
Verifying an Efficient Algorithm to
Compute Bernoulli Numbers

Manuel Eberl Peter Lammich

0 / 18

Faulhaber’s formula

n∑
i=0

i 0 = n+1

n∑
i=0

i 1 = 1
2(n

2 +n)

n∑
i=0

i 2 = 1
6(2n3 +3n2 +n)

n∑
i=0

i k = 1
m+1(Pm+1(n+1)−Pm+1(0)) where Pm(x)= ∑

0≤k≤m

(
m
k

)
Bk xm−k

1 / 18

Faulhaber’s formula

n∑
i=0

i 0 = n+1

n∑
i=0

i 1 = 1
2(n

2 +n)

n∑
i=0

i 2 = 1
6(2n3 +3n2 +n)

n∑
i=0

i k = 1
m+1(Pm+1(n+1)−Pm+1(0)) where Pm(x)= ∑

0≤k≤m

(
m
k

)
Bk xm−k

1 / 18

Faulhaber’s formula

n∑
i=0

i 0 = n+1

n∑
i=0

i 1 = 1
2(n

2 +n)

n∑
i=0

i 2 = 1
6(2n3 +3n2 +n)

n∑
i=0

i k = 1
m+1(Pm+1(n+1)−Pm+1(0)) where Pm(x)= ∑

0≤k≤m

(
m
k

)
Bk xm−k

1 / 18

Faulhaber’s formula

n∑
i=0

i 0 = n+1

n∑
i=0

i 1 = 1
2(n

2 +n)

n∑
i=0

i 2 = 1
6(2n3 +3n2 +n)

n∑
i=0

i k = 1
m+1(Pm+1(n+1)−Pm+1(0)) where Pm(x)= ∑

0≤k≤m

(
m
k

)
Bk xm−k

1 / 18

Bernoulli Numbers

1 / 18

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)k≥0 with

∑
k≥0 Bk

zk

k !
= z

exp(z)−1

We write Bk =Nk/Dk .

k 0 1 2 3 4 5 6 7 8 9 10

Bk 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66

B60 ≈−1.2 ·1042 / 56786730 B110 ≈ 7.6 ·1093 / 1518

2 / 18

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)k≥0 with

∑
k≥0 Bk

zk

k !
= z

exp(z)−1

We write Bk =Nk/Dk .

k 0 1 2 3 4 5 6 7 8 9 10

Bk 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66

B60 ≈−1.2 ·1042 / 56786730 B110 ≈ 7.6 ·1093 / 1518

2 / 18

Definition

Definition (Bernoulli numbers)
The Bernoulli numbers are the sequence of rationals (Bk)k≥0 with

∑
k≥0 Bk

zk

k !
= z

exp(z)−1

We write Bk =Nk/Dk .

k 0 1 2 3 4 5 6 7 8 9 10

Bk 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66

B60 ≈−1.2 ·1042 / 56786730 B110 ≈ 7.6 ·1093 / 1518

2 / 18

Some more properties

• Bk = 0 for odd k > 1

• B2, B4, B6, . . . positive; B4, B8, B12, . . . negative
• Through connection with ζ: log |B2k | and log |N2k | are of order Θ(k logk)

Theorem (Voronoi’s congruence)

(ak −1)Bk ≡ kak−1 ∑
1≤m<p

mk−1
⌊

ma
p

⌋
(mod p)

Allows us to compute Bk mod p as a sum.

Theorem (Kummer’s congruence)

Bk/k ≡Bk ′/k (mod p) where k ′ = k mod (p−1)

Thus we can w.l.o.g. assume that k = 2,4, . . . ,p−3.

3 / 18

Some more properties

• Bk = 0 for odd k > 1
• B2, B4, B6, . . . positive; B4, B8, B12, . . . negative

• Through connection with ζ: log |B2k | and log |N2k | are of order Θ(k logk)

Theorem (Voronoi’s congruence)

(ak −1)Bk ≡ kak−1 ∑
1≤m<p

mk−1
⌊

ma
p

⌋
(mod p)

Allows us to compute Bk mod p as a sum.

Theorem (Kummer’s congruence)

Bk/k ≡Bk ′/k (mod p) where k ′ = k mod (p−1)

Thus we can w.l.o.g. assume that k = 2,4, . . . ,p−3.

3 / 18

Some more properties

• Bk = 0 for odd k > 1
• B2, B4, B6, . . . positive; B4, B8, B12, . . . negative
• Through connection with ζ: log |B2k | and log |N2k | are of order Θ(k logk)

Theorem (Voronoi’s congruence)

(ak −1)Bk ≡ kak−1 ∑
1≤m<p

mk−1
⌊

ma
p

⌋
(mod p)

Allows us to compute Bk mod p as a sum.

Theorem (Kummer’s congruence)

Bk/k ≡Bk ′/k (mod p) where k ′ = k mod (p−1)

Thus we can w.l.o.g. assume that k = 2,4, . . . ,p−3.

3 / 18

Some more properties

• Bk = 0 for odd k > 1
• B2, B4, B6, . . . positive; B4, B8, B12, . . . negative
• Through connection with ζ: log |B2k | and log |N2k | are of order Θ(k logk)

Theorem (Voronoi’s congruence)

(ak −1)Bk ≡ kak−1 ∑
1≤m<p

mk−1
⌊

ma
p

⌋
(mod p)

Allows us to compute Bk mod p as a sum.

Theorem (Kummer’s congruence)

Bk/k ≡Bk ′/k (mod p) where k ′ = k mod (p−1)

Thus we can w.l.o.g. assume that k = 2,4, . . . ,p−3.

3 / 18

Some more properties

• Bk = 0 for odd k > 1
• B2, B4, B6, . . . positive; B4, B8, B12, . . . negative
• Through connection with ζ: log |B2k | and log |N2k | are of order Θ(k logk)

Theorem (Voronoi’s congruence)

(ak −1)Bk ≡ kak−1 ∑
1≤m<p

mk−1
⌊

ma
p

⌋
(mod p)

Allows us to compute Bk mod p as a sum.

Theorem (Kummer’s congruence)

Bk/k ≡Bk ′/k (mod p) where k ′ = k mod (p−1)

Thus we can w.l.o.g. assume that k = 2,4, . . . ,p−3.

3 / 18

Computation

3 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.

• Various cubic methods (some only use integer arithmetic)
Modern quadratic algorithms, roughly O(k2 log1+o(1)k):

• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):

• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series

• Compute B2k by approximating ζ(2k)
Allows computing B2k without B2, . . . ,B2k−2.

• Harvey (2010): Multimodular algorithm.
Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.

• Harvey (2010): Multimodular algorithm.
Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.

Combine results via Chinese Remainder Theorem.

4 / 18

Algorithms

Slow algorithms:
• Using the recurrence that drops out of the definition: very inefficient.
• Various cubic methods (some only use integer arithmetic)

Modern quadratic algorithms, roughly O(k2 log1+o(1)k):
• Compute sin(z)/cos(z) as formal power series
• Compute B2k by approximating ζ(2k)

Allows computing B2k without B2, . . . ,B2k−2.
• Harvey (2010): Multimodular algorithm.

Compute Bk mod p for many primes p independently.
Combine results via Chinese Remainder Theorem.

4 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.

• Compute denominator via von Staudt–Clausen: Dk =∏
(p−1)|k p

• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p

• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p
• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p
• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p
• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P

• Use CRT to compute Nk mod
∏

P
• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p
• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: High-Level Algorithm

Given input k . compute Bk =Nk/Dk as follows:
• Compute “enough” primes via prime sieve.
• Compute denominator via von Staudt–Clausen: Dk =∏

(p−1)|k p
• Compute precise approximation of log2 Nk

• Compute set of primes P such that
∏

P >Nk

• Compute Nk mod p for each p ∈P
• Use CRT to compute Nk mod

∏
P

• Read off Nk

5 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations

• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations

• In the loop body:
• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p

• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries

Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Harvey: Computation modulo p

What dictates the performance: Computing Bk mod p for “nice” primes p
(where 2k .p 1).

Each such computation boils down to:
• An outer for-loop with few iterations
• An inner for-loop with many iterations
• In the loop body:

• Compute next 64 bits of binary expansion of 1/p
• For each 8-bit block b0, . . . ,b7, add some value to a table entry t [i,bi]

• Afterwards: determine final result as a weighted sum of the table entries
Important: Inner loop body as cheap as possible.

Size of blocks chosen so that table fits into L1d cache.

6 / 18

Refinement

6 / 18

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
• Start with a high-level view of the algorithm:

• nat, int instead of uint32_t, int32_t etc.
• Use abstract mathematical notions like “smallest prime factor of n”, “ordZ/pZ(n)”

without worrying about how to compute them

• Refine down to more concrete implementations, e.g. for/while loops to
compute prime sieve

• Data refinement to fixed-width machine words
(adding assumptions as needed)

Example applications:
• IsaSAT by Fleury: fully verified SAT solver
• Lammich: verified sorting algorithms on par with C++ standard library

7 / 18

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
• Start with a high-level view of the algorithm:

• nat, int instead of uint32_t, int32_t etc.
• Use abstract mathematical notions like “smallest prime factor of n”, “ordZ/pZ(n)”

without worrying about how to compute them
• Refine down to more concrete implementations, e.g. for/while loops to

compute prime sieve

• Data refinement to fixed-width machine words
(adding assumptions as needed)

Example applications:
• IsaSAT by Fleury: fully verified SAT solver
• Lammich: verified sorting algorithms on par with C++ standard library

7 / 18

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
• Start with a high-level view of the algorithm:

• nat, int instead of uint32_t, int32_t etc.
• Use abstract mathematical notions like “smallest prime factor of n”, “ordZ/pZ(n)”

without worrying about how to compute them
• Refine down to more concrete implementations, e.g. for/while loops to

compute prime sieve
• Data refinement to fixed-width machine words

(adding assumptions as needed)

Example applications:
• IsaSAT by Fleury: fully verified SAT solver
• Lammich: verified sorting algorithms on par with C++ standard library

7 / 18

Refinement

Isabelle Refinement Framework and Isabelle-LLVM by Lammich:
• Start with a high-level view of the algorithm:

• nat, int instead of uint32_t, int32_t etc.
• Use abstract mathematical notions like “smallest prime factor of n”, “ordZ/pZ(n)”

without worrying about how to compute them
• Refine down to more concrete implementations, e.g. for/while loops to

compute prime sieve
• Data refinement to fixed-width machine words

(adding assumptions as needed)

Example applications:
• IsaSAT by Fleury: fully verified SAT solver
• Lammich: verified sorting algorithms on par with C++ standard library

7 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Refinement example: Factor Cache

On the abstract level:
definition "smallest_divisor n =
(if n < 2 ∨ prime n then 0 else LEAST d. d , 1 ∧ d dvd n)"

definition factor_cache_impl :: "nat ⇒ (nat ⇒ nat) nres" where ...

lemma "factor_cache_impl N ≤ SPEC (λa. ∀k<N. a k = smallest_divisor k)"

First refinement: Replace function with list; record only entries for odd indices
definition factor_cache_impl2 :: "nat ⇒ nat list nres" where ...

lemma "3 ≤ N =⇒ factor_cache_impl2 N ≤⇓(fc’_rel N) (factor_cache_impl N)"

Second refinement: Replace lists with arrays and nat with word:
sepref_def factor_cache_ll_impl :: "'w word ⇒ ('w word ptr × 'w word) llM" where ...

lemma "(factor_cache_ll_impl, factor_cache_impl2)
∈ unat_assnk →a array_assn unat_assn ×a unat_assn"

8 / 18

Final correctness theorem

llvm_htriple
(
↿ll_pto okX okp ∧* ↿ll_pto numX nump ∧* ↿ll_pto denomX denomp ∧*
ssize_assn thr thri ∧* ssize_assn depth depthi ∧* numnat_assn k ki

)

(bern_crt_impl_wrapper okp nump denomp thri depthi ki)

(λ_. EXS oki numi denomi num denom.
↿ll_pto oki okp ∧* ↿ll_pto numi nump ∧* ↿ll_pto denomi denomp ∧*
mpzb_assn num numi ∧* mpzb_assn denom denomi ∧*
↑((oki , 0 −→ denom = int (bernoulli_denom k) ∧ num = bernoulli_num k) ∧
(k ≤ 105946388 −→ oki , 0))

)

9 / 18

Final correctness theorem

llvm_htriple
(
↿ll_pto okX okp ∧* ↿ll_pto numX nump ∧* ↿ll_pto denomX denomp ∧*
ssize_assn thr thri ∧* ssize_assn depth depthi ∧* numnat_assn k ki

)

(bern_crt_impl_wrapper okp nump denomp thri depthi ki)

(λ_. EXS oki numi denomi num denom.
↿ll_pto oki okp ∧* ↿ll_pto numi nump ∧* ↿ll_pto denomi denomp ∧*
mpzb_assn num numi ∧* mpzb_assn denom denomi ∧*
↑((oki , 0 −→ denom = int (bernoulli_denom k) ∧ num = bernoulli_num k) ∧
(k ≤ 105946388 −→ oki , 0))

)

9 / 18

Challenges

9 / 18

Lots of algorithmic components

• Prime sieve, factoring integers

Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.

• Group-theoretic computations in Z/pZ: find generators, compute ord(x)
Done. (using factorisation)

• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)

• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form)

Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.

• Floating-point computations for bounds etc.
Replaced with fixed-point.

• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.

• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p

Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.

• Fast Chinese Remaindering
Done. Using remainder trees.

• Arbitrary-precision integers
Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.

• Arbitrary-precision integers
Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component.

Future work?

10 / 18

Lots of algorithmic components

• Prime sieve, factoring integers Done.
• Group-theoretic computations in Z/pZ: find generators, compute ord(x)

Done. (using factorisation)
• Efficient computations modulo p (e.g. Montgomery form) Done.
• Floating-point computations for bounds etc.

Replaced with fixed-point.
• Computing the binary fraction expansion of 1/p Done.
• Fast Chinese Remaindering

Done. Using remainder trees.
• Arbitrary-precision integers

Out of scope. We use GMP as trusted component. Future work?

10 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties

Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.

• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers

Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.

• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks

Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.

• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.

Done.

11 / 18

Lots of mathematical background

• Definition of Bernoulli numbers and basic properties Already there.
• Bounds for Bernoulli numbers Easy.
• Kummer/Voronoi congruence and Harvey’s tweaks Done.
• Concrete bounds for the Chebyshev ϑ function:

ϑ(x)= ∑
p≤x

ln p ≥ 0.82x for x ≥ 97

Needed for our a-priori estimate of how many primes to sieve.
Done.

11 / 18

Lines of Code

Component LOC

Voronoi/Kummer 2300
Prime bounds 1800

Fixed-point log2 1000
Binary fraction expansion 900
Montgomery multiplication 2300
Prime sieve, order, generators 2700
Fast Chinese Remaindering 3800
Other 900

Component LOC

Additions to sepref package 4300
GMP bindings 1700

Abstract algorithm 1500
Concrete algorithm 8500

Total 31700

12 / 18

Lines of Code

Component LOC

Voronoi/Kummer 2300
Prime bounds 1800

Fixed-point log2 1000
Binary fraction expansion 900
Montgomery multiplication 2300
Prime sieve, order, generators 2700
Fast Chinese Remaindering 3800
Other 900

Component LOC

Additions to sepref package 4300
GMP bindings 1700

Abstract algorithm 1500
Concrete algorithm 8500

Total 31700

12 / 18

Lines of Code

Component LOC

Voronoi/Kummer 2300
Prime bounds 1800

Fixed-point log2 1000
Binary fraction expansion 900
Montgomery multiplication 2300
Prime sieve, order, generators 2700
Fast Chinese Remaindering 3800
Other 900

Component LOC

Additions to sepref package 4300
GMP bindings 1700

Abstract algorithm 1500
Concrete algorithm 8500

Total 31700

12 / 18

Lines of Code

Component LOC

Voronoi/Kummer 2300
Prime bounds 1800

Fixed-point log2 1000
Binary fraction expansion 900
Montgomery multiplication 2300
Prime sieve, order, generators 2700
Fast Chinese Remaindering 3800
Other 900

Component LOC

Additions to sepref package 4300
GMP bindings 1700

Abstract algorithm 1500
Concrete algorithm 8500

Total 31700

12 / 18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute

• quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
• remainder (bitbuf << 64) % p via -p * bitbuf_new.

There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.

13 / 18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute

• quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64

• remainder (bitbuf << 64) % p via -p * bitbuf_new.
There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.

13 / 18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute

• quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
• remainder (bitbuf << 64) % p via -p * bitbuf_new.

There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.

13 / 18

Low-level optimisations

We can compute the binary fraction expansion of 1/p in 64-bit chunks by letting
bitbuf = 1 and then repeating

output ((bitbuf << 64) / p)
bitbuf = ((bitbuf << 64) % p)

But: Division is expensive. Therefore, we instead precompute a 128-bit fixed-point
approximation invp of 1/p and compute

• quotient (bitbuf << 64) / p via bitbuf_new = (invp * bitbuf) >> 64
• remainder (bitbuf << 64) % p via -p * bitbuf_new.

There is a small chance that the result is off-by-one, which we have to detect and
correct accordingly.

13 / 18

Low-level optimisations

14 / 18

Low-level optimisations

Proving such low-level code correct requires
• understanding what the right high-level model is

• figuring out preconditions, both abstractly and regarding overflow etc.
Lessons learnt:

• Proving absence of overflow can be painful.
• Advantage: Using an ITP helps you figure out the range in which the

algorithm does not produce overflow.

15 / 18

Low-level optimisations

Proving such low-level code correct requires
• understanding what the right high-level model is
• figuring out preconditions, both abstractly and regarding overflow etc.

Lessons learnt:
• Proving absence of overflow can be painful.
• Advantage: Using an ITP helps you figure out the range in which the

algorithm does not produce overflow.

15 / 18

Low-level optimisations

Proving such low-level code correct requires
• understanding what the right high-level model is
• figuring out preconditions, both abstractly and regarding overflow etc.

Lessons learnt:
• Proving absence of overflow can be painful.

• Advantage: Using an ITP helps you figure out the range in which the
algorithm does not produce overflow.

15 / 18

Low-level optimisations

Proving such low-level code correct requires
• understanding what the right high-level model is
• figuring out preconditions, both abstractly and regarding overflow etc.

Lessons learnt:
• Proving absence of overflow can be painful.
• Advantage: Using an ITP helps you figure out the range in which the

algorithm does not produce overflow.

15 / 18

Evaluation

15 / 18

105 105.25 105.5 105.75 106 106.25 106.5 106.75 107 107.25 107.5 107.75 108
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

Time ratio (Ours / Harvey)

AMD Ryzen 9 9900X single-threaded
AMD Ryzen 9 9900X 12-Core
AMD Ryzen 7950X3D 16-Core
2× Intel Xeon Platinum 8358 32-Core

16 / 18

105 105.25 105.5 105.75 106 106.25

100

101

102

Time (s)

Ours
Harvey

17 / 18

Conclusion

17 / 18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18 / 18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18 / 18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18 / 18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18 / 18

Conclusion

We verified a complex and challenging mathematical algorithm all the way down to
LLVM code.

Made various additions to Isabelle-LLVM; exposed some weak points
(e.g. sharing read-only access among parallel threads).

Performance of resulting LLVM code not quite on par with Harvey’s unverified C++
code, but quite close (especially for large inputs).

Closing the gap would require in-depth microbenchmarking.

We are already much faster than Mathematica’s BernoulliB algorithm!

18 / 18

	Bernoulli Numbers
	Computation
	Refinement
	Challenges
	Evaluation
	Conclusion

