
Verifying a vertical cell decomposition algorithm

Yves Bertot
Thomas Portet

September 2025

1 / 25



The overall picture

▶ Find a path between obstacles

▶ Obstacles are described by straight line segments
▶ Decompose the working area into simple cells

▶ Each cell is safe
▶ Each cell is convex
▶ Each cell is non-empty

▶ Moving from cells to neighbors is safe
▶ Cells have doors

2 / 25



Example

3 / 25



Example : results

14

13

12

11

9

10

8

7

6

5

4

3

2

1

4 / 25



Vertical cell decomposition

▶ Use a vertical sweep line moving left to right

▶ Stop each time one meets an event (e.g. an edge tip)
▶ maintain a vertically ordered sequence of incomplete cells

▶ Complete all incomplete cells in contact with the event
▶ Create new incomplete cells for edges starting at this event

▶ Simplifying assumptions
▶ No vertical edges
▶ Edges do not cross

5 / 25



Intermediate position for vertical cell decomposition (1)

6 / 25



Intermediate position for vertical cell decomposition (2)

7 / 25



Naive approach to cell generation

▶ Maintain a sequence of incomplete cells
▶ In code and the article, they are called “open cells”

▶ Compute incomplete cells in contact with the current event

▶ Complete these cells

▶ Create new incomplete cells starting at the current event

8 / 25



Illustration

▶ Event in the middle of the pink area

▶ Incomplete cells are green, pink, grey
(ascending order)

▶ Contact cell: the pink cell

▶ New complete cell: complete the pink cell
at the event, obtain a dark green cell in
the middle

▶ New incomplete cells: light purple and
yellow

9 / 25



Difficulty with vertically aligned events

▶ Width of complete cells : horizontal distance between events
▶ Vertically aligned events yield empty cells, if handled naively

▶ Empty cells are a nuisance
▶ Solution: special treatment

▶ Keep track of last created incomplete and complete cells
▶ Update these cells instead of creating new ones

10 / 25



Well-formed cells

left points

high edge

low edge

right points

▶ All cells have a high, a low edge, and a left point sequence

▶ complete cells have a right point sequence

▶ Point sequences go from the high edge to the low edge

▶ Points sequences describe all (known) unsafe points

11 / 25



Non-vertically aligned events

▶ The lower edge of the lower contact cell
finishes further right

▶ Also for the higher edge of the higher

▶ All other contact have low and high edge
meeting at the event

▶ The event may have outgoing edges

▶ Before processing event e, cells c1, c2,
and c3 are incomplete

▶ When processing event e, these cells
receive a right side at the sweep line

12 / 25



Non-vertically aligned events: new incomplete cells

▶ Two new incomplete cells are created
(one outgoing edge)

▶ Their left side is at the sweep line

13 / 25



Non-vertically aligned events: next event

e'

▶ Cell c5 is completed when processing e ′

▶ e ′ is safe for c3

14 / 25



Vertically aligned events

e'

▶ Cell c5 is completed when processing e ′

▶ There is no need for c5
▶ e ′ must be recorded as unsafe in c3
▶ Other unsafe points on the left side of c5

must be recorded as unsafe for c6

15 / 25



Basic concepts

▶ Edges: pairs of points with strict order on first coordinate

▶ Points above, under, or on edges

▶ Valid edges for a point

▶ Edges below edges

▶ Well-formed cells

▶ Adjacent cells

16 / 25



Above or under

▶ Edge with extremities l and r and an arbitrary point p

▶
1 lx ly
1 rx ry
1 px py

> 0 if p is in the half plane above the edge.

▶ edge g1 is below g2 if both extremities of g2 are above g1 or
both extremities of g1 are under g2

▶ Transitivity: two points and one edge, or one point and two
edges
▶ With vertical constraints

▶ No transitivity for edge below

17 / 25



Proof structure

▶ Assumption concerning the sequence of events

▶ Properties of cell sequence decomposition

▶ Logical invariants for the main processing loop

▶ Main property as a consequence of the invariant

18 / 25



Properties for sequence of events

1
2

3

4

5

▶ The sequence is sorted lexicographically

▶ Outgoing edges have the left point at the event

▶ Edges have their right point in the sequence

▶ Producer code must guarantee this

▶ Consuming code maintains it easily

19 / 25



The scan state

▶ a record with 7 fields
▶ 3 fields compose the sequence of incomplete

cells
▶ The last created incomplete cell (c5)
▶ Two other fields for prefix and suffix

▶ 2 fields for the set of complete cells
▶ Direct access to the last created complete cell

(c3)
▶ Another field for the rest

▶ The last high edge (top of c3, c5)

▶ One field for the last location of the sweeping
line

20 / 25



Invariants of incomplete cell sequences

▶ Each cell has a low edge below the high edge

▶ Each cell’s high edge is the next cell’s low edge

▶ Each cell’s left side is left of the sweep line
▶ Each cell has a well-formed left-side

▶ vertically aligned points,
▶ extremities on low and high edges
▶ sorted in height

▶ All edges have their right point in the remaining events
▶ Each high edge is lower than the higher of all following cells

▶ Important because edge below is not transitive

21 / 25



Main proved property

▶ interior of cells is disjoint from input segments

▶ points on sides distinct from left and right points are also
disjoint from input segments

22 / 25



Key insights

▶ Incomplete cells are disjoint

▶ Incomplete cells are disjoint from complete cells

▶ complete cells are disjoint

▶ Obstacles are progressively included in the top of all cells

23 / 25



Future improvements

▶ Remove constraints of edges not crossing
▶ Revisit the proof to remove uses of edge below
▶ Detect edge crossings incrementally

▶ Add a field to cells to point to the neighbors
▶ Understand where efficient numbers can be used

▶ For now rational numbers, hope to use floating point numbers

▶ Provide a solution to allow vertical obstacles
▶ Add trajectory computations

▶ Formal proofs missing

24 / 25



Play with it

https://stamp.gitlabpages.inria.fr/trajectories

▶ Limited computation capability

25 / 25

https://stamp.gitlabpages.inria.fr/trajectories

