Godel Mirror

A Paraconsistent Calculus that Metabolizes Contradictions Mechanized in Lean 4

Jhet Chan
Independent Researcher, Malaysia

ITP 2025 Lean Workshop

2 October 2025
Reykjavik, Iceland

Motivation

Contradictions are Everywhere
e Large Language Models (LLMs) often contradict themselves.
e In classical logic, a contradiction (P A ~P) leads to explosion, anything can be proven.
e Godel's Incompleteness Theorems showed that paradox is inevitable in any system
powerful enough for self-reference.

Our Question:

Instead of letting contradictions explode, can we metabolize them as part of the computation?

The Godel Mirror Mechanism

From Explosion to a Controlled Cycle

The Gddel Mirror turns a contradictions into a stable, structured object through a three-step cycle.

e Paradox: A self-referential term is identified.
e cap(...): The paradox is encapsulated, preventing explosion.
e enter(...): The capsule re-enters the system in a controlled way.

e node(...): It stabilizes into a structured "node", a value.

The key idea:
Contradiction becomes a stable object in computation (read: if P A—P — recursion)

Encoding in Lean

The entire system is captured in a simple inductive data type.

inductive MirrorSystem where

base

node : MirrorSystem — MirrorSystem
self_ref -- Represents a paradoxical term
cap : MirrorSystem — MirrorSystem
enter : MirrorSystem - MirrorSystem

named : String — MirrorSystem — MirrorSystem

Live Demo: The Liar Paradox (Demo.lean)

Let's define the Liar paradox: "This statement is false”, represented by a named self-reference.
def liar := MirrorSystem.named "Liar" MirrorSystem.self_ref

-- Run it for 3 steps
#eval run liar 3

Demo repo (branch ‘itp’):
https://github.com/jhetchan/godel-mirror/tree/itp

https://github.com/jhetchan/godel-mirror/tree/itp

Demo 1: Liar Paradox (named "Liar" self ref)

Step O: Qv 'Liar'

Step 1: @y cap(o\/ 'Liar"')

Step 2: “f enter(@ cap(o\/ 'Liar'"))

Step 3: ;"-9 node (Qf enter (6 cap (OV 'Liar"')))
Step 4: rﬁ'—t’ node(node(...))

Starting point: named "Liar" self_ref
State: Paradox (self-referential statement)

—

«—

«—

«—

Start: paradoxical term
Encapsulated (paradox wrapped)
Reentering

Stabilized as node

Keeps wrapping in nodes

Demo 1: Liar Paradox (named "Liar" self ref)

Step O: C{/ 'Liar' —~ Start: paradoxical term

Step 1: @ cap(Q\/ 'Liar'") — Encapsulated (paradox wrapped)
Step 2: % enter(@, cap(;{/ 'Liar')) — Reentering

Step 3: ;"-9 node (“f enter((‘p cap(o\/ 'Liar"'))) — Stabilized as node

Step 4: /* node (node(...)) — Keeps wrapping in nodes

Transformation: Paradox detected — Encapsulated
Rule applied: classify(liar) = Paradox — step(liar) = cap(liar)

Demo 1: Liar Paradox (named "Liar" self ref)

Step O: QV 'Liar'

Step 1: A cap(Q\/ 'Liar")

Step 2: 7 enter (¥ cap('Liar'))

Step 3: ;"-9 node (“f enter ((9 cap (O\/ 'Liar"')))
Step 4: 'ﬁ'—t’ node(node(...))

Transformation: Capsule reenters the system

«—

«—

«—

«—

«—

Start: paradoxical term
Encapsulated (paradox wrapped)
Reentering

Stabilized as node

Keeps wrapping in nodes

Rule applied: classify(cap(liar)) = Integrate — step = enter(cap(liar))

Demo 1: Liar Paradox (named "Liar" self ref)

Step O: C{/ 'Liar' —~ Start: paradoxical term

Step 1: A cap(Q\/ 'Liar") — Encapsulated (paradox wrapped)
Step 2: % enter(@, cap(;{/ 'Liar')) — Reentering

Step 3: ;"-9 node (“f enter(@ cap(ci/ 'Liar'))) — Stabilized as node

Step 4: /* node (node(...)) — Keeps wrapping in nodes

The Liar paradox goes through the 3-step cycle: paradox — cap — enter — node, then continues
wrapping in more nodes (stable state).

Demo 1: Liar Paradox (named "Liar" self ref)

Step
Step
Step
Step
Step

sww NN PO

R & ¢

'Liar'

cap(qy 'Liar")

enter (& cap (¥, 'Liar'))

node (“f enter ((9 cap (O\/ 'Liar')))
node(node(...))

Transformation: Stabilizes as a node

Rule applied: classify(enter(cap(liar))) = Reentry — step

«—

«—

«—

«—

o

= node(...)

Start: paradoxical term
Encapsulated (paradox wrapped)
Reentering

Stabilized as node

Keeps wrapping in nodes

Demo 2: Nested paradox processes outer-first (fuel = 4) - Line 39

Step 0: y 'Outer' ~ named "Outer" (named "Inner" self ref)
Step 1: & cap (¢, 'Outer') ~ System detects the OUTER label

Step 2: enter (@ cap (<, 'Outer'))

Step 3: __] node (enter (@ cap (%, 'Outer')))

Step 4: ;j node(ij node(...)) — Now in stable "node wrapping" phase
Key insight:

Even though there's a nested named "Inner" self ref inside, the system processes the outermost name first.
Step 4 is extra: After reaching node (. . .), any further steps just keep wrapping in more nodes (stable absorption).

The 3-Step Cycle as Structural Invariant

1. Detect paradox — ¢4 Encapsulate (cap)
2. Encapsulated paradox — Reentry (enter)
3. Reentering capsule — Stabilize (node)

Key Properties Demonstrated

Deterministic: Always the same transformation

Controlled: No logical explosion

Universal: Works for simple, named, and nested paradoxes
Verified: Assertions prove the expected behavior

Formal Verification

Completion (Examples.lean)
These use completeFuel which tries to resolve ALL paradoxes recursively in one go (not
step-by-step).

Completion Example 1: Liar

Before: named 'Liar' (self ref) — Original paradox
After: node(enter (cap(named 'Liar' (self ref)))) — Wrapped once

Contains paradox (before): true — Has self ref

Contains paradox (after): true « STILL has self ref inside!

Why still paradox? The completeFuel function wraps the entire term once as
node (enter (cap(...))) buttheinner self refis still there. The wrapping doesn't eliminate
the paradoy, it just "contains” it.

Completion Example 2: Nested Paradox (cap (se1f ref))

Before: cap(self ref) — Paradox already inside cap
After: cap(node(enter (cap(self ref)))) —~ Inner self ref resolved
Contains paradox (before): true

Contains paradox (after): true — Outer cap still wraps a paradox

What happened? completeFuel detected self refinside the cap, wrapped it as
node (enter (cap (self ref))) then put that back inside the outer cap.
The structure changed but se1f refis still there.

Key Insights

1. step (step-by-step): Processes the outermost paradox one step at a time
o Paradox — cap — enter — node — (keeps wrapping in nodes)

2. completeFuel (recursive completion): Tries to resolve all paradoxes at once
o Wraps paradoxes as node(enter(cap(...)))
o BUT: self_ref itself never disappears - it's the atomic paradox

o The wrapping just "stabilizes" the structure

Key Insights

3. Why "Contains paradox: true" after completion?

o self _refis the irreducible paradox - you can't eliminate it

o You can only wrap/contain it in stable structure

o contains_paradox checks if self _ref appears anywhere in the tree

o Even after wrapping, self ref is still there (just deeper in the tree)
4. This is by design: The Godel Mirror doesn't "solve" paradoxes, it metabolizes them
into stable structures that don't explode the logic. The paradox is still there, but

controlled.

Three Proven Theorems

d Progress: Every non-value term can take a computational step. The system never gets stuck.
d Foranytermt € MirrorSystem, either t is a value (i.e., t = base) or there exists aterm t’
such thatt - t’.
Q Non-Explosion: Any paradoxical term resolves deterministically to a stable node in exactly 3
steps.
d t— cap(t) — enter(t) — node(t)

d Label Preservation: A named structure keeps its label throughout the reduction process.

For proofs, can see MetaTheory.lean in repo.

Takeaways

Why Lean 47

Lean provided a complete toolkit:

1. Precision: Every rule and definition is type-checked. No ambiguity.
2. Execution: The fuelled evaluator allowed for rapid testing and live demos.

3. Proofs: | could formally verify critical properties like non-explosion.

Without Lean, the Godel Mirror would be a conceptual sketch. With Lean, it is a verifiable system.

What Was Hard

The Challenge: Non-Termination

Lean's functions must be terminating (total) to ensure logical consistency. But the Gddel Mirror is deliberately
cyclic and non-terminating.

The Solution: A Two-Pronged Approach

e For Demo: Use a fuelled evaluator (run n). This is a total function that simply stops after n steps,

making it easy to execute.
e For Proof: Define the semantics as a relation (step : MirrorSystem — MirrorSystem — Prop). This
allows reasoning about infinite computations without writing non-terminating functions. (still

work-in-progress)

Lean's flexibility handled both the executable spec and the meta-theory.

Why It Matters for Lean Community

Takeaways from Godel Mirror

Modeling Non-Terminating Calculi
Lean can formalize systems that go beyond strong
normalization.

Fuel + Relational Semantics Pattern
Combining executable fuel evaluators with relational proofs is
a practical technique for non-terminating semantics.

Lean as Executable Spec Lab

Beyond theorem proving, Lean works as a design studio for
new formal systems, where you can prototype, run, and
prove in one place.

Takeaways for Lean Community

Dedicated TRS Library Needed
Isabelle/HOL has a mature rewriting library; Lean doesn't yet.

Automation: Avoid reproving confluence/termination lemmas
manually.

Accessibility: Lower barrier for CS researchers and
students.

Advanced Topics: Enables systematic work on infinitary and
non-terminating rewriting.

Path Forward
Like mathlib for mathematicians.
Itd be great a TRS library for PL/rewriting researchers too.

Conclusion

1. Contradictions don't have to explode, they can be metabolized into structured

computational nodes.
Paradox — cap — enter — node

2. Lean 4 made it real. The only reason | could test, run, and prove this as an outsider was

because Lean integrates precision, execution, and proof in one place.

Godel Mirror

A Paraconsistent Calculus that Metabolizes Contradictions Mechanized in Lean 4

Demo repo (branch ‘itp’):
https://github.com/jhetchan/qgodel-mirror/tree/itp

Jhet Chan

https://jhetchan.com

Independent Researcher, Malaysia

https://github.com/jhetchan/godel-mirror/tree/itp
https://jhetchan.com

Questions

