Verifying a vertical cell decomposition algorithm

Yves Bertot
Thomas Portet

September 2025

1/25

The overall picture

» Find a path between obstacles

» Obstacles are described by straight line segments
» Decompose the working area into simple cells

» Each cell is safe
» Each cell is convex
» Each cell is non-empty

» Moving from cells to neighbors is safe
» Cells have doors

2/25

Example

3/25

Example : results

13

4/25

Vertical cell decomposition

P> Use a vertical sweep line moving left to right
» Stop each time one meets an event (e.g. an edge tip)

» maintain a vertically ordered sequence of incomplete cells

» Complete all incomplete cells in contact with the event
» Create new incomplete cells for edges starting at this event

» Simplifying assumptions
» No vertical edges
» Edges do not cross

5/25

Intermediate position for vertical cell decomposition (1)

6/25

Intermediate position for vertical cell decomposition (2)
Il

7/25

Naive approach to cell generation

» Maintain a sequence of incomplete cells
» In code and the article, they are called “open cells”

» Compute incomplete cells in contact with the current event
» Complete these cells

» Create new incomplete cells starting at the current event

8/25

[[lustration

Event in the middle of the pink area

Incomplete cells are green, pink, grey
(ascending order)

Contact cell: the pink cell

New complete cell: complete the pink cell
at the event, obtain a dark green cell in
the middle

New incomplete cells: light purple and
yellow

9/25

Difficulty with vertically aligned events

> Width of complete cells : horizontal distance between events
P Vertically aligned events yield empty cells, if handled naively

> Empty cells are a nuisance

» Solution: special treatment

> Keep track of last created incomplete and complete cells
» Update these cells instead of creating new ones

10/25

Well-formed cells

highv‘edge

low edge

s

» All cells have a high, a low edge, and a left point sequence

P> complete cells have a right point sequence

» Point sequences go from the high edge to the low edge

» Points sequences describe all (known) unsafe points

11/25

Non-vertically aligned events

> The lower edge of the lower contact cell
finishes further right

» Also for the higher edge of the higher

G » All other contact have low and high edge
o event e meeting at the event
\ .
> The event may have outgoing edges
E » Before processing event e, cells ¢1, o,
- and c3 are incomplete

> When processing event e, these cells
receive a right side at the sweep line

12/25

Non-vertically aligned events: new incomplete cells

s
event e

\

4

I

» Two new incomplete cells are created
(one outgoing edge)
» Their left side is at the sweep line

13/25

Non-vertically aligned events: next event

c3 c
S5 6 e
o Tl » Cell c5 is completed when processing €’
— -
> ¢’ is safe for c3
cy €4
[B I

14/25

Vertically aligned events

5
/
3 .J g
>\/‘ e'

)

e ——
o €4

—

Cell ¢5 is completed when processing €’
There is no need for cs

e’ must be recorded as unsafe in c3

vvyyypy

Other unsafe points on the left side of ¢
must be recorded as unsafe for cg

15/25

Basic concepts

Edges: pairs of points with strict order on first coordinate
Points above, under, or on edges

Valid edges for a point

Edges below edges

Well-formed cells

Adjacent cells

16 /25

Above

or under

Edge with extremities / and r and an arbitrary point p
11, 1,
1 r, r,|[>0 ifpisin the half plane above the edge.
1 px py

edge g is below gy if both extremities of g» are above gy or

both extremities of gy are under g»

Transitivity: two points and one edge, or one point and two
edges
> With vertical constraints

No transitivity for edge below

17/25

Proof structure

» Assumption concerning the sequence of events
» Properties of cell sequence decomposition
» Logical invariants for the main processing loop

» Main property as a consequence of the invariant

18/25

Properties for sequence of events

» The sequence is sorted lexicographically

» Outgoing edges have the left point at the event
» Edges have their right point in the sequence

» Producer code must guarantee this

» Consuming code maintains it easily

19/25

The scan state

| 2

a record with 7 fields

3 fields compose the sequence of incomplete
cells

> The last created incomplete cell (¢s5)
» Two other fields for prefix and suffix

2 fields for the set of complete cells
» Direct access to the last created complete cell

(cs3)

» Another field for the rest
The last high edge (top of c3, ¢s5)

One field for the last location of the sweeping
line

20/25

Invariants of incomplete cell sequences

» Each cell has a low edge below the high edge
» Each cell's high edge is the next cell's low edge
» Each cell’s left side is left of the sweep line
» Each cell has a well-formed left-side
» vertically aligned points,
P extremities on low and high edges
> sorted in height
P All edges have their right point in the remaining events
» Each high edge is lower than the higher of all following cells

» Important because edge_below is not transitive

21/25

Main proved property

> interior of cells is disjoint from input segments

> points on sides distinct from left and right points are also
disjoint from input segments

22/25

Key insights

» Incomplete cells are disjoint
» Incomplete cells are disjoint from complete cells
» complete cells are disjoint

» Obstacles are progressively included in the top of all cells

23/25

Future improvements

> Remove constraints of edges not crossing

» Revisit the proof to remove uses of edge_below
» Detect edge crossings incrementally

v

Add a field to cells to point to the neighbors
Understand where efficient numbers can be used
» For now rational numbers, hope to use floating point numbers

v

P Provide a solution to allow vertical obstacles
» Add trajectory computations
» Formal proofs missing

24/25

Play with it

https://stamp.gitlabpages.inria.fr/trajectories

» Limited computation capability

25/25

https://stamp.gitlabpages.inria.fr/trajectories

