ∨ ∃ x N. f = [N/x]

Boehm_transform π
def
= EVERY solving_transform π

apply π
def
= FOLDR (◦) I π

Transformed equal terms remain equal:

⊢ Boehm_transform π ∧ M =β N ⇒ apply π M =β apply π N
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Böhm Trees Böhm Transformations & “Böhm out”

“Böhm out” technique for single term (Barendregt 10.3.6)

A “ready” term is one that head-reduces to a term with y free at the head of an application, and where
y doesn’t appear elsewhere. (A prime target for a substitution IOW.)

is_ready M def
=

unsolvable M ∨ ∃ y Ns. M ↠h VAR y • • Ns ∧ EVERY (λ e. y ♯ e) Ns
is_ready’ M def

= is_ready M ∧ solvable M
We can construct a Böhm transformation that

makes the result is_ready’; and
given a path p, guarantees that original and transformed subterms along p differ only by one closed
substitution.

⊢ FINITE X ∧ FV M ⊆ X ∪ RANK< r ∧ p ̸= [] ∧ subterm X M p r ̸= NONE ⇒
∃π. Boehm_transform π ∧ is_ready’ (apply π M) ∧ FV (apply π M) ⊆ X ∪ RANK< (SUC r) ∧

∃ v P.
closed P ∧
∀ q. q ≼ p ∧ q ̸= [] ⇒

subterm X (apply π M) q r ̸= NONE ∧
subterm’ X (apply π M) q r = [P/v] (subterm’ X M q r)
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Böhm Trees Böhm Transformations & “Böhm out”

“Böhm out” technique for multiple λ-terms (1)

Two Böhm tree nodes (either from the same or different trees) are head equivalent if:
They are either both ⊥ or both not ⊥;
In case they are not ⊥, the two tree nodes can be written as ⟨λx1 · · · xn. y ,m⟩ and
⟨λx1 · · · xn′ . y ′,m′⟩, with m and m′ the number of children at that node, and it is required that
y ≡ y ′ and n −m = n′ −m′.

This is a very local notion; only comparing superficial structure:
the head variables must be equal; and
extra variables in the binding list correspond to extra children (smells of η!)

Extend this to equivalence at a particular path p:

subtree_equiv X M N p r def
=

ltree_equiv (ltree_el (BT’ X M r) p) (ltree_el (BT’ X N r) p)

and to terms that have hnfs (equivalent).
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Böhm Trees Böhm Transformations & “Böhm out”

“Böhm out” technique for multiple λ-terms (2)

Let F be finite non-empty set of
λ-terms, ∀M ∈ F . α ∈ BT(M)
(shared path of all involved Böhm
trees). Then there exists a Böhm
transformation π such that:

∀M ∈ F .Mπ is ready (and
solvable);

∀M ∈ F . α ∈ BT(Mπ);

∀M ∈ F , β ⪯ α.
Mβ solvable iff Mπ

β solvable;

∀M,N ∈ F , β ⪯ α.
M ∼β N iff Mπ ∼β Nπ.

⊢ FINITE X ∧ p ̸= [] ∧ 0 < r ∧ Ms ̸= [] ∧⋃
(IMAGE FV (set Ms)) ⊆ X ∪ RANK< r ∧

EVERY (λM. p ∈ ltree_paths (BT’ X M r)) Ms ⇒
∃π. Boehm_transform π ∧ EVERY is_ready’ (apply π Ms) ∧

EVERY (λM. FV M ⊆ X ∪ RANK< r) (apply π Ms) ∧
EVERY (λM. p ∈ ltree_paths (BT’ X M r)) (apply π Ms) ∧
(∀ q M.

MEM M Ms ∧ q ≼ p ⇒
(solvable (subterm’ X M q r) ⇐⇒
solvable (subterm’ X (apply π M) q r))) ∧

∀ q M N.
MEM M Ms ∧ MEM N Ms ∧ q ≼ p ⇒
(subtree_equiv X M N q r ⇐⇒
subtree_equiv X (apply π M) (apply π N) q r)

(The above lemma has a single big proof of 4,000+ lines.)
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solvable);

∀M ∈ F . α ∈ BT(Mπ);

∀M ∈ F , β ⪯ α.
Mβ solvable iff Mπ

β solvable;

∀M,N ∈ F , β ⪯ α.
M ∼β N iff Mπ ∼β Nπ.

⊢ FINITE X ∧ p ̸= [] ∧ 0 < r ∧ Ms ̸= [] ∧⋃
(IMAGE FV (set Ms)) ⊆ X ∪ RANK< r ∧

EVERY (λM. p ∈ ltree_paths (BT’ X M r)) Ms ⇒
∃π. Boehm_transform π ∧ EVERY is_ready’ (apply π Ms) ∧

EVERY (λM. FV M ⊆ X ∪ RANK< r) (apply π Ms) ∧
EVERY (λM. p ∈ ltree_paths (BT’ X M r)) (apply π Ms) ∧
(∀ q M.

MEM M Ms ∧ q ≼ p ⇒
(solvable (subterm’ X M q r) ⇐⇒
solvable (subterm’ X (apply π M) q r))) ∧

∀ q M N.
MEM M Ms ∧ MEM N Ms ∧ q ≼ p ⇒
(subtree_equiv X M N q r ⇐⇒
subtree_equiv X (apply π M) (apply π N) q r)

(The above lemma has a single big proof of 4,000+ lines.)
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Separability of λ-terms (a restricted version)

Theorem

If M,N both have bnf (and also have the same set of Böhm tree paths) and M ̸=β N, then for any
two terms P and Q there exists Böhm transformation π such that Mπ =β P and Nπ =β Q:

⊢ FINITE X ∧ FV M ∪ FV N ⊆ X ∪ RANK< r ∧ 0 < r ∧
ltree_paths (BT’ X M r) = ltree_paths (BT’ X N r) ∧ has_bnf M ∧
has_bnf N ∧ M ̸=β N ⇒
∀P Q. ∃π. Boehm_transform π ∧ apply π M =β P ∧ apply π N =β Q

If the antecedent ltree_paths (BT’ X M r) = ltree_paths (BT’ X N r) gets removed, then the
resulting theorem is Böhm’s original separability theorem4.

4C. Böhm. Alcune proprietà delle forme β-η-normali nel λ-k-calcolo.
Pubblicazioni dell’Instituto per le Applicazioni del Calcolo, 696:1–19, 1968
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η-separability and λη-completeness

Theorem (η-separability)

Two distinct terms having βη-normal forms are η-separable:

⊢ has_benf M ∧ has_benf N ∧ M ̸=βη N ⇒
∀P Q. ∃π. Boehm_transform π ∧ apply π M =βη P ∧ apply π N =βη Q

Proof of λη-completess by η-separability.

Fix P and Q. Assuming M ̸=βη N, the goal is to prove λη + (M = N) ⊢ P = Q. By η-separability,
there exists a Böhm transformation π such that Mπ =βη P and Nπ =βη Q, therefore
λη + (M = N) ⊢ Mπ = P and λη + (M = N) ⊢ Nπ = Q. By induction on π,
λη + (M = N) ⊢ Mπ = Nπ can be proved (the base case is M = N, an axiom in λη + (M = N)).
Therefore λη + (M = N) ⊢ P = Q by symmetry and transitivity of (all) λ-equational theories.
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Removing Our Restriction

Given different terms M and N, need to deal with restriction
ltree_paths (BT’ X M r) = ltree_paths (BT’ X N r)

Thanks to η, any M is equal to λx . M x with x fresh.

When M has a hnf, this gives the corresponding
Böhm tree extra paths to the right and/or downwards.

So, if finite BT’ X M r and BT’ X N r don’t share
the same paths they can be η-converted so that they do!
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From (restricted) separability to η-separability

λabc. a

c b

c

λabc. a

c λx. b

c x

λabc z. a

c λx . b z

c x

Figure: One-step η-expansion of (informal) Böhm trees.

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 24 / 25



Böhm Trees Böhm Transformations & “Böhm out”

From (restricted) separability to η-separability

λabc. a

c b

c

λabc. a

c λx. b

c x

λabc z. a

c λx . b z

c x

Figure: One-step η-expansion of (informal) Böhm trees.

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 24 / 25



Böhm Trees Böhm Transformations & “Böhm out”

From (restricted) separability to η-separability

λabc. a

c b

c

λabc. a

c λx. b

c x

λabc z. a

c λx . b z

c x

Figure: One-step η-expansion of (informal) Böhm trees.

C. Tian and M. Norrish (ANU) Böhm Trees September 29, 2025 24 / 25



Böhm Trees Böhm Transformations & “Böhm out”

Conclusion and future work

Done:
Proved famous results; mostly following Barendregt
Developed technology for working with Böhm trees

Not Done Yet:
Other Böhm-like trees (Lévy-Longo trees, Berarducci trees, etc.) can be formalised similarly.
Generally: denotational semantics for λ-calculus (D∞, Pω)
Polishing the result:

inequal terms without βη-normal lead to inconsistency;
Böhm’s original statement showing all terms can be separated
. . .
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