B universitat UNIVERSITY
& innsbruck OF TWENTE.

Verifying an Efficient Algorithm to
Compute Bernoulli Numbers

Manuel Eberl Peter Lammich

W universitat UNIVERSITY 0/18
B innsbruck OF TWENTE.

Faulhaber’s formula

n
i%=n+1
i=0

B universitat - UNIVERSITY 1/18
& innsbruck OF TWENTE.

Faulhaber’s formula

zz
i=0
2

i=0

hJI-*

(n?+n)

universitat - UNIVERSITY
B innsbruck OF TWENTE.

1/18

Faulhaber’s formula

n

Y i%=n+1

=0

n

Y i'=%(n?+n)

=0

n

Y i2=1(2n®+3n%+n)

I
o

universitat - UNIVERSITY
B innsbruck OF TWENTE.

1/18

Faulhaber’s formula

n

Y i%=n+1

i=0

S 12

Y it=3(n"+n)

=0

n

Y i?=%(2n°+3n +n)

I
o

. :m1+1(Pm+1(n+1)—Pm+1(0)) where Pp(x) = Z (T)kamk

O<k=m

™
=

I
o

1/18

Bernoulli Numbers

1/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)ko wWith

75 z
2k20Bk 37 = axpm =1

We write By = Ni /Dg.

2/18

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)ko wWith

75 z
2k20Bk 37 = axpm =1
We write By = Ni /Dg.
k 0o 1 2 3 4 5 6 7 8 9 10
B 1 b4 0 %0 % 0 40 §

2/18

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)ko wWith

75 z
2k20Bk 37 = axpm =1

We write By = Ni /Dg.

k 0 1 2 3 4 5 6 7 8
0 0 -

o | ©
—
o

g~
Slon

@
=
—
|
nol—
ol
N
ke

1
0 -35

Bgo ~—1.2-10% / 56786730 Bi1o~7.6-10% / 1518

2/18

Some more properties

* By =0 forodd k > 1

3/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Some more properties

* By =0 forodd k > 1
* B, By, Bg, ... positive; By, Bg, B1o, ... negative

3/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Some more properties

* By =0 forodd k > 1
* B, By, Bg, ... positive; By, Bg, B1o, ... negative
* Through connection with ¢: log|Bok| and log N2k | are of order ©(k logk)

3/18

Some more properties

* Bx=0forodd k > 1
* By, By, Bg, ... positive; By, Bg, B1», ... negative
* Through connection with {: log|Bok| and log|Nok| are of order ©(klogk)

Theorem (Voronoi’s congruence)

(@¥-1)By=ka*' Y mk! {?J (mod p)

1=m<p

|
QD

Allows us to compute By mod p as a sum.

3/18

Some more properties

* Bx=0forodd k > 1
* By, By, Bg, ... positive; By, Bg, B1», ... negative
* Through connection with {: log|Bok| and log|Nok| are of order ©(klogk)

Theorem (Voronoi’s congruence)

(@¥-1)Bx=ka' Y mk {?J (mod p)

1=m<p

|
QD

Allows us to compute By mod p as a sum.

Theorem (Kummer’s congruence)
Bk /k =By://k (mod p) where k'=k mod (p-1)

Thus we can w.l.o.g. assume thatk =2,4,...,p—3.

3/18

Computation

3/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.

W universitat UNIVERSITY 4/18
S innsbruck: OF TWENTE

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)

W universitat UNIVERSITY 4/18
S innsbruck: OF TWENTE

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2log'+°(Vk):

W universitat UNIVERSITY 4/18
B innsbrack OF TWENTE.

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series

W universitat UNIVERSITY 4/18
B innsbrack OF TWENTE.

Algorithms

Slow algorithms:

* Using the recurrence that drops out of the definition: very inefficient.

» Various cubic methods (some only use integer arithmetic)
Modern quadratic algorithms, roughly O(k2log'+°(Vk):

* Compute sin(z)/cos(z) as formal power series

» Compute By, by approximating {(2k)

4/18

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series

» Compute By, by approximating {(2k)
Allows computing By, without By, ..., Bog_o.

W universitat UNIVERSITY 4/18
B innsbrack OF TWENTE.

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series

» Compute By, by approximating {(2k)
Allows computing By, without By, ..., Bog_o.

* Harvey (2010): Multimodular algorithm.

W universitat UNIVERSITY 4/18
S innsbruck: OF TWENTE

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)
Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series
» Compute By, by approximating {(2k)
Allows computing By, without By, ..., Bog_o.

* Harvey (2010): Multimodular algorithm.
Compute Bx mod p for many primes p independently.

4/18

Algorithms

Slow algorithms:
* Using the recurrence that drops out of the definition: very inefficient.
» Various cubic methods (some only use integer arithmetic)
Modern quadratic algorithms, roughly O(k2log'+°(Vk):
* Compute sin(z)/cos(z) as formal power series
» Compute By, by approximating {(2k)
Allows computing By, without By, ..., Bog_o.
* Harvey (2010): Multimodular algorithm.
Compute Bx mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.
* Compute denominator via von Staudt-Clausen: Dk =[1p-1)k P

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.
* Compute denominator via von Staudt-Clausen: Dk =[1p-1)k P
* Compute precise approximation of log, Nk

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.
* Compute denominator via von Staudt-Clausen: Dk =[1p-1)k P
* Compute precise approximation of log, Nk
* Compute set of primes P such that [TP > Nj

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.
* Compute denominator via von Staudt-Clausen: Dk =[1p-1)k P
* Compute precise approximation of log, Nk
* Compute set of primes P such that [TP > Nj
e Compute Nx mod p foreach pe P

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:
* Compute “enough” primes via prime sieve.
* Compute denominator via von Staudt-Clausen: Dk =[1p-1)k P
* Compute precise approximation of log, Nk
* Compute set of primes P such that [TP > Nj
e Compute Nx mod p foreach pe P
Use CRT to compute Ny mod [TP

5/18

Harvey: High-Level Algorithm

Given input k. compute By = Nk /D as follows:

Compute “enough” primes via prime sieve.

Compute denominator via von Staudt—Clausen: Dy =TI1p-1)k P
Compute precise approximation of log, Nk

Compute set of primes P such that [TP > N

Compute Nx mod p foreach pe P

Use CRT to compute Ny mod [TP

Read off Nk

5/18

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).

B niversitat - UNIVERSITY 6/18
W innsbruch OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).

Each such computation boils down to:
* An outer for-loop with few iterations

6/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

6/18

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:
¢ Compute next 64 bits of binary expansion of 1/p

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

¢ Compute next 64 bits of binary expansion of 1/p
* For each 8-bit block by, ..., b7, add some value to a table entry t[i, bj]

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %4 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

¢ Compute next 64 bits of binary expansion of 1/p
* For each 8-bit block by, ..., b7, add some value to a table entry t[i, bj]

* Afterwards: determine final result as a weighted sum of the table entries

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %, 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

¢ Compute next 64 bits of binary expansion of 1/p
* For each 8-bit block by, ..., b7, add some value to a table entry t[i, bj]

* Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Harvey: Computation modulo p

What dictates the performance: Computing By mod p for “nice” primes p
(where 2K %, 1).
Each such computation boils down to:

* An outer for-loop with few iterations

* An inner for-loop with many iterations

* In the loop body:

¢ Compute next 64 bits of binary expansion of 1/p
* For each 8-bit block by, ..., b7, add some value to a table entry t[i, bj]

* Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Refinement

B niversitat - UNIVERSITY 6/18
W innsbruch OF TWENTE.

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
 Start with a high-level view of the algorithm:

° nat, int instead of uint32_t, int32_t efc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord; /,,(n)”
without worrying about how to compute them

W universitat UNIVERSITY 7/18
B innsbrack OF TWENTE.

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
 Start with a high-level view of the algorithm:
° nat, int instead of uint32_t, int32_t etc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord, /pZ(n)”
without worrying about how to compute them
* Refine down to more concrete implementations, e.g. for/while loops to
compute prime sieve

W universitat UNIVERSITY 7/18
B innsbrack OF TWENTE.

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
 Start with a high-level view of the algorithm:
° nat, int instead of uint32_t, int32_t etc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord, /pZ(n)”
without worrying about how to compute them
* Refine down to more concrete implementations, e.g. for/while loops to
compute prime sieve

* Data refinement to fixed-width machine words
(adding assumptions as needed)

universitat UNIVERSITY 7/18
S innsbruck. OF TWENTE

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
 Start with a high-level view of the algorithm:

° nat, int instead of uint32_t, int32_t efc.
* Use abstract mathematical notions like “smallest prime factor of n”, “ord; /,,(n)”
without worrying about how to compute them

* Refine down to more concrete implementations, e.g. for/while loops to
compute prime sieve

* Data refinement to fixed-width machine words
(adding assumptions as needed)

Example applications:
* IsaSAT by Fleury: fully verified SAT solver
* Lammich: verified sorting algorithms on par with C++ standard library

7/18

universitat UNIVERSITY
& innsbruck OF TWENTE.

oF

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

B universitat - UNIVERSITY 8/18
& innsbruck OF TWENTE.

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...

st UNVERSITY 8/18
uck O TWENTE.

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...

lemma "factor_cache_impl N < SPEC (Aa. Vk<N. a k = smallest_divisor k)"

UNIVERSITY 8/18
OF TWENTE

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...
lemma "factor_cache_impl N < SPEC (Aa. Vk<N. a k = smallest_divisor k)"
First refinement: Replace function with list; record only entries for odd indices

definition factor_cache_impl2 :: "nat = nat list nres" where ...

UNIVERSITY 8/18
OF TWENTE

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...
lemma "factor_cache_impl N < SPEC (Aa. Vk<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat = nat list nres" where ...

lemma "3 < N == factor_cache_impl2 N <|(fc’_rel N) (factor_cache_impl N)"

UNIVERSITY 8/18
OF TWENTE

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...
lemma "factor_cache_impl N < SPEC (Aa. Vk<N. a k = smallest_divisor k)"
First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat = nat list nres" where ...
lemma "3 < N == factor_cache_impl2 N <|(fc’_rel N) (factor_cache_impl N)"
Second refinement: Replace lists with arrays and nat with word:

sepref_def factor_cache_Il_impl :: "'w word = ('w word ptr x 'w word) IIM" where ...

8/18

UNIVERSITY
OF TWENTE

Refinement example: Factor Cache

On the abstract level:

definition "smallest_divisor n =
(if n < 2 v prime n then 0 else LEAST d. d # 1 A d dvd n)"

definition factor_cache_impl :: "nat = (nat = nat) nres" where ...
lemma "factor_cache_impl N < SPEC (Aa. Vk<N. a k = smallest_divisor k)"
First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat = nat list nres" where ...
lemma "3 < N == factor_cache_impl2 N <|(fc’_rel N) (factor_cache_impl N)"
Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_Il_impl :: "'w word = ('w word ptr x 'w word) IIM" where ...

lemma " (factor_cache_Il_impl, factor_cache_impl2)
€ unat_assn¥ —g array_assn unat_assn xa unat assn"

8/18

UNIVERSITY
OF TWENTE

Final correctness theorem

llvm_htriple
(
1ll_pto okX okp A* 1l_pto numX nump A* 1ll_pto denomX denomp A*
ssize_assn thr thri A* ssize_assn depth depthi A* numnat_assn k ki
)

(bern_crt_impl_wrapper okp nump denomp thri depthi ki)

(A_. EXS oki numi denomi num denom.
1ll_pto oki okp A* 1ll_pto numi nump A* 1ll_pto denomi denomp A*
mpzb_assn num numi A* mpzb_assn denom denomi A*
1(Coki # 0 — denom = int (bernoulli_denom k) A num = bernoulli_num k) A
(k < 105946388 — oki # 0))

W universitat UNIVERSITY 9/18
5 innsbruck. OF TWENTE.

Final correctness theorem

llvm_htriple
(
1ll_pto okX okp A* 1ll_pto numX nump A* 1ll_pto denomX denomp A*
ssize_assn thr thri A* ssize_assn depth depthi A* numnat_assn k ki
)

(bern_crt_impl_wrapper okp nump denomp thri depthi ki)

(A_. EXS oki numi denomi num denom.
1ll_pto oki okp A* 1ll_pto numi nump A* 1ll_pto denomi denomp A*
mpzb_assn num numi A* mpzb_assn denom denomi A*
1((oki # 0 — denom = int (bernoulli_denom k) A num = bernoulli_num k) A
(k = 105946388 — oki # 0))

W universitat UNIVERSITY 9/18
S innsbruck: OF TWENTE

Challenges

W universitat UNIVERSITY 9/1
BT ST 8

Lots of algorithmic components

* Prime sieve, factoring integers

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

10/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of algorithmic components

* Prime sieve, factoring integers Done.
* Group-theoretic computations in Z/pZz: find generators, compute ord(x)

10/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form)

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.
* Floating-point computations for bounds etc.

W universitat UNIVERSITY 10/18
S innsbruck: OF TWENTE

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

W universitat UNIVERSITY 10/18
5 innsbruck. OF TWENTE.

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.
* Fast Chinese Remaindering

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.

* Fast Chinese Remaindering
Done. Using remainder trees.

10/18

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.

* Fast Chinese Remaindering
Done. Using remainder trees.

* Arbitrary-precision integers

10/18

W universitat UNIVERSITY
& innsbruck OF TWENTE.

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.

* Fast Chinese Remaindering
Done. Using remainder trees.

* Arbitrary-precision integers
Out of scope. We use GMP as trusted component.

W universitat UNIVERSITY 10/18
S innsbruck: OF TWENTE

Lots of algorithmic components

* Prime sieve, factoring integers Done.

* Group-theoretic computations in Z/pZz: find generators, compute ord(x)
Done. (using factorisation)

* Efficient computations modulo p (e.g. Montgomery form) Done.

* Floating-point computations for bounds etc.
Replaced with fixed-point.

* Computing the binary fraction expansion of 1/p Done.

* Fast Chinese Remaindering
Done. Using remainder trees.

* Arbitrary-precision integers
Out of scope. We use GMP as trusted component. Future work?

W universitat UNIVERSITY 10/18
S innsbruck. OF TWENTE

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties

1/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.

1/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers

1/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.

1/18

B universitat - UNIVERSITY
B innsbruck OF TWENTE.

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks

1/18

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks Done.

1/18

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks Done.
» Concrete bounds for the Chebyshev 9 function:
9(x)=)Y Inp=0.82x for x=97

p=x

1/18

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks Done.
» Concrete bounds for the Chebyshev 9 function:
9(x)=)Y Inp=0.82x for x=97

p=x

Needed for our a-priori estimate of how many primes to sieve.

W universitat UNIVERSITY 11/18
S innsbruck OF TWENTE

Lots of mathematical background

 Definition of Bernoulli numbers and basic properties Already there.
* Bounds for Bernoulli numbers Easy.
* Kummer/Voronoi congruence and Harvey’s tweaks Done.
» Concrete bounds for the Chebyshev 9 function:
9(x)=)Y Inp=0.82x for x=97

p=x

Needed for our a-priori estimate of how many primes to sieve.
Done.

W universitat UNIVERSITY 11/18
S innsbruck OF TWENTE

Lines of Code

Component LOC
Voronoi/Kummer 2300
Prime bounds 1800

12/18

Lines of Code

Component LOC
Voronoi/Kummer 2300
Prime bounds 1800
Fixed-point log, 1000
Binary fraction expansion 900

Montgomery multiplication 2300
Prime sieve, order, generators 2700
Fast Chinese Remaindering 3800

Other

900

W universitat UNIVERSITY
= innsbrack OF TWENTE.

12/18

Lines of Code

Component LOC Component LOC
Voronoi/Kummer 2300 Additions to sepref package 4300
Prime bounds 1800 GMP bindings 1700
Fixed-point log, 1000

Binary fraction expansion 900

Montgomery multiplication 2300

Prime sieve, order, generators 2700

Fast Chinese Remaindering 3800

Other

900

12/18

Lines of Code

Component LOC Component LOC
Voronoi/Kummer 2300 Additions to sepref package 4300
Prime bounds 1800 GMP bindings 1700
Fixed-point log, 1000 Abstract algorithm 1500
Binary fraction expansion 900 Concrete algorithm 8500
Montgomery multiplication 2300 Total 31700
Prime sieve, order, generators 2700

Fast Chinese Remaindering 3800

Other

900

12/18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

13/18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute
* quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64

13/18

W universitat UNIVERSITY
= innsbrack OF TWENTE.

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute
* quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
° remainder (bitbuf << 64) % p via -p * bitbuf_new.

13/18

W universitat UNIVERSITY
= innsbrack OF TWENTE.

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)
But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute
* quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
° remainder (bitbuf << 64) % p via -p * bitbuf_new.
There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.

13/18

W universitat UNIVERSITY
= innsbrack OF TWENTE.

Low-level optimisations

// bitbuf := 2 ~ 64 * x / p, X =2 764 * x%p

uint6d_t bitbuf = (invp * (__uintl28 t) x) >> 64;
X = -p * bitbuf;

// There is a small chance that our quotient is actually too small by 1; we detect this here.
if (_ builtin_expect(x == p, 0)) [[unlikely]] {
bitbuf++;

X -=p;

M universitat UNIVERSITY
B innsbruck OF TWENTE.

14/18

Low-level optimisations

Proving such low-level code correct requires
 understanding what the right high-level model is

B universitat - UNIVERSITY
& innsbruck OF TWENTE.

15/18

Low-level optimisations

Proving such low-level code correct requires
 understanding what the right high-level model is
« figuring out preconditions, both abstractly and regarding overflow etc.

15/18

Low-level optimisations

Proving such low-level code correct requires

 understanding what the right high-level model is

« figuring out preconditions, both abstractly and regarding overflow etc.
Lessons learnt:

* Proving absence of overflow can be painful.

W universitat UNIVERSITY 15/18
B innsbrack OF TWENTE.

Low-level optimisations

Proving such low-level code correct requires

 understanding what the right high-level model is

« figuring out preconditions, both abstractly and regarding overflow etc.
Lessons learnt:

* Proving absence of overflow can be painful.

* Advantage: Using an ITP helps you figure out the range in which the
algorithm does not produce overflow.

W universitat UNIVERSITY 15/18
B innsbrack OF TWENTE.

Evaluation

UNIVERSITY
[l g 15/18

Time ratio (Ours / Harvey)

T T T T T T

e AMD Ryzen 9 9900X single-threaded
4 AMD Ryzen 9 9900X 12-Core

m AMD Ryzen 7950X3D 16-Core

A 2 x Intel Xeon Platinum 8358 32-Core

.
13 ? ?
T n
o [" " my ' A A A A
AdaLsaad A
L7 YYYYIY
ATasanng,

| | | | | | | | | | |
01 05 1 05.25 1 05.5 1 05.75 1 06 1 06.25 1 06.5 1 06.75 1 07 1 07.25 1 07.5 1 07.75 1 08

st UNVERSITY
uck OF TWENTE

16/18

102

10!

100

17/18

Conclusion

UNIVERSITY
LA 17/18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

W universitat UNIVERSITY 18/18
S innsbruck. OF TWENTE

Conclusion
We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

W universitat UNIVERSITY 18/18
& innsbruck OF TWENTE.

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

18/18

W universitat UNIVERSITY
% innsbrack OF TWENTE.

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

18/18

W universitat UNIVERSITY
% innsbrack OF TWENTE.

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18/18

W universitat UNIVERSITY
= innsbrack OF TWENTE.

	Bernoulli Numbers
	Computation
	Refinement
	Challenges
	Evaluation
	Conclusion

