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Theorem (Voronoi’s congruence)

(@¥-1)Bx=ka' Y mk {?J (mod p)

1=m<p

|
QD

Allows us to compute By mod p as a sum.

Theorem (Kummer’s congruence)
Bk /k =By://k (mod p) where k'=k mod (p-1)

Thus we can w.l.o.g. assume thatk =2,4,...,p—3.

3/18




Computation

3/18

B universitat - UNIVERSITY
B innsbruck  OF TWENTE.



Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
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Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)
Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series
» Compute By, by approximating {(2k)
Allows computing By, without By, ..., Bog_o.
* Harvey (2010): Multimodular algorithm.
Compute Bx mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.
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Given input k. compute By = Nk /D as follows:

Compute “enough” primes via prime sieve.

Compute denominator via von Staudt—Clausen: Dy =TI1p-1)k P
Compute precise approximation of log, Nk

Compute set of primes P such that [TP > N

Compute Nx mod p foreach pe P

Use CRT to compute Ny mod [TP

Read off Nk
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Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %, 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

¢ Compute next 64 bits of binary expansion of 1/p
* For each 8-bit block by, ..., b7, add some value to a table entry t[i, bj]

* Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.
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Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
 Start with a high-level view of the algorithm:

° nat, int instead of uint32_t, int32_t efc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord; /,,(n)”
without worrying about how to compute them
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 Start with a high-level view of the algorithm:

° nat, int instead of uint32_t, int32_t efc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord; /,,(n)”
without worrying about how to compute them

* Refine down to more concrete implementations, e.g. for/while loops to
compute prime sieve

* Data refinement to fixed-width machine words
(adding assumptions as needed)

Example applications:
* IsaSAT by Fleury: fully verified SAT solver
* Lammich: verified sorting algorithms on par with C++ standard library
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Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"
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lemma "3 < N == factor_cache_impl2 N <|(fc’_rel N) (factor_cache_impl N)"
Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_Il_impl :: "'w word = ('w word ptr x 'w word) IIM" where ...

lemma " (factor_cache_Il_impl, factor_cache_impl2)
€ unat_assn¥ —g array_assn unat_assn xa unat assn"
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Final correctness theorem

llvm_htriple
(
1ll_pto okX okp A* 1l_pto numX nump A* 1ll_pto denomX denomp A*
ssize_assn thr thri A* ssize_assn depth depthi A* numnat_assn k ki
)

(bern_crt_impl_wrapper okp nump denomp thri depthi ki)

(A_. EXS oki numi denomi num denom.
1ll_pto oki okp A* 1ll_pto numi nump A* 1ll_pto denomi denomp A*
mpzb_assn num numi A* mpzb_assn denom denomi A*
1(Coki # 0 — denom = int (bernoulli_denom k) A num = bernoulli_num k) A
(k < 105946388 — oki # 0))
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* Fast Chinese Remaindering
Done. Using remainder trees.
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Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
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Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks Done.
» Concrete bounds for the Chebyshev 9 function:
9(x)= )Y Inp=0.82x for x=97

p=x

Needed for our a-priori estimate of how many primes to sieve.
Done.
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Lines of Code

Component LOC Component LOC
Voronoi/Kummer 2300 Additions to sepref package 4300
Prime bounds 1800 GMP bindings 1700
Fixed-point log, 1000 Abstract algorithm 1500
Binary fraction expansion 900 Concrete algorithm 8500
Montgomery multiplication 2300 Total 31700
Prime sieve, order, generators 2700

Fast Chinese Remaindering 3800

Other

900
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Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)
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Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)
But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute
* quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
° remainder (bitbuf << 64) % p via -p * bitbuf_new.
There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.
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Low-level optimisations

// bitbuf := 2 ~ 64 * x / p, X =2 764 * x%p

uint6d_t bitbuf = (invp * (__uintl28 t) x) >> 64;
X = -p * bitbuf;

// There is a small chance that our quotient is actually too small by 1; we detect this here.
if (_ builtin_expect(x == p, 0)) [[unlikely]] {
bitbuf++;

X -=p;
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Low-level optimisations

Proving such low-level code correct requires
 understanding what the right high-level model is

B universitat - UNIVERSITY
& innsbruck  OF TWENTE.

15/18



Low-level optimisations

Proving such low-level code correct requires
 understanding what the right high-level model is
« figuring out preconditions, both abstractly and regarding overflow etc.

15/18




Low-level optimisations

Proving such low-level code correct requires

 understanding what the right high-level model is

« figuring out preconditions, both abstractly and regarding overflow etc.
Lessons learnt:

* Proving absence of overflow can be painful.

W universitat  UNIVERSITY 15/18
B innsbrack  OF TWENTE.



Low-level optimisations

Proving such low-level code correct requires

 understanding what the right high-level model is

« figuring out preconditions, both abstractly and regarding overflow etc.
Lessons learnt:

* Proving absence of overflow can be painful.

* Advantage: Using an ITP helps you figure out the range in which the
algorithm does not produce overflow.
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Time ratio (Ours / Harvey)
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Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.
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Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!
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