Mechanising Béhm Trees and An-Completeness J

Chun Tian! Michael Norrish?
1School of Computing, The Australian National University (ANU)

September 29, 2025

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 1/285

Project Context

STUDIES INLOGIC Long term, slow motion campaign to
.. hani 600pp of f
THEFOUNDATIONS OF MATHEMATICS meC anlse ~ pp o amous
B fundamental computer science.

J.BARWISE / D, KAPLAN / H.J, KEISLER / P, SUPPES / A.S. TROELSTRA
EDITORS

Title notwithstanding, very much
the untyped A-calulus.

The Lambda
Caleulus

Proofs mostly from this original; some
Its Syntax and Semantics . .
use of more recent contributions
(e.g., Takahashi).
1P, BARENDREGT

NORTH-HOLLAND

AMSTERDAM & NEW YORK @ OXFORD

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 2/25

Introduction

Project Context

STUDIES IN LOGIC
AND
THE FOUNDATIONS OF MATHEMATICS

VOLUME 103

J.BARWISE / D, KAPLAN / H.J, KEISLER / P, SUPPES / A.S. TROELSTRA
EDITORS

The Lambda
Caleulus

Its Syntax and Semanties

REVISED EDITION

H.P. BARENDREGT

NORTH-HOLLAND

AMSTERDAM & NEW YORK @ OXFORD

C. Tian and M. Norrish (ANU)

B8hm Trees

Long term, slow motion campaign to
mechanise ~600pp of famous
fundamental computer science.

Title notwithstanding, very much
the untyped A-calulus.

Proofs mostly from this original; some
use of more recent contributions
(e.g., Takahashi).

Earlier work proved standardisation,

finiteness of developments, CR, ...

September 29, 2025 2/25

Untyped (type-free) A-calculus and A-theories

The set of A-terms A is defined inductively: Assert a-conversion, a syntactic identity :

@ x € A; (x is an arbitrary variable) 0 M. M = \y. M[x = y]

o MeN= (Ax.M)EN where y is not free or bound in M, so (Ax.x) = (\y.y)
o M,N e A= (MN) €A

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 3/25

Introduction

Untyped (type-free) A-calculus and A-theories

The set of A-terms A is defined inductively:

@ x € A; (x is an arbitrary variable)

(]

Me A= (Ax.M) e A;
M,N € A= (MN) € A;

The theory A has as formulas M = N where M, N € A
and is axiomatized by the following axioms (rules):

®© 6 6 o o

(Ax. M)N = M[x := N]; (B-conversion)
M = M,

M=N=N=M,
M=NAN=L=M=1L,

M=N= MZ=NZ,
M=N= ZM = ZN,

M=N= Ax.M=Xx.N.

C. Tian and M. Norrish (ANU) B8hm Trees

Assert a-conversion, a syntactic identity :
0 Ax. M =)\y. M[x :=y]
where y is not free or bound in M, so (Ax.x) = (\y.y)

September 29, 2025

3/25

Untyped (type-free) A-calculus and A-theories

The set of A-terms A is defined inductively: Assert a-conversion, a syntactic identity :

@ x € A; (x is an arbitrary variable) 0 M. M= \y. M[x = y]
o MeA= (Mx.M)eN, where y is not free or bound in M, so (Ax.x) = (\y.y)
o M,N € A= (MN) € A;

The theory A has as formulas M = N where M, N € A
and is axiomatized by the following axioms (rules):

@ (Ax. M)N = M[x := N]; (B-conversion)
o M=M;

M=N=N=M,
M=NAN=L=M=1L,

M=N= MZ=NZ,
M=N= ZM = ZN,

M=N= Ax.M=Xx.N.

The theory A7 is defined by adding one rule into A:

@ Mx. Mx = M (x is not free in M); (n-conversion)

®© 6 6 o o

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 3/25

Introduction

Untyped (type-free) A-calculus and A-theories

The set of A-terms A is defined inductively:
@ x € A; (x is an arbitrary variable)
o MeA= (Ax.M) eN;
o M,N e A= (MN) €A

The theory X has as formulas M = N where M, N € A
and is axiomatized by the following axioms (rules):

o (Ax. M)N = M[x := NJ;
o M=M;

M=N= N=M,
M=NAN=L=M=1L
M=N= MZ=NZ
M=N= ZM = ZN;
M=N= Ax.M=Xx.N.

(B-conversion)

®© 6 6 o o

C. Tian and M. Norrish (ANU)

B8hm Trees

Assert a-conversion, a syntactic identity :
0 Ax. M =)\y. M[x :=y]
where y is not free or bound in M, so (Ax.x) = (\y.y)

The theory A7 is defined by adding one rule into A:

@ Mx. Mx = M (x is not free in M); (n-conversion)
Provability in A of an equation M = N is denoted by
AEM=N,or M=5N.

Similarily, provability in An is denoted by An - M = N,
or M =g, N.

Other A-theories T are A with different extra axioms,
e.g. A+ (P = Q) is the theory adding P = Q into A.
In this case, e.g., A+ (P = Q) F Ax. P = Ax. Q.

September 29, 2025 3/25

Introduction

Consistency and Completeness of A-theories

Consistency (“theory is not useless/vacuous”)

A formal theory T (with equations as formulas) is consistent (notation: Con(7)) if 7 does not prove
every closed equation. Else T is inconsistent.
If equal in T, Church-Rosser (formalised in many systems) would give combinators S and K a common

reduct. As both are in 8-normal form, the common reduct would be themselves. But S # K, so
A S =K, and so Con(A) (and Con(An) similarly).

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 4/25

Introduction

Consistency and Completeness of A-theories

Consistency (“theory is not useless/vacuous”)

A formal theory T (with equations as formulas) is consistent (notation: Con(7)) if 7 does not prove
every closed equation. Else T is inconsistent.

If equal in T, Church-Rosser (formalised in many systems) would give combinators S and K a common
reduct. As both are in 8-normal form, the common reduct would be themselves. But S # K, so

A/S =K, and so Con(A) (and Con(An) similarly).

(Hilbert-Post) Completeness of An (“you can prove anything that's right” or "Equational theory is ‘full' ")

Suppose M, N have Brn-normal forms. Then either An = M = N or An + (M = N) is inconsistent.
This is an (easy) corollary of B6hm's separability theorem from 19682, never formalised.

aC. Béhm. Alcune proprieta delle forme S-n-normali nel A-k-calcolo.
Pubblicazioni dell’Instituto per le Applicazioni del Calcolo, 696:1-19, 1968

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 4/25

Outline of this work

o We (first ever) successfully formalised (mechanised) An-completeness in HOL4, following
Barendregt?!.

o We did NOT fully formalise Bohm's separability theorem (full version is still in progress), but only
obtained (with less effort) a restricted version (with extra antecedents), sufficient to prove
completeness.

@ From this restricted version of the separability theorem to An-completeness, we have a novel proof,
differing from Barendregt (and Bohm).

@ The modern proof of the separability theorem (retold by Barendregt) involves a coinductive data
structure called the Bohm tree, which is hard to formalise. We formally defined it in a “first-order”
style, and used it to prove the separability theorem.

@ Our formal Bdhm trees require a novel (smart) way of allocating fresh names, possibly useful for
other purposes.

1H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume 40 of Studies in Logic.
North-Holland Publishing Company, 1984
Bohm Trees T e Ty s VEE

HOL Preliminaries

Preliminaries: A-terms by Nominal Datatype

The existing? A-calculus mechanisation in HOL4 provides the type term with three constructors:
@ VAR x for the A\-term made of a single variable x (whose type is string);
@ LAM x t for the abstraction Ax.t where t is another A\-term and x is a string;
o t -t (or APP t t’) for an applications such as tt’ where t and t’ are A\-terms.

The type term is nominal: terms which are a-equivalent are equal, e.g.,

(. x) = (Ay-y)
or (as a theorem in HOL4):

'7 LAM ((XV? (VAR “X”) = LAM ((y” (VAR “yﬂ)

2M. Norrish. Mechanising A-calculus using a classical first order theory of terms with permutations.
Higher-Order and Symbolic Computation, 19(2-3):169-195, Sept. 2006

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 6/25

HOL Preliminaries

Preliminaries: A-terms by Nominal Datatype

The existing? A-calculus mechanisation in HOL4 provides the type term with three constructors:
@ VAR x for the A\-term made of a single variable x (whose type is string);
@ LAM x t for the abstraction Ax.t where t is another A\-term and x is a string;
o t -t (or APP t t’) for an applications such as tt’ where t and t’ are A\-terms.

The type term is nominal: terms which are a-equivalent are equal, e.g.,

(A x) = (Av-y)
or (as a theorem in HOL4):
F LaM “x” (VAR “X”) = LAM “y” (VAR “y")
Proof (by the following basic theorem derived from the nominal package):

FLAM utp =LAM vV b <—
u=v At =tbVu#vAult At =ztm [(uw] t

2M. Norrish. Mechanising A-calculus using a classical first order theory of terms with permutations.
Higher-Order and Symbolic Computation, 19(2-3):169-195, Sept. 2006

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 6/25

HOL Preliminaries

Preliminaries: free names and substitutions

@ The set of free names occurring in a term M is FV M. x ¢ FV(M) is denoted by x § M.
@ The result of substituting N for the free occurrences of x in M (textbook notation M[x := N]) is
denoted by [N/x] M. For example,
Lemma (Barendregt 2.1.16 (Substitution lemma))
If x#y and x ¢ FV(L), then M[x := N][y := L] = M[y := L][x := N[y := L]].
Fx#yAxt L= [L/yl (IN/x]I M) = [[L/y]l N/x1 ([L/yl M)

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 7/25

HOL Preliminaries

Preliminaries: free names and substitutions

@ The set of free names occurring in a term M is FV M. x ¢ FV(M) is denoted by x § M.
@ The result of substituting N for the free occurrences of x in M (textbook notation M[x := N]) is
denoted by [N/x] M. For example,
Lemma (Barendregt 2.1.16 (Substitution lemma))
If x#y and x ¢ FV(L), then M[x := N][y := L] = M[y := L][x := N[y := L]].
Fx#yAxt L= [L/yl (IN/x]I M) = [[L/y]l N/x1 ([L/yl M)

We also use iterated substitution (ISUB):
M 1suB [1 = M
M 1SUB ((s,x)::sxs) = [s/x] M ISUB sxs

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 7/25

HOL Preliminaries

Head Reduction and Head Normal Forms

One-step head-reduction is inductively defined by:

My LA M, M, A, Mo My is not abstraction

(v. MN 55 M[v := N] v My B M, MN 2 Mo

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 8/25

HOL Preliminaries

Head Reduction and Head Normal Forms

One-step head-reduction is inductively defined by:

My LA M, M, A, Mo My is not abstraction

(v. MN 55 M[v := N] v My B M, MN 2 Mo

@ For any A-term, the above rules uniquely determine a head reduction path, either finite or infinite.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 8/25

HOL Preliminaries

Head Reduction and Head Normal Forms

One-step head-reduction is inductively defined by:

My LA M, M, A, Mo My is not abstraction

(v. MN 55 M[v := N] v My B M, MN 2 Mo

@ For any A-term, the above rules uniquely determine a head reduction path, either finite or infinite.
@ A term M is in head normal form (hnf) if M is of the form M = Axoxy ... Xp—1.y MoMy - -+ Mp_1.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 8/25

HOL Preliminaries

Head Reduction and Head Normal Forms

One-step head-reduction is inductively defined by:

My LA M, M, A, Mo My is not abstraction

(v. MN 55 M[v := N] v My B M, MN 2 Mo

@ For any A-term, the above rules uniquely determine a head reduction path, either finite or infinite.
@ A term M is in head normal form (hnf) if M is of the form M = Axoxy ... Xp—1.y MoMy - -+ Mp_1.
@ A term M has hnf if it's S-equivalent to a head normal form.

Lemma (Barendregt 11.4.8, corollary of the Standardisation Theorem)

A A\-term has hnf iff its head reduction path is finite:
F VM. has_hnf M <= finite (head_reduction_path M)

@ Multi-step head reduction (M —», N) is the RTC of one-step head reduction (M —, N).

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 8/25

HOL Preliminaries

Principal Head Normal Forms

A term may be S-equivalent to multiple head normal forms (hnf), the principal hnf is particularly
important (in the definition of B6hm trees).

Definition (Barendregt 8.3.20)

If M has a hnf, then the last term of the terminating head reduction of M is called the principal head
normal form (principal hnf) of M.

def
principal_hnf = last o head_reduction_path

Some properties of principal hnf

F has_hnf M = (principal_hnf M = N < M —, N A hnf N)
F has_hnf M = FV (principal_hnf M) C FV M

F hnf t = principal_hnf (LAM1 xS t s« MAP VAR xs) = t

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 9/25

HOL Preliminaries

Solvable Terms; Wadsworth's Theorem

Definition (Barendregt 8.3.1)

A closed term M is solvable if there exist Ny --- N, such that M Ny --- N, =g | (= Ax.x). An arbitrary
M is solvable if a closure AX. M of M is solvable (this is independent of the choice of x).

solvable M def AM’ Ns. M’ € closures M A M’ -« Ns =31

closures M % {1aM1 vs M | vs | ALL_DISTINCT vs A FV M C set vs}
An example of unsolvable term ((Ax. xx)(Ax. xx)):

F unsolvable €2

F Q = LAM “X” (VAR “X” « VAR “X”) « LAM “xX” (VAR “X” « VAR “X”)

Theorem (Barendregt 8.3.14, Wadsworth)
A A-term is solvable iff it has hnf:

F solvable M <= has_hnf M

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 10/25

HOL Preliminaries

Solvable Terms; Wadsworth's Theorem

Definition (Barendregt 8.3.1)

A closed term M is solvable if there exist Ny --- N, such that M Ny --- N, =g | (= Ax.x). An arbitrary
M is solvable if a closure AX. M of M is solvable (this is independent of the choice of x).

solvable M def AM’ Ns. M’ € closures M A M’ -« Ns =31

closures M % {1aM1 vs M | vs | ALL_DISTINCT vs A FV M C set vs}
An example of unsolvable term ((Ax. xx)(Ax. xx)):

F unsolvable €2

F Q = LAM “X” (VAR “X” « VAR “X”) « LAM “xX” (VAR “X” « VAR “X”)

Theorem (Barendregt 8.3.14, Wadsworth)

A \-term is solvable iff it has hnf- Two first mechanisations of this announced
today!
b solvable M <= has_hnf M (Talk after this on paper by Lancelot et al.)
e ==

V.

September 29, 2025 10/25

B8hm Trees

Informal Bohm Trees (textbook definitions)

o If a term M is unsolvable, then its Bohm tree, denoted by BT(M), is L.

@ Otherwise the term has principal hnf AX. yMy - - - M;,—1. The root of BT(M) is AX. y, and the
subtrees are BT(Mp), ... BT(M;,_1).

Bdhm tree examples for S = Aabc. ac(bc),
Aabc. a

N,

Cc

3Note that Yf =g f(Yf) and Y =g Af. f(Yf).
Bdhm Trees September 29, 2025 11/25

Informal Bohm Trees (textbook definitions)

o If a term M is unsolvable, then its Bohm tree, denoted by BT(M), is L.

@ Otherwise the term has principal hnf AX. yMy - - - M;,—1. The root of BT(M) is AX. y, and the
subtrees are BT(Mp), ... BT(M;,_1).

Bdhm tree examples for S = Aabc. ac(bc), SaQd = Ac. acQ
Aabc. a Ac.a

N,

c b c

3Note that Yf =g f(Yf) and Y =g Af. f(Yf).
Bdhm Trees September 29, 2025 11/25

B8hm Trees

Informal Bohm Trees (textbook definitions)

o If a term M is unsolvable, then its Bohm tree, denoted by BT(M), is L.

@ Otherwise the term has principal hnf AX. yMy - - - M;,—1. The root of BT(M) is AX. y, and the
subtrees are BT(Mp), ... BT(M;,_1).

Bohm tree examples for S = Aabc. ac(bc), SaQ = Ac.acQ and Y = Af. (Ax. f(xx))(Ax. f(xx)).3
Aabc. a Ac.a M. f

N, N
|

3Note that Yf =g f(Yf) and Y =g Af. f(Yf).
Bdhm Trees September 29, 2025 11/25

B8hm Trees

Informal Bohm Trees (textbook definitions)

o If a term M is unsolvable, then its Bohm tree, denoted by BT(M), is L.

@ Otherwise the term has principal hnf AX. yMy - - - M;,—1. The root of BT(M) is AX. y, and the
subtrees are BT(Mp), ... BT(M;,_1).

Bohm tree examples for S = Aabc. ac(bc), SaQ = Ac.acQ and Y = Af. (Ax. f(xx))(Ax. f(xx)).3
Aabc. a Ac.a M. f

N, N

c b c

By a-equivalence, different (informal) BShm trees can be generated from the same term, by choosing
different bound variables. (Barendregt suggests Bohm Trees should use de Bruijn indices.)

c

3Note that Yf =g f(Yf) and Y =g Af. f(Yf).
Bdhm Trees September 29, 2025 11/25

Rank-based fresh name allocation (1)

Given any finite set of names (as strings) X, it's easy to define "NEWS n X" which returns a list of n
names excluding X (simply because the set of all strings is infinite.) But this is not enough.

The set of all strings is actually countably infinite, therefore can be filled into a 2-dimensional space,
indexed by two natural numbers. To define Béhm tree formally, we need “RNEWS r n X", which returns
n names at row r while excluding X. This funcion is based on alloc:

Definition (alloc)

The allocation function alloc allocates n names in the row r, starting at position (r,z). Thus the n
allocated names are at coordinates (r,z),(r,z+1),...,(r,z+n—1):

alloc r z n =¥ GENLIST (\i. n2s (r ® (z + i))) n

0| z z+n—1 T
RANK (r) ! !
[R O — — — — — — — — —
alloc(r,z,n)
Yy

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 12 /25

Rank-based fresh name allocation (2)

Definition (RNEWS and RANK.)

RNEWS r n X = (let z = SUC (string_width X) in alloc r z n)
string_width X “' MAX_SET (IMAGE (nsnd o s2n) X)

RANK. r is the set of all names whose row is smaller than r:

RANK. r = {v | 3ij. v=mn2s G ®j)Ai<r}

0 w w41 w+n
i | RANK_(r) |
T I - ey - - - - - D S
RNEWS(7, n, X)

C. Tian and M. Norrish (ANU) B8hm Trees

September 29, 2025

13 /25

Bohm Trees: The Formal definition

def

BT_generator X (M,r) = Steps for generating one Bohm node (when M is

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU) B8hm Trees

solvable):
My is the principal hnf of M, in form

(alpha-equivalent to) LAML vs (VAR y «« Ms);

September 29, 2025

14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

vs is allocated at row r, excluding X;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;
vs is allocated at row r, excluding X;
My is in form of VAR y «+ Ms;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

vs is allocated at row r, excluding X;
My is in form of VAR y «+ Ms;

Ms is finally obtained from My;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let

Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms

in
(SOME (vs,y),fromList /))
else (NONE,[D

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

vs is allocated at row r, excluding X;
My is in form of VAR y «+ Ms;

Ms is finally obtained from My;

@ vy is finally obtained from Mq;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let

Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms

in
(SOME (vs,y),fromList /))
else (NONE,[D

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

vs is allocated at row r, excluding X;
My is in form of VAR y «+ Ms;

Ms is finally obtained from My;

@ vy is finally obtained from Mq;

| is the list of hnf children as seeds for
generating subtrees, each paired with r + 1;

September 29, 2025 14 /25

Bohm Trees: The Formal definition

BT_generator X (M,r) of

if solvable M then
(let
Mo = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M, = principal_hnf (Mg «« MAP VAR vs);
Ms = hnf_children M;;
y = hnf_headvar M;;
| = MAP (Ae. (e,SUC r)) Ms
in
(SOME (vs,y),fromList /))
else (NONE,[[)

BT X def ltree_unfold (BT_generator X)

The type of generated Bohm tree is “BT_node ltree”,
where BT_node is (string list X string) option.

C. Tian and M. Norrish (ANU)

B8hm Trees

Steps for generating one Bohm node (when M is
solvable):

My is the principal hnf of M, in form
(alpha-equivalent to) LAML vs (VAR y «« Ms);

n is the length of vs;

vs is allocated at row r, excluding X;
My is in form of VAR y «+ Ms;

Ms is finally obtained from My;

@ vy is finally obtained from Mq;

| is the list of hnf children as seeds for
generating subtrees, each paired with r + 1;

B Instead of LAM1 vs y, the tree node is
SOME (vs,y) (or NONE for L).

September 29, 2025 14 /25

Subterm (dual concept of Bohm tree)

subterm X M [1 r & soME (M, r) If M is already in hnf, say
subterm X M (i::is) r = LAM1 vs (y +« Ms), then
if solvable M then “subterm X M [i] r’
(Let essentially returns the i-th
Mo = principal_hnf M; child of Ms, i.e. EL i Ms,
n = LAML_size Mo; paired with r + 1.

vs = RNEWS r n X;
M; = principal_hnf (Mo <+ MAP VAR vs);
Ms = hnf_children M;;
m = LENGTH Ms
in
if i/ < m then subterm X (EL /i Ms) is (SUC r) else NONE)
else NONE

15 /25

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025

Subterm (dual concept of Bohm tree)

subterm X M [] r def SOME (M, r)
subterm X M (i::is) r def

if solvable M then

(let
Moy = principal_hnf M;
n = LAM1_size Mp;
vs = RNEWS r n X;
M; = principal_hnf (Mo <+ MAP VAR vs);
Ms = hnf_children M;;
m = LENGTH Ms

in

if i/ < m then subterm X (EL /i Ms) is (SUC r) else NONE)

else NONE

Connection between Bdhm trees and subterms (Barendregt 10.1.15):

F FINITE X A FV M C X U RANK< r A subterm X M is r # NONE =

ltree_lookup (BT’ X M r) is # NONE A

BT X (THE (subterm X M is r)) = THE (ltree_lookup (BT> X M r) is)

Formally

C. Tian and M. Norrish (ANU) B8hm Trees

If M is already in hnf, say
LAM1 vs (y +« Ms), then
“subterm X M [i] r"
essentially returns the i-th
child of Ms, i.e. EL i Ms,
paired with r + 1.

September 29, 2025

15 /25

Basic properties of Bohm trees

e Two f-equivalent terms must have literally the same Bdhm tree (Barendregt 10.1.6):

F FINITE X A FVM C X URANKc r AFVN C X URANKc r A M =3 N =
BT’ X M r =BT X N r

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 16 /25

Basic properties of Bohm trees

e Two f-equivalent terms must have literally the same Bdhm tree (Barendregt 10.1.6):

F FINITE X A FVM C X URANKc r AFVN C X URANKc r A M =3 N =

BT> X M r =BT X N r
o If a term is in B-normal form (bntf), then

F FINITE X A FV M C X U RANK.
F FINITE X A FV M C X U RANK.
ltree_el (BT> X M r) p # SOME

C. Tian and M. Norrish (ANU)

its Bohm tree must be finite, and without any Ls:

r A bnf M = 1ltree_finite (BT’ X M r)

r A bnf M A p € ltree_paths (BT’ X M r) =

1

B8hm Trees

September 29, 2025

16 /25

Basic properties of Bohm trees

e Two f-equivalent terms must have literally the same Bdhm tree (Barendregt 10.1.6):
F FINITE X A FVM C X URANKc r AFVN C X URANKc r A M =3 N =
BT> X M r =BT X N r
o If a term is in B-normal form (bntf), then its Bohm tree must be finite, and without any Ls:
F FINITE X A FV M C X U RANK. r A bnf M = 1ltree_finite (BT X M r)
F FINITE X A FV M C X U RANK< r A bnf M A p € ltree_paths (BT> X M r) =
ltree_el (BT> X M r) p # SOME L
@ Free names of hnf children (in subterms) have the same “shape” as the parent term: (this is
essential for (co)induction proofs of Béhm tree properties)
F FINITE X A FV M C X U RANK. r A solvable M A My = principal_hnf M A
n = LAM1_size My A m = hnf_children_size My A vs = RNEWS r n X A
M; = principal_hnf (Mg ++ MAP VAR vs) A Ms = hnf_children M; A h < m =
FV (EL h Ms) C X U RANK. (SUC r)

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 16 /25

Bohm Transformations and the “Bohm out” technique

Atomic transforms add a variable to the right, or perform a substitution.
A transformation is a list of these composed together:

of
solving_transform f = (Ix. f = (Ap. p+VAR x)) V Ix N. f = [N/x]
of
Boehm_transform 7 d: EVERY solving_transform 7

ef
apply ™ = FOLDR (o) I 7

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025

17 /25

Bohm Transformations and the “Bohm out” technique

Atomic transforms add a variable to the right, or perform a substitution.
A transformation is a list of these composed together:

solving_transform f = (Ix. f = (Ap. p+VAR x)) V 3x N. f = [N/x]

def
Boehm_transform m = EVERY solving_transform 7

ef
apply ™ = FOLDR (o) I 7

Transformed equal terms remain equal:

F Boehm_transform m A M =3 N = apply m M =papply 7 N

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 17 /25

“Bohm out” technique for single term (Barendregt 10.3.6)

A “ready” term is one that head-reduces to a term with y free at the head of an application, and where
y doesn't appear elsewhere. (A prime target for a substitution IOW.)

def
is_ready M =

unsolvable M V Jy Ns. M —», VAR y -« Ns A EVERY (Ae. y § e) Ns
is_ready’ M def is_ready M A solvable M
We can construct a Bhm transformation that
@ makes the result is_ready’; and

@ given a path p, guarantees that original and transformed subterms along p differ only by one closed
substitution.

F FINITE X A FVM C X U RANK< r A p # [1 A subterm X M p r # NONE =
J7. Boehm_transform m A is_ready’ (apply m M) A FV (apply m M) C X U RANK. (SUC r) A
Jv P.
closed P A
Vg. g xpAqg# =
subterm X (apply @ M) g r # NONE A
subterm’ X (apply # M) q r = [P/v] (subterm’ X M q r)

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 18 /25

“Bohm out” technique for multiple A\-terms (1)

Two BShm tree nodes (either from the same or different trees) are head equivalent if:
@ They are either both L or both not L;

@ In case they are not L, the two tree nodes can be written as (A\x; - - - x,.y, m) and

(Axq+ <+ Xp.y', m’), with m and m’ the number of children at that node, and it is required that
y=y' andn—-m=n"—m'.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 19 /25

“Bohm out” technique for multiple A\-terms (1)

Two BShm tree nodes (either from the same or different trees) are head equivalent if:
@ They are either both L or both not L;

@ In case they are not L, the two tree nodes can be written as (A\x; - - - x,.y, m) and
(Axq+ <+ Xp.y', m’), with m and m’ the number of children at that node, and it is required that
y=y' andn—-m=n"—m'.
This is a very local notion; only comparing superficial structure:
@ the head variables must be equal; and

@ extra variables in the binding list correspond to extra children (smells of n!)

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 19 /25

“Bohm out” technique for multiple A\-terms (1)

Two BShm tree nodes (either from the same or different trees) are head equivalent if:
@ They are either both L or both not L;

@ In case they are not L, the two tree nodes can be written as (Axq - - - x,. y, m) and
(Axq+ <+ Xp.y', m’), with m and m’ the number of children at that node, and it is required that
y=y' andn—-m=n"—m'.
This is a very local notion; only comparing superficial structure:
@ the head variables must be equal; and

@ extra variables in the binding list correspond to extra children (smells of n!)

Extend this to equivalence at a particular path p:

subtree_equiv X M N p r «f
ltree_equiv (ltree_el (BT’ X M r) p) (ltree_el (BT’ X N r) p)
and to terms that have hnfs (equivalent).

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 19 /25

“Bohm out” technique for multiple A-terms (2)

Let F be finite non-empty set of
A-terms, VM € F.a € BT(M)
(shared path of all involved Bohm
trees). Then there exists a Bohm
transformation 7 such that:

@ VM € F. M™ is ready (and
solvable);

o VM e F.a € BT(M™);

e VMe F,B=a.
Mg solvable iff Mg solvable;

o VM,N€F,B=a.
M ~g Niff M™ ~p N

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 20/25

“Bohm out” technique for multiple A-terms (2)

FFINITEX Ap# I ANO0O<rAMs#TIIA
U (IMAGE FV (set Ms)) C X U RANK< r A
EVERY (AM. p € ltree_paths (BT X M r)) Ms =
J7. Boehm_transform m A EVERY is_ready’ (apply ® Ms) A
EVERY (AM. FV M C X U RANK<. r) (apply @ Ms) A
EVERY (AM. p € ltree_paths (BT’ X M r)) (apply m Ms) A

Let F be finite non-empty set of
A-terms, VM € F.a € BT(M)
(shared path of all involved Bohm
trees). Then there exists a Bohm
transformation 7 such that:

@ VM € F. M™ is ready (and Vg M.

solvable); MEM M Ms A g X p =
o YM € F.a € BT(M™); (solvable (subterm’ X M q r) <

solvable (subterm’ X (apply @ M) q r))) A

e VMe F,B=<Xa. Vg M N.

Mg solvable iff Mg solvable; MEM M Ms A MEM N Ms A g < p =
e YM,Ne F,B=a. (subtree_equiv X M N q r <—

M ~g Niff M™ ~5 N™. subtree_equiv X (apply m M) (apply @ N) q r)

(The above lemma has a single big proof of 4,000+ lines.)

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 20/25

Separability of A-terms (a restricted version)

Theorem

If M, N both have bnf (and also have the same set of B6hm tree paths) and M #g N, then for any
two terms P and Q there exists B6hm transformation m such that M™ =g P and N™ =3 Q:

F FINITE X AFVM UFVN C X URANKc r A0 < r A
ltree_paths (BT’ X M r) = ltree_paths (BT> X N r) A has_bnf M A
has_ bnf N A M #5 N =
VP Q. 3I7. Boehm_transform m A apply @ M =g P A apply @ N =5 Q

If the antecedent 1tree_paths (BT> X M r) = 1ltree_paths (BT’ X N r) gets removed, then the
resulting theorem is Bohm's original separability theorem®.

4C. Béhm. Alcune proprieta delle forme 3-n-normali nel A-k-calcolo.
Pubblicazioni dell’Instituto per le Applicazioni del Calcolo, 696:1-19, 1968
T e S o ERIET

n-separability and An-completeness

Theorem (n-separability)

Two distinct terms having 8n-normal forms are n-separable:

F has_benf M A has_benf N A M #g, N =
VP Q. d7. Boehm_transform m A apply @ M =g, P A apply m@ N =3, Q

Proof of An-completess by n-separability.

Fix P and Q. Assuming M #g, N, the goal is to prove An + (M = N) - P = Q. By 7-separability,
there exists a Béhm transformation 7 such that M™ =g, P and N™ =4, Q, therefore

M+ (M=N)EM™=Pand \n+ (M= N)F N™ = Q. By induction on 7,

An+ (M = N)F M™ = N™ can be proved (the base case is M = N, an axiom in Anp + (M = N)).
Therefore An + (M = N) + P = Q by symmetry and transitivity of (all) A-equational theories. O

v

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 22/25

Removing Our Restriction

Given different terms M and N, need to deal with restriction
ltree_paths (BT> X M r) = ltree_paths (BT’ X N r)

Thanks to i, any M is equal to Ax. M x with x fresh.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 23/25

Removing Our Restriction

Given different terms M and N, need to deal with restriction
ltree_paths (BT> X M r) = ltree_paths (BT’ X N r)

Thanks to i, any M is equal to Ax. M x with x fresh.

When M has a hnf, this gives the corresponding
Bohm tree extra paths to the right and/or downwards.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 23/25

Removing Our Restriction

Given different terms M and N, need to deal with restriction
ltree_paths (BT> X M r) = ltree_paths (BT’ X N r)

Thanks to i, any M is equal to Ax. M x with x fresh.

When M has a hnf, this gives the corresponding
Bohm tree extra paths to the right and/or downwards.

So, if finite BT> X M r and BT> X N r don't share
the same paths they can be n-converted so that they do!

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 23/25

TR Pl Bshm Transformations & “Bshm out”

From (restricted) separability to n-separability

Aabc. a

N

C

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 24 /25

TR Pl Bshm Transformations & “Bshm out”

From (restricted) separability to n-separability

Aabc. a Aabc. a

N N

c b c AX. b

AN

C Cc X

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 24 /25

TR Pl Bshm Transformations & “Bshm out”

From (restricted) separability to n-separability

Aabc. a Aabc. a Aabcz.a
¢ \ b ¢ Ax. b c x z
c c X c X

Figure: One-step 7-expansion of (informal) Béhm trees.

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 24 /25

Conclusion and future work

Done:
@ Proved famous results; mostly following Barendregt
@ Developed technology for working with Bohm trees
Not Done Yet:
@ Other Bohm-like trees (Lévy-Longo trees, Berarducci trees, etc.) can be formalised similarly.
@ Generally: denotational semantics for A-calculus (Do, P,,)

@ Polishing the result:

e inequal terms without #7n-normal lead to inconsistency;
e Bohm's original statement showing all terms can be separated
o ...

C. Tian and M. Norrish (ANU) B8hm Trees September 29, 2025 25 /25

	Introduction
	HOL Preliminaries
	Böhm Trees
	Rank Based Name Allocation
	Formally
	Böhm Transformations & ``Böhm out''

