J]an van Brugge, Andrei Popescu, Dmitriy Traytel




The problem

Represent syntax in
ITPs

t o= Terms

X Variable
Ax. t Abstraction
tt Application

—




The problem

Represent syntax in
ITPs

t ::= Terms - alpha-equivalence
X Variable

Ax. t Abstraction

tt Application

—




The problem

Represent syntax in

ITPs
t ::= Terms . alpha-equivalence
X Variable - free variables

Ax. t Abstraction
tt Application

—




The problem

Represent syntax in

ITPs
t ::= Terms . alpha-equivalence
X Variable - free variables

 induction

Ax. t Abstraction
tt Application

—




The problem

Represent syntax in

ITPs
t ::= Terms . alpha-equivalence
X Variable - free variables

 induction

Ax. t Abstraction
tt Application

—

* renaming




The problem

Represent syntax in
ITPs

t = Terms .
X Variable y

Ax. t Abstraction
tt Application

alpha-equivalence
free variables
induction
renaming
substitution

—



The problem

Represent syntax in

ITPs
t = Terms - alpha-equivalence
X Variab|e e free variables
)  induction
Ax. t Abstraction .
* renaming

tt Application .

substitution
arbitrary functions

—



Switch to Isabelle

—



Switch to Isabelle

—



Demo (Backup Slides)

binder datatype 'a LC =
Var 'a
| Abs x::'a t::"'a LC" binds x in t
| App 1 i a LC 11 1n | a LC ]|

—
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(* alpha-equivalence *)
lemma "Abs x (Var x) = Abs y (Var y)" by simp
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(* alpha-equivalence *)
lemma "Abs x (Var x) = Abs y (Var y)" by simp

thm LC.inject[no vars]§

«= (Var x = Var y) = (x =vy)

= (Abs x1 x2 = Abs yl y2) =
((yl ¢ FVars LC x2 Vv x1 =

= (App x1 x2 = App yl y2) =

yl) A permute LC (x1 < yl) x2 = y2)
(x1 =yl A x2 = y2)

—
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(* free variables *)
thm LC.set[no vars]

Proof state [v] Auto hovering [v] Auto update U

= FVars LC (Var x) = {x}
= FVars LC (Abs x1 x2) = FVars LC x2 - {x1}
= FVars LC (App x1 x2) = FVars LC x1 U FVars LC x2
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(* 1nduction *)
thm LC.fresh induct[no vars]}

Proof state Auto hovering Auto update

|A] <o |UNIV| —

(Ax. P (Var x)) =

(AX1 x2. x1 € A = P x2 =— P (Abs x1 x2)) —
(Ax1 x2. P x1 = P x2 = P (App x1 x2)) = P t

—
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(* renaming & substitution *)
term "vvsubst LC"E
term "tvsubst LC"

"vvsubst LC"
"('a = 'a) = 'a LC = 'a LC"

"tvsubst LC"
: "('a = 'aLC) = 'a LC = 'a LC"

.
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Demo (Backup Slides)

binder datatype 'a LC =
Var 'a
| Abs "(x::'a) fset" t::"'a LC" binds x in t
| App 11 1 a LC ] 11 1 a LC ]
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binder_datatype 'a LC
Var ‘'a
| Abs "(x::'a) fset" t::"'a LC" binds x in t
| App "'a LC" "'a LC stream"
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How does it work?

binder_datatype 'a LC
Var 'a
| Abs "(x::'a) fset" t::"'a LC" binds x in t
| App "'a LC" "'a LC stream"
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binder_datatype 'a LC
Var 'a
| Abs "(x::'a) fset" t::"'a LC" binds x in t
| App "'a LC" "'a LC stream"

D

type _synonym (‘'a, 'b, 'rec, 'brec) LC pre =
IIIa
+ 'b fset x 'brec
+ 'rec X 'rec stream"”
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IIIa
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D

datatype 'a raw LC =
d,

raw LC ctor "( a, 'a raw LC, 'a raw LC) LC pre"

* requires automated proof that LC pre is a MRBNF (see paper for details)
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How does it work?

datatype 'a raw LC =
raw LC ctor "('a, 'a, 'a raw LC, 'a raw LC) LC pre"

D

typedef 'a LC = "(UNIV :: 'a raw LC set)
// { (x, y). alpha LC x y }"

ﬂ




How does it work?

locale REC =
fixes Pmap :: "('a = 'a) = 'p = 'p"
and PFVars :: "'p = 'a set"

and validP :: "'p = bool"

and avoiding set :: "'a set”
and Umap :: "('a = 'a) = 'u = "u"
and UFVars :: "'u = 'a set"
and validU :: "'u = bool"
and Uctor ::
"('a, 'a, 'alC x ('p= 'u), 'alCx ('p= 'u)) LC pre = 'p = "u"

ﬂ
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Abstract—It is well known that the real numbers arise from
the metric completion of the rational numbers, with the metric
induced by the usual absolute value. We seck a computational
version of this phenomenon, with the idea that the role of the
rationals should be played by the affine lambda-calculus, whose
dynamics is finitary; the full lambda-calculus should then appear
as a suitable metric completion of the affine lambda-calculus.

This paper proposes a technical realization of this idea: an
affine lambda-calculus is introduced, based on a fragment of
intuitionistic multiplicative linear logic: the calculus is endowed
with a notion of distance making the set of terms an incomplete
metric space; the completion of this space is shown to yield
an infinitary affine lambda-calculus, whose quotient under a
suitable partial equivalence relation is exactly the full (non-affine)
lambda-calculus. We also show how this construction brings
interesting insights on some standard rewriting properties of
the lambda-calculus (finite developments, confluence, standard-
ization, head normalization and solvability).

Index Terms—Computation theory, topology, lambda-calculus,
infinitary rewriting

I. INTRODUCTION

The notion of linearity in computer science, which corre-
sponds to the operational constraint of forcing all arguments
of a function to be used exactly once, was brought forth
about a quarter century ago by the introduction of linear

become immediate to prove. Additionally, the calculus is
strongly normalizing even in absence of types. This is because,
as mentioned above, only the combinatorial part of F-reduction
is left, so that the affine A-calculus is really just a calculus
of permutations: all that we are allowed to do with an atomic
object (i.e., a variable) is displace it, or erase it. Obviously, the
expressive power of such a calculus is drastically reduced; that
is why linear logic comes with additional constructors which
allow, albeit in a controlled way, duplication of atomic objects,
so that the full power of the A-calculus may be recovered.

In this paper, we push forward the (per se rather obvious)
idea that a non-linear, duplicable object is equivalent to
infinitely many linear, non-duplicable objects, i.e., we replace
potential (non-linear) infinity with actual (linear) infinity. Of
course, the rigorous manipulation of infinity requires some
form of topology, and our idea will be satisfactorily realized
only if non-linearity may be shown to arise from linearity in
a topologically natural manner.

We may draw here an analogy with Cantor’s definition of
the real numbers as equivalence classes of Cauchy sequences
of rational numbers. This analogy comes from an old remark
of Girard [15], who noticed how the purely linear fragment of
linear logic seems to be, at least morally, “dense” in full linear
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Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

We propose an initial set of benchmarks for measuring progress in this
area. Based on the metatheory of System Fe, a tvped lambda-calenlus
with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and tvpe levels,
syntactic forms with variable numbers of components (including binde
and proofs demanding complex induction principles. We hope that th
benchmarks will help elarify the current state of the art, provide a b
for comparing competing technologies, and motivate further research.
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 POPL19 paper by
Blanchette et. al.
introducing MRBNFs

Bindings as Bounded Natural Functors (Extended Version)

JASMIN CHRISTIAN BLANCHETTE, Vrije Universiteit Amsterdam, the Netherlands and Max-Planck-
Institut fiir Informatik, Germany

LORENZO GHERI, Middlesex University London, UK

ANDREI POPESCU, Middlesex University London, UK and Institute of Mathematics Simion Stoilow of
the Romanian Academy, Romania

DMITRIY TRAYTEL, ETH Ziirich, Switzerland

We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types
are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct
complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching
types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete”
enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and
capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical
higher-order logic and has been formalized in the proof assistant Isabelle/HOL.

CCS Concepts: « Theory of computation — Logic and verification; Higher order logic; Type struc-
tures;

Additional Key Words and Phrases: syntax with bindings, inductive and coinductive datatypes, proof assistants
ACM Reference Format:
Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. 2019. Bindings as Bounded

Natural Functors (Extended Version). Proc. ACM Program. Lang. 3, POPL, Article 22 (January 2019), 45 pages.
https://doi.org/10.1145/3290335

1 INTRODUCTION
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This paper is a contribution to the meta-theory of systems featuring syntax with bindings, such as A-calculi

] n L ]
I n d u C t I V e re d I C a t e S and logics. It provides a general criterion that targets inductively defined rule-based systems, enabling for them
inductive proofs that leverage Barendregt’s variable convention of keeping the bound and free variables disjoint.

It improves on the state of the art by (1) achieving high generality in the style of Knaster-Tarski fixed point
definitions (as opposed to imposing syntactic formats), (2) capturing systems of interest without modifications,

and (3) accommodating infinitary syntax and non-equivariant predicates.
CCS Concepts: « Theory of computation — Logic and verification.
Additional Key Words and Phrases: syntax with bindings, induction, formal reasoning, nominal sets

ACM Reference Format:

Jan van Briagge, James McKinna, Andrei Popescu, and Dmitriy Traytel. 2025. Barendregt Convenes with
Knaster and Tarski: Strong Rule Induction for Syntax with Bindings. Proc. ACM Program. Lang. 9, POPL,
Article 57 (January 2025), 32 pages. https://doi.org/10.1145/3704893
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rule induction for
inductive predicates

* this paper showing
binder _datatypes based
on MRBNFs

Animating MRBNFs: Truly Modular
Binding-Aware Datatypes in Isabelle/HOL

Jan van Briigge &
Heriot-Watt University, Edinburgh, UK

Andrei Popescu &
University of Sheffield, UK

Dmitriy Traytel &

University of Copenhagen, Denmark

——— Abstract

Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or
programming languages, in which variables are bound. It has been instrumental to major veri-
fication successes, such as Gédel’s incompleteness theorems. However, the existing tooling is not
compositional. In particular, it does not support nested recursion, linear binding patterns, or
infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and
functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical
advancements that overcome these limitations through a modular approach using the concept of
map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional
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1. Clone the repository
https://github.com/jvanbruegge/binder datatypes
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How to try it

1. Clone the repository

https://github.com/jvanbruegge/binder datatypes
2. Make Isabelle aware of the library:

$ isabelle components -u /path/to/repo
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How to try it

1. Clone the repository
https://github.com/jvanbruegge/binder datatypes
2. Make Isabelle aware of the library:

$ isabelle components -u /path/to/repo
3. import Binders.MRBNF_Recursor
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https://github.com/jvanbruegge/binder_datatypes

How to try it

1. Clone the repository
https://github.com/jvanbruegge/binder datatypes
2. Make Isabelle aware of the library:
$ isabelle components -u /path/to/repo
3. import Binders.MRBNF_Recursor
4. Have fun :)

Also contains case studies and detailed example
proofs for the automation
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LLELLS

Questions
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