
Gödel Mirror
A Paraconsistent Calculus that Metabolizes Contradictions Mechanized in Lean 4

Jhet Chan
Independent Researcher, Malaysia

ITP 2025 Lean Workshop

2 October 2025
Reykjavík, Iceland

Motivation

Contradictions are Everywhere
● Large Language Models (LLMs) often contradict themselves.

● In classical logic, a contradiction (P∧¬P) leads to explosion, anything can be proven.

● Gödel's Incompleteness Theorems showed that paradox is inevitable in any system

powerful enough for self-reference.

Our Question:
Instead of letting contradictions explode, can we metabolize them as part of the computation?

The Gödel Mirror Mechanism
From Explosion to a Controlled Cycle

The Gödel Mirror turns a contradictions into a stable, structured object through a three-step cycle.

● Paradox: A self-referential term is identified.

● cap(...): The paradox is encapsulated, preventing explosion.

● enter(...): The capsule re-enters the system in a controlled way.

● node(...): It stabilizes into a structured "node", a value.

The key idea:
Contradiction becomes a stable object in computation (read: if P ∧￢P → recursion)

Encoding in Lean
The entire system is captured in a simple inductive data type.

inductive MirrorSystem where
 | base
 | node : MirrorSystem → MirrorSystem
 | self_ref -- Represents a paradoxical term
 | cap : MirrorSystem → MirrorSystem
 | enter : MirrorSystem → MirrorSystem
 | named : String → MirrorSystem → MirrorSystem

Live Demo: The Liar Paradox (Demo.lean)

Let's define the Liar paradox: "This statement is false", represented by a named self-reference.

def liar := MirrorSystem.named "Liar" MirrorSystem.self_ref

-- Run it for 3 steps
#eval run liar 3

Demo repo (branch ‘itp’):
https://github.com/jhetchan/godel-mirror/tree/itp

https://github.com/jhetchan/godel-mirror/tree/itp

Demo 1: Liar Paradox (named "Liar" self_ref)
Step 0: 🏷 'Liar' ← Start: paradoxical term
Step 1: 🔥 cap(🏷 'Liar') ← Encapsulated (paradox wrapped)
Step 2: 🌱 enter(🔥 cap(🏷 'Liar')) ← Reentering
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Liar'))) ← Stabilized as node
Step 4: 🔁 node(🔁 node(...)) ← Keeps wrapping in nodes

Starting point: named "Liar" self_ref
State: Paradox (self-referential statement)

Demo 1: Liar Paradox (named "Liar" self_ref)
Step 0: 🏷 'Liar' ← Start: paradoxical term
Step 1: 🔥 cap(🏷 'Liar') ← Encapsulated (paradox wrapped)
Step 2: 🌱 enter(🔥 cap(🏷 'Liar')) ← Reentering
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Liar'))) ← Stabilized as node
Step 4: 🔁 node(🔁 node(...)) ← Keeps wrapping in nodes

Transformation: Paradox detected → Encapsulated
Rule applied: classify(liar) = Paradox → step(liar) = cap(liar)

Demo 1: Liar Paradox (named "Liar" self_ref)
Step 0: 🏷 'Liar' ← Start: paradoxical term
Step 1: 🔥 cap(🏷 'Liar') ← Encapsulated (paradox wrapped)
Step 2: 🌱 enter(🔥 cap(🏷 'Liar')) ← Reentering
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Liar'))) ← Stabilized as node
Step 4: 🔁 node(🔁 node(...)) ← Keeps wrapping in nodes

Transformation: Capsule reenters the system
Rule applied: classify(cap(liar)) = Integrate → step = enter(cap(liar))

Demo 1: Liar Paradox (named "Liar" self_ref)
Step 0: 🏷 'Liar' ← Start: paradoxical term
Step 1: 🔥 cap(🏷 'Liar') ← Encapsulated (paradox wrapped)
Step 2: 🌱 enter(🔥 cap(🏷 'Liar')) ← Reentering
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Liar'))) ← Stabilized as node
Step 4: 🔁 node(🔁 node(...)) ← Keeps wrapping in nodes

The Liar paradox goes through the 3-step cycle: paradox → cap → enter → node, then continues
wrapping in more nodes (stable state).

Demo 1: Liar Paradox (named "Liar" self_ref)
Step 0: 🏷 'Liar' ← Start: paradoxical term
Step 1: 🔥 cap(🏷 'Liar') ← Encapsulated (paradox wrapped)
Step 2: 🌱 enter(🔥 cap(🏷 'Liar')) ← Reentering
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Liar'))) ← Stabilized as node
Step 4: 🔁 node(🔁 node(...)) ← Keeps wrapping in nodes

Transformation: Stabilizes as a node
Rule applied: classify(enter(cap(liar))) = Reentry → step = node(...)

Demo 2: Nested paradox processes outer-first (fuel = 4) - Line 39
Step 0: 🏷 'Outer' ← named "Outer" (named "Inner" self_ref)
Step 1: 🔥 cap(🏷 'Outer') ← System detects the OUTER label
Step 2: 🌱 enter(🔥 cap(🏷 'Outer'))
Step 3: 🔁 node(🌱 enter(🔥 cap(🏷 'Outer')))
Step 4: 🔁 node(🔁 node(...)) ← Now in stable "node wrapping" phase

Key insight:
Even though there's a nested named "Inner" self_ref inside, the system processes the outermost name first.
Step 4 is extra: After reaching node(...), any further steps just keep wrapping in more nodes (stable absorption).

The 3-Step Cycle as Structural Invariant

1. Detect paradox → 🔥 Encapsulate (cap)
2. Encapsulated paradox → 🌱 Reentry (enter)
3. Reentering capsule → 🔁 Stabilize (node)

Key Properties Demonstrated

● Deterministic: Always the same transformation
● Controlled: No logical explosion
● Universal: Works for simple, named, and nested paradoxes
● Verified: Assertions prove the expected behavior

Formal Verification

Completion (Examples.lean)
These use completeFuel which tries to resolve ALL paradoxes recursively in one go (not
step-by-step).

Completion Example 1: Liar
Before: named 'Liar' (self_ref) ← Original paradox
After: node(enter(cap(named 'Liar' (self_ref)))) ← Wrapped once
Contains paradox (before): true ← Has self_ref
Contains paradox (after): true ← STILL has self_ref inside!

Why still paradox? The completeFuel function wraps the entire term once as
node(enter(cap(...))), but the inner self_ref is still there. The wrapping doesn't eliminate
the paradox, it just "contains" it.

Completion Example 2: Nested Paradox (cap(self_ref))
Before: cap(self_ref) ← Paradox already inside cap
After: cap(node(enter(cap(self_ref)))) ← Inner self_ref resolved
Contains paradox (before): true
Contains paradox (after): true ← Outer cap still wraps a paradox

What happened? completeFuel detected self_ref inside the cap, wrapped it as
node(enter(cap(self_ref))), then put that back inside the outer cap.
The structure changed but self_ref is still there.

Key Insights
1. step (step-by-step): Processes the outermost paradox one step at a time

○ Paradox → cap → enter → node → (keeps wrapping in nodes)

2. completeFuel (recursive completion): Tries to resolve all paradoxes at once

○ Wraps paradoxes as node(enter(cap(...)))

○ BUT: self_ref itself never disappears - it's the atomic paradox

○ The wrapping just "stabilizes" the structure

Key Insights
3. Why "Contains paradox: true" after completion?

○ self_ref is the irreducible paradox - you can't eliminate it

○ You can only wrap/contain it in stable structure

○ contains_paradox checks if self_ref appears anywhere in the tree

○ Even after wrapping, self_ref is still there (just deeper in the tree)

4. This is by design: The Gödel Mirror doesn't "solve" paradoxes, it metabolizes them

into stable structures that don't explode the logic. The paradox is still there, but

controlled.

Three Proven Theorems
❏ Progress: Every non-value term can take a computational step. The system never gets stuck.

❏ For any term t ∈ MirrorSystem, either t is a value (i.e., t = base) or there exists a term t ′

such that t → t ′ .

❏ Non-Explosion: Any paradoxical term resolves deterministically to a stable node in exactly 3

steps.

❏ t → cap(t) → enter(t) → node(t)

❏ Label Preservation: A named structure keeps its label throughout the reduction process.

For proofs, can see MetaTheory.lean in repo.

Takeaways

Why Lean 4?

Lean provided a complete toolkit:

1. Precision: Every rule and definition is type-checked. No ambiguity.

2. Execution: The fuelled evaluator allowed for rapid testing and live demos.

3. Proofs: I could formally verify critical properties like non-explosion.

Without Lean, the Gödel Mirror would be a conceptual sketch. With Lean, it is a verifiable system.

What Was Hard
The Challenge: Non-Termination

Lean's functions must be terminating (total) to ensure logical consistency. But the Gödel Mirror is deliberately
cyclic and non-terminating.

The Solution: A Two-Pronged Approach

● For Demo: Use a fuelled evaluator (run n). This is a total function that simply stops after n steps,
making it easy to execute.

● For Proof: Define the semantics as a relation (step : MirrorSystem → MirrorSystem → Prop). This
allows reasoning about infinite computations without writing non-terminating functions. (still
work-in-progress)

Lean's flexibility handled both the executable spec and the meta-theory.

Why It Matters for Lean Community
Takeaways from Gödel Mirror Takeaways for Lean Community

Modeling Non-Terminating Calculi
Lean can formalize systems that go beyond strong
normalization.

Dedicated TRS Library Needed
Isabelle/HOL has a mature rewriting library; Lean doesn’t yet.

Fuel + Relational Semantics Pattern
Combining executable fuel evaluators with relational proofs is
a practical technique for non-terminating semantics.

Automation: Avoid reproving confluence/termination lemmas
manually.
Accessibility: Lower barrier for CS researchers and
students.
Advanced Topics: Enables systematic work on infinitary and
non-terminating rewriting.

Lean as Executable Spec Lab
Beyond theorem proving, Lean works as a design studio for
new formal systems, where you can prototype, run, and
prove in one place.

Path Forward
Like mathlib for mathematicians.
It’d be great a TRS library for PL/rewriting researchers too.

Conclusion

1. Contradictions don't have to explode, they can be metabolized into structured

computational nodes.

Paradox → cap → enter → node

2. Lean 4 made it real. The only reason I could test, run, and prove this as an outsider was

because Lean integrates precision, execution, and proof in one place.

Gödel Mirror
A Paraconsistent Calculus that Metabolizes Contradictions Mechanized in Lean 4

Demo repo (branch ‘itp’):
https://github.com/jhetchan/godel-mirror/tree/itp

Jhet Chan

https://jhetchan.com

Independent Researcher, Malaysia

https://github.com/jhetchan/godel-mirror/tree/itp
https://jhetchan.com

Questions

