Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Jan van Brügge, Andrei Popescu, Dmitriy Traytel

$$t::=$$
 x
Variable
$$\begin{vmatrix} \lambda x & t \\ \lambda x & t \\ \lambda x & t \end{vmatrix}$$
Abstraction
$$\begin{vmatrix} t & t \\ t & t \end{vmatrix}$$

Terms

Variable

Abstraction

Application

Represent syntax in ITPs

alpha-equivalence

$$t ::= x$$
 Variable λx . t Abstraction $t t$ Application

- alpha-equivalence
- free variables

$$t ::= x$$
 Variable λx . t Abstraction $t t$ Application

- alpha-equivalence
- free variables
- induction

$$t ::= x \\ | \lambda x. t \\ | t t$$

Terms

Variable

Abstraction

Application

- alpha-equivalence
- free variables
- induction
- renaming

$$t ::= x \\ | \lambda x. t \\ | t t$$

Terms

Variable

Abstraction

Application

- alpha-equivalence
- free variables
- induction
- renaming
- substitution

$$t ::= x \\ | \lambda x. t \\ | t t$$

Terms

Variable

Abstraction

Application

- alpha-equivalence
- free variables
- induction
- renaming
- substitution
- arbitrary functions

Demo

Switch to Isabelle

Demo

Switch to Isabelle

Goto next

```
binder_datatype 'a LC =
  Var 'a
  | Abs x:: 'a t:: "'a LC" binds x in t
  | App "'a LC" "'a LC"
```

```
(* alpha-equivalence *)
lemma "Abs x (Var x) = Abs y (Var y)" by simp
```

```
(* alpha-equivalence *)
lemma "Abs \times (Var \times) = Abs y (Var y)" by simp
thm LC.inject[no vars]
                                                   ✓ Proof state ✓ Auto hovering ✓ Auto update Update Search:
• (Var x = Var y) = (x = y)
• (Abs x1 x2 = Abs y1 y2) =
  ((y1 \notin FVars LC \times 2 \lor x1 = y1) \land permute LC (x1 \leftrightarrow y1) \times 2 = y2)
• (App \times 1 \times 2 = App y 1 y 2) = (x 1 = y 1 \land x 2 = y 2)
```

```
(* free variables *)
thm LC.set[no_vars]

• FVars_LC (Var x) = {x}
• FVars_LC (Abs x1 x2) = FVars_LC x2 - {x1}
• FVars LC (App x1 x2) = FVars LC x1 U FVars LC x2
```

```
(* induction *)
thm LC.fresh induct[no vars]
                                                                       ✓ Proof state
✓ Auto hovering
✓ Auto update
|A| < 0 |UNIV| \implies
(\bigwedge x. P (Var x)) \Longrightarrow
(\bigwedge x1 \ x2. \ x1 \notin A \Longrightarrow P \ x2 \Longrightarrow P \ (Abs \ x1 \ x2)) \Longrightarrow
(\bigwedge x1 \ x2. \ P \ x1 \Longrightarrow P \ x2 \Longrightarrow P \ (App \ x1 \ x2)) \Longrightarrow P \ t
```

```
(* renaming & substitution *)
term "vvsubst_LC"
term "tvsubst_LC"
 "vvsubst LC"
    :: "('a \Rightarrow 'a) \Rightarrow 'a LC \Rightarrow 'a LC"
                                                                  ✓ Proof
"tvsubst LC"
    :: "('a \Rightarrow 'a LC) \Rightarrow 'a LC \Rightarrow 'a LC"
```

```
binder_datatype 'a LC =
  Var 'a
  | Abs "(x::'a) fset" t::"'a LC" binds x in t
  | App "'a LC" "'a LC"
```

```
binder_datatype 'a LC =
  Var 'a
  | Abs "(x::'a) fset" t::"'a LC" binds x in t
  | App "'a LC" "'a LC stream"
```

```
binder_datatype 'a LC =
  Var 'a
  | Abs "(x::'a) fset" t::"'a LC" binds x in t
  | App "'a LC" "'a LC stream"
```

```
binder datatype 'a LC =
 | Abs "(x::'a) fset" t::"'a LC" binds x in t
| App "'a LC" "'a LC stream"
 type_synonym ('a, 'b, 'rec, 'brec) LC pre =
   + 'b fset × 'brec
   + 'rec × 'rec stream"
```

```
type_synonym ('a, 'b, 'rec, 'brec) LC_pre =
    "'a
    + 'b fset × 'brec
    + 'rec × 'rec stream"
```

```
type_synonym ('a, 'b, 'rec, 'brec) LC_pre =
   "'a
   + 'b fset × 'brec
   + 'rec × 'rec stream"
```



```
datatype 'a raw_LC =
  raw_LC_ctor "('a, 'a, 'a raw_LC, 'a raw_LC) LC_pre"
```

```
type_synonym ('a, 'b, 'rec, 'brec) LC_pre =
   "'a
   + 'b fset × 'brec
   + 'rec × 'rec stream"
```



```
datatype 'a raw_LC =
  raw_LC_ctor "('a, 'a, 'a raw_LC, 'a raw_LC) LC_pre"
```

^{*} requires automated proof that LC_pre is a MRBNF (see paper for details)

```
datatype 'a raw_LC =
  raw_LC_ctor "('a, 'a, 'a raw_LC, 'a raw_LC) LC_pre"
```

```
datatype 'a raw_LC =
  raw_LC_ctor "('a, 'a, 'a raw_LC, 'a raw_LC) LC_pre"
```



```
locale REC =
fixes Pmap :: "('a \Rightarrow 'a) \Rightarrow 'p \Rightarrow 'p"
  and PFVars :: "'p \Rightarrow 'a set"
  and validP :: "'p ⇒ bool"
  and avoiding set :: "'a set"
  and Umap :: "('a \Rightarrow 'a) \Rightarrow 'u \Rightarrow 'u"
  and UFVars :: "'u \Rightarrow a set"
  and validU :: "'u \Rightarrow bool"
  and Uctor ::
    "('a, 'a, 'a LC \times ('p \Rightarrow 'u), 'a LC \times ('p \Rightarrow 'u)) LC pre \Rightarrow 'p \Rightarrow 'u"
```

Case study 1: Mazza's Isomorphism

2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus

Damiano Mazza
Laboratoire d'Informatique de Paris Nord (UMR 7030)
CNRS – Université Paris 13
Villetaneuse, France
e-mail: Damiano.Mazza@ijpn.univ-paris13.fr

Abstract—It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus.

This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).

Index Terms—Computation theory, topology, lambda-calculus, infinitary rewriting

I INTRODUCTION

The notion of linearity in computer science, which corresponds to the operational constraint of forcing all arguments of a function to be used exactly once, was brought forth about a quarter century ago by the introduction of linear become immediate to prove. Additionally, the calculus is strongly normalizing even in absence of types. This is because, as mentioned above, only the combinatorial part of β -reduction is left, so that the affine λ -calculus is really just a calculus of permutations: all that we are allowed to do with an atomic object (i.e., a variable) is displace it, or erase it. Obviously, the expressive power of such a calculus is drastically reduced; that is why linear logic comes with additional constructors which allow, albeit in a controlled way, duplication of atomic objects, so that the full power of the λ -calculus may be recovered.

In this paper, we push forward the (per se rather obvious) idea that a non-linear, duplicable object is equivalent to infinitely many linear, non-duplicable objects, i.e., we replace potential (non-linear) infinity with actual (linear) infinity. Of course, the rigorous manipulation of infinity requires some form of topology, and our idea will be satisfactorily realized only if non-linearity may be shown to arise from linearity in a topologically natural manner.

We may draw here an analogy with Cantor's definition of the real numbers as equivalence classes of Cauchy sequences of rational numbers. This analogy comes from an old remark of Girard [15], who noticed how the purely linear fragment of linear logic seems to be, at least morally, "dense" in full linear

Case study 1: Mazza's Isomorphism

Lambda binds (distinct)
 stream of variables

2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus

Damiano Mazza Laboratoire d'Informatique de Paris Nord (UMR 7030) CNRS – Université Paris 13 Villetaneuse, France e-mail: Damiano.Mazza@ipn.univ-paris13.fr

Abstract—It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus.

This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability.)

Index Terms—Computation theory, topology, lambda-calculus, infinitary rewriting

I INTRODUCTION

The notion of linearity in computer science, which corresponds to the operational constraint of forcing all arguments of a function to be used exactly once, was brought forth about a quarter century ago by the introduction of linear become immediate to prove. Additionally, the calculus is strongly normalizing even in absence of types. This is because, as mentioned above, only the combinatorial part of β -reduction is left, so that the affine λ -calculus is really just a calculus of permutations: all that we are allowed to do with an atomic object (i.e., a variable) is displace it, or erase it. Obviously, the expressive power of such a calculus is drastically reduced; that is why linear logic comes with additional constructors which allow, albeit in a controlled way, duplication of atomic objects, so that the full power of the λ -calculus may be recovered.

In this paper, we push forward the (per se rather obvious) idea that a non-linear, duplicable object is equivalent to infinitely many linear, non-duplicable objects, i.e., we replace potential (non-linear) infinity with actual (linear) infinity. Of course, the rigorous manipulation of infinity requires some form of topology, and our idea will be satisfactorily realized only if non-linearity may be shown to arise from linearity in a topologically natural manner.

We may draw here an analogy with Cantor's definition of the real numbers as equivalence classes of Cauchy sequences of rational numbers. This analogy comes from an old remark of Girard [15], who noticed how the purely linear fragment of linear logic seems to be, at least morally, "dense" in full linear

Case study 1: Mazza's Isomorphism

- Lambda binds (distinct) stream of variables
- Application applies stream of terms

2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus

Damiano Mazza Laboratoire d'Informatique de Paris Nord (UMR 7030) CNRS – Université Paris 13 Villetaneuse, France e-mail: Damiano.Mazza@ipn.univ-paris13.fr

Abstract—It is well known that the real numbers arise from the metric completion of the rational numbers, with the metric induced by the usual absolute value. We seek a computational version of this phenomenon, with the idea that the role of the rationals should be played by the affine lambda-calculus, whose dynamics is finitary; the full lambda-calculus should then appear as a suitable metric completion of the affine lambda-calculus.

This paper proposes a technical realization of this idea: an affine lambda-calculus is introduced, based on a fragment of intuitionistic multiplicative linear logic; the calculus is endowed with a notion of distance making the set of terms an incomplete metric space; the completion of this space is shown to yield an infinitary affine lambda-calculus, whose quotient under a suitable partial equivalence relation is exactly the full (non-affine) lambda-calculus. We also show how this construction brings interesting insights on some standard rewriting properties of the lambda-calculus (finite developments, confluence, standardization, head normalization and solvability).

Index Terms—Computation theory, topology, lambda-calculus, infinitary rewriting

I INTRODUCTION

The notion of linearity in computer science, which corresponds to the operational constraint of forcing all arguments of a function to be used exactly once, was brought forth about a quarter century ago by the introduction of linear become immediate to prove. Additionally, the calculus is strongly normalizing even in absence of types. This is because, as mentioned above, only the combinatorial part of β -reduction is left, so that the affine λ -calculus is really just a calculus of permutations: all that we are allowed to do with an atomic object (i.e., a variable) is displace it, or erase it. Obviously, the expressive power of such a calculus is drastically reduced; that is why linear logic comes with additional constructors which allow, albeit in a controlled way, duplication of atomic objects, so that the full power of the λ -calculus may be recovered.

In this paper, we push forward the (per se rather obvious) idea that a non-linear, duplicable object is equivalent to infinitely many linear, non-duplicable objects, i.e., we replace potential (non-linear) infinity with actual (linear) infinity. Of course, the rigorous manipulation of infinity requires some form of topology, and our idea will be satisfactorily realized only if non-linearity may be shown to arise from linearity in a topologically natural manner.

We may draw here an analogy with Cantor's definition of the real numbers as equivalence classes of Cauchy sequences of rational numbers. This analogy comes from an old remark of Girard [15], who noticed how the purely linear fragment of linear logic seems to be, at least morally, "dense" in full linear

Case study 2: POPLmark 2B

Mechanized Metatheory for the Masses: The Poplmark Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹, Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

 $^1\,$ Department of Computer and Information Science, University of Pennsylvania $^2\,$ Computer Laboratory, University of Cambridge

Subversion Revision: 171 Document generated on: May 11, 2005 at 15:53

Abstract. How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

We propose an initial set of benchmarks for measuring progress in this area. Based on the metatheory of System F_{c} , a typed lambda-calculus with second-order polymorphism, subtyping, and records, these benchmarks embody many aspects of programming languages that are challenging to formalize: variable binding at both the term and type levels, syntactic forms with variable numbers of components (including binders), and proofs demanding complex induction principles. We hope that these benchmarks will help clarify the current state of the art, provide a basis for comparing competing technologies, and motivate further research.

1 Introduction

Case study 2: POPLmark 2B

 Case expressions use nested record patterns with distinct binders

Mechanized Metatheory for the Masses: The Poplmark Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹, Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

Department of Computer and Information Science, University of Pennsylvania Computer Laboratory, University of Cambridge

> Subversion Revision: 171 Document generated on: May 11, 2005 at 15:53

Abstract. How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

We propose an initial set of benchmarks for measuring progress in this area. Based on the metatheory of System F_{c} , a typed lambda-calculus with second-order polymorphism, subtyping, and records, these benchmarks embody many aspects of programming languages that are challenging to formalize: variable binding at both the term and type levels, syntactic forms with variable numbers of components (including binders), and proofs demanding complex induction principles. We hope that these benchmarks will help clarify the current state of the art, provide a basis for comparing competing technologies, and motivate further research.

1 Introduction

Case study 2: POPLmark 2B

- Case expressions use nested record patterns with distinct binders
- First solution that uses names

Mechanized Metatheory for the Masses: The Poplmark Challenge

Brian E. Aydemir¹, Aaron Bohannon¹, Matthew Fairbairn², J. Nathan Foster¹,
Benjamin C. Pierce¹, Peter Sewell², Dimitrios Vytiniotis¹, Geoffrey
Washburn¹, Stephanie Weirich¹, and Steve Zdancewic¹

Department of Computer and Information Science, University of Pennsylvania Computer Laboratory, University of Cambridge

> Subversion Revision: 171 Document generated on: May 11, 2005 at 15:53

Abstract. How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

We propose an initial set of benchmarks for measuring progress in this area. Based on the metatheory of System F_{c_1} , a typed lambda-calculus with second-order polymorphism, subtyping, and records, these benchmarks embody many aspects of programming languages that are challenging to formalize: variable binding at both the term and type levels, syntactic forms with variable numbers of components (including binders), and proofs demanding complex induction principles. We hope that these benchmarks will help clarify the current state of the art, provide a basis for comparing competing technologies, and motivate further research.

1 Introduction

 POPL19 paper by Blanchette et. al. introducing MRBNFs

Bindings as Bounded Natural Functors (Extended Version)

JASMIN CHRISTIAN BLANCHETTE, Vrije Universiteit Amsterdam, the Netherlands and Max-Planck-Institut für Informatik, Germany

LORENZO GHERI, Middlesex University London, UK

ANDREI POPESCU, Middlesex University London, UK and Institute of Mathematics Simion Stoilow of the Romanian Academy, Romania

DMITRIY TRAYTEL, ETH Zürich, Switzerland

We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is "concrete" enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL.

CCS Concepts: \bullet Theory of computation \rightarrow Logic and verification; Higher order logic; Type structures:

Additional Key Words and Phrases: syntax with bindings, inductive and coinductive datatypes, proof assistants

ACM Reference Format:

Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. 2019. Bindings as Bounded Natural Functors (Extended Version). *Proc. ACM Program. Lang.* 3, POPL, Article 22 (January 2019), 45 pages. https://doi.org/10.1145/3290335

1 INTRODUCTION

The goal of this paper is to systematize and simplify the task of constructing and reasoning about

- POPL19 paper by Blanchette et. al. introducing MRBNFs
- POPL25 paper on strong rule induction for inductive predicates

Bindings as Bounded Natural Functors (Extended Version)

JASMIN CHRISTIAN BLANCHETTE, Vrije Universiteit Amsterdam, the Netherlands and Max-Planck-

Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings

JAN VAN BRÜGGE, Heriot-Watt University, United Kingdom JAMES MCKINNA, Heriot-Watt University, United Kingdom ANDREI POPESCU, University of Sheffield, United Kingdom DMITRIY TRAYTEL, University of Copenhagen, Denmark

This paper is a contribution to the meta-theory of systems featuring syntax with bindings, such as λ -calculi and logics. It provides a general criterion that targets *inductively defined rule-based systems*, enabling for them inductive proofs that leverage *Barendregt's variable convention* of keeping the bound and free variables disjoint. It improves on the state of the art by (1) achieving high generality in the style of Knaster–Tarski fixed point definitions (as opposed to imposing syntactic formats), (2) capturing systems of interest without modifications, and (3) accommodating infinitary syntax and non-equivariant predicates.

CCS Concepts: • Theory of computation → Logic and verification.

Additional Key Words and Phrases: syntax with bindings, induction, formal reasoning, nominal sets

ACM Reference Format:

Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel. 2025. Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings. *Proc. ACM Program. Lang.* 9, POPL, Article 57 (January 2025), 32 pages. https://doi.org/10.1145/3704893

- POPL19 paper by Blanchette et. al. introducing MRBNFs
- POPL25 paper on strong rule induction for inductive predicates
- this paper showing binder datatypes based on MRBNFs

Bindings as Bounded Natural Functors (Extended Version)

JASMIN CHRISTIAN BLANCHETTE, Vrije Universiteit Amsterdam, the Netherlands and Max-Planck-

Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings

JAN VAN BRÜGGE, Heriot-Watt University, United Kingdom

Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Heriot-Watt University, Edinburgh, UK

Andrei Popescu ≥ ©

University of Sheffield, UK

Dmitriy Traytel ≥ ©

University of Copenhagen, Denmark

— Abstract –

Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or programming languages, in which variables are bound. It has been instrumental to major verification successes, such as Gödel's incompleteness theorems. However, the existing tooling is not compositional. In particular, it does not support nested recursion, linear binding patterns, or infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical advancements that overcome these limitations through a modular approach using the concept of map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional package for hinding-aware datatypes in Isabella/HOL, called MrRNE. We describe the journey

n as λ-calculi ling for them ables disjoint. ci fixed point nodifications.

sets

nvenes with ing. 9, POPL,

1. Clone the repository https://github.com/jvanbruegge/binder_datatypes

- 1. Clone the repository https://github.com/jvanbruegge/binder_datatypes
- 2. Make Isabelle aware of the library: \$ isabelle components -u /path/to/repo

- 1. Clone the repository https://github.com/jvanbruegge/binder_datatypes
- 2. Make Isabelle aware of the library: \$ isabelle components -u /path/to/repo
- 3. import Binders.MRBNF_Recursor

- 1. Clone the repository https://github.com/jvanbruegge/binder_datatypes
- 2. Make Isabelle aware of the library:
 \$ isabelle components -u /path/to/repo
- 3. import Binders.MRBNF Recursor
- 4. Have fun:)

Also contains case studies and detailed example proofs for the automation

Thanks

Questions