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The State of Euclidean Geometry in Lean

Freek Wiedijk’s 100 Theorems Challenge

Tracks progress of theorem provers in formalizing 100 classic theorems:
o Currently 82 theorems formalized in Lean

Source: https://leanprover-community.github.io/100.html
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ing Euclidean Geometry Theorems

Missing theorems from Freek Wiedijk's list of
100 theorems

These theorems are not yet formalized in Lean. Currently there are 18 of them. Among these, 0 have their statement
formalized. Hereis the lst of the formalized theorems.

- uve
« 12 helndependecef e PraePostulte
« 13 oprctonFormia

« 32: The Four Color Problem

« 33: Fermats Last Theorem

< 41 Puseurs Trerem
« 43:The opermetrc hearem

[ —

« 50 The Number of Plonic sl

« 56T e tndemann TanscendenceTrorem

« 92:Pick's Theorem

Figure 1: Euclidean geometry theorems from Wiedijk’s list not yet formalized
in Lean
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Related Work

Other work has also pointed out the deficiency of Mathlib’s Euclidean
geometry library and tried to expand it

LeanGeo and LeanEuclid

e Repositories formalizing synthetic Euclidean geometry via Jeremy
Avigad’s System E

o Axiomatic construction makes it difficult to port to Mathlib

Our approach complements these efforts with automated algebraic
proving
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Summary

Key contributions:

e Demonstrated algebraic automation of classical geometry theorems

o Identified an unsound theorem in an educational theorem-proving
tool that we found in the process of formalizing a library of
geometry theorems

@ Reduced complex manual proofs to single tactic calls
e Outlined path toward grind-based automation in Mathlib

e Highlighted limitations and future research directions
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From Geometry to Algebra

Key Insight: FEuclidean geometry statements can often be proved
using purely algebraic methods

Method:

@ Define geometric primitives using coordinates and polynomial
constraints

@ Unfold definitions to obtain systems of polynomial equations

@ Apply polynomial solver (Grébner basis)

This reduces geometric reasoning to algebraic computation
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Existing Tools: JGEX and GeoGebra

This algebraic approach is not new:

o JGEX: Automated geometry theorem prover

e GeoGebra: Educational geometry software

Problem: These tools are not formally verified

=- Can produce unexpected results!
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Unsound Theorem in .

Figure 2:

[The Algebrac Form:
A:00) & 0xb) C0x6) D:(0x) £ (0X10) F(x11x1D)
4)

The equational hypotheses:
1, midpoint o 84

z \Ac\ \ADI

5l - 801
g et - X642 + 286 =0

The Triangulized Hypotheses:

1h0: x5 =

hL: 246 - x4 =0

h2: X742 =0

h3: 248 - x4 =0

The conclusion;

£[CD, CB] = .[FE, FG]

(066 = X4IX8 = X6A2 + XAXEIXLL + (X6 + X4)XEB + X6A2 = XAXEDOX14 + (-X6 + XANE + X612 - X4X6)... = 0

Successive Pseudo Remainder of the conclusion wrt Triangulized Hypotheses: E

R4 o s 24
R3 = prem(®_4, h_3) = [x14, 18]
R2 = prem(® 3, h.2) = [x14, 18]
= premk 2 = (0.0 G
Remainder = R_1 =
 The conclusion s true

Construction of a degenerate angle equal to every other angle. The

angle equality predicate is not transitive in this system
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Unsound Theorem in JGEX

Figure 2:
other

The Algebraic Form:
A:(0,0) B: Ox4) C:(0X6) D: (0x8) E: (x9x10) F: (x11x12)
G (x13x14)

The equational hypotheses:
fBA

The conclusion:

6+ XANE + X642 - X4x6).... = 0

<[CD, CB] = [FE, FG] €

Tz i

RC3 = prem(® 4, h_3) = [x14, 18]

RC2 = prem(® 3, h.2) = [x14, 18]

RC1 = prem(® 2, h_1) = [0, 0] G

Remainder = R_1= 0
¥ The conclusion is true

The conclusion of the statement is that two angles are equal to each
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Unsound Theorem in JGEX

The Algebs

A 00) B C:(0x6) D: (0x8) E: (x9x10) F: (x11x12)
G (x13x14)
‘The equational hypotheses:

idpoint of BA

B
h3: 248 - x4 =0
The conclusion:

[CD, CB] = .[FE, G
(6 ~ X4X8 ~ X6AZ + XAXEIX11 + (-X6 + X4 + X6AZ = XAXEIXIX14 + (X6 + XA + X6AZ - X4X6).... = 0

uccessive Pseudo Remainder of the conclusion wrt Triangulized Hypotheses: E
R4 = [x14, 24] 1
RC3 = prem(R_4,h_3) = [x14, 18]
R2 = prem(R_3, h_2) = [x14, 18]

v The conclusion is true

Figure 2: JGEX proves that the conclusion is true
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Unsound Theorem in

The Algebraic Form: B
A:(0,0) B: (0x4) C: (0X6) D: (0,x8) E: (x9x10) F: (x11x12)
G (x13x14)

o

‘The equational hypotheses:
1:C: midpoint of BA
0

h3: 2x8 - x4 =0

Fthe conclusion:
<[CD, CBl = -IFE, FGl E
(06~ X8 - 0642 + xdXEIXLL + (X6 + X8I + X62 - XAXEIOIL4 + (-6 + X8 + X6

Successive Pseudo Remainder of the conclusion wrt Triangulized Hypotheses:
R4 = [x14, 24]

The conclusion i true

Figure 2: But, the angles D C B and E F G are clearly not the same

Mauricio B




Examples of Converting Geometry to Algebra

@[euclid_simp]
def Rotate (P : EuclidPoint) (center :
EuclidPoint) (u : EuclidPoint) :

@[euclid_simp]
def Collinear
(p1 p2 p3 : EuclidPoint)

: Prop := EuclidPoint :=
let dx := P.x - center.x
(pz.x - p1.x) let dy := P.y - center.y
(Pa-y - P1.y) - EuclidPoint .mk
Eiii - iii; t 0 (center.x + dx * u.x - dy * u.y)

(center.y + dx * u.y + dy * u.x)

@ These definitions can be simplified to polynomial equalities that
depend only on the coordinates of points in R?

@ The @[euclid_simp] tag tells Lean’s elaborator how to recursively
convert statements into polynomial expressions

o Lean’s formal verification guarantees that this transformation is
sound
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The algebraic_euclid T

theorem Propositionas

(h1 @ |C - B["2 = [B - A[*2 + |C - A["2) :

(B -A) L (C-A)
l simp

N1t (Cox - Bux) A 24 (Cy - By) ~ 2= (B.x - Ax) » 2+ (B.y - Ay) » 2 + ((Cox - A.x) ~ 2 + (C.y - Ay) ~ 2)
~ (B.x - A.x) * (A.x - C.x) + (A.y - B.y) * (A.y - C.y) = @

l grind

\/  theorem Propositiond8
(h1: |C - B|~2 = [B - A["2 + |C - A]"2) :
(B=-A) 1 (C=-A) :=by
algebraic_euclid

Figure 3: Converting the converse of the Pythagorean theorem into an
algebraic statement and proving it using grind
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us’s Theorem

theorem Pappus_Theorem

(h1 : Col A B C)

(h2 : Col P Q R)

(h4 : Col X A Q)

(h5 : Col X B P)

(h6 : Col Y A R)

(h7 : Col Y C P)

(h8 : Col Z B R)

(h9 : Col Z C Q)

(h10 : =(A - Q) Il (B - P))
Col X Y Z

:= by algebraic_euclid
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Example: Pappus’s Theorem (Elaboration)

After elaboration, the geometric statement becomes:

hi : (B.x - A.x) *x (C.y - A.y) - (B.y - A.y) *x (C.x - A.x) =0
h2 : (Q@.x - P.x) * (R.y - P.y) - (Q.y - P.y) * (R.x - P.x) =0
h4 : (A.x - X.x) *x (Q.y - X.y) - (A.y - X.y) * (Q.x - X.x) =0
h6 : (B.x - X.x) * (P.y - X.y) - (B.y - X.y) * (P.x - X.x) =0
h6 : (A.x - Y.x) *» (R.y - Y.y) - (A.y - Y.y) * (R.x - Y.x) =0
h7 : (C.x - Y.x) * (P.y - Y.y) - (C.y - Y.y) * (P.x - Y.x) =0
h8 : (B.x - Z2.x) * (R.y - Z.y) - (B.y - Z2.y) * (R.x - Z.x) =0
h9 (C.x - Z.x) * (Q.y Z.y) - (C.y - Z.y) *» (Q.x - Z.x) =0
h10 : ~(Q.x - A.x) * (P.y - B.y) - (P.x - B.x) * (Q.y - A.y) =0
F(Y.x - X.x) *x (Z.y - X.y) - (Y.y - X.y) * (Z.x - X.x) =0

Pure polynomial algebra—ready for grind!

Almost 100 theorems that we’ve proven with a one-line proof in this
way
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Mathlib’s Algebraic Foundation

@ One reason the Euclidean geometry library in Mathlib might be so
small is that existing Euclidean geometry theorems in Mathlib can
be extremely cumbersome

e Good news: Mathlib’s Euclidean geometry is already quite
algebraic

o With careful setup, many Mathlib theorems become one-liners
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The sum of the angles of a triangle

Current Mathlib proof:

theorem angle_add_angle_add_angle_eq_pi

{p: p2 : P} (p3s : P) (h : p2 # pi1)

Z p1 p2 Pz + £ p2 Ps p1 + £ ps p1 P2 = ™ := by

rw [add_assoc, add_comm, add_comm (£ p2 ps pi),
angle_comm ps ps pi1l

unfold angle

rw [ angle_neg_neg (p1 -v Pp3),
< angle_neg_neg (p: -v p2),
neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev,
neg_vsub_eq_vsub_rev, neg_vsub_eq_vsub_rev,
< vsub_sub_vsub_cancel_right p3 p2 pi,
< vsub_sub_vsub_cancel_right p> ps p1l

exact angle_add_angle_sub_add_angle_sub_eq_pi

fun he => h (vsub_eq_zero_iff_eq.l he)

Extensive manual rewriting required
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s Theorem

Current Mathlib proof:

/-- Stewart’s Theorem. -/
theorem dist_sq_mul_dist_add_dist_sq_mul_dist
(abcp:P) (h: angle b pc = 7)
dist a b = 2 *x dist ¢ p + dist a ¢ ~ 2 * dist b p =
dist b ¢ * (dist a p =~ 2 + dist b p * dist c p) := by
rw [pow_two, pow_two, law_cos a p b, law_cos a p c,
eq_sub_of_add_eq
(angle_add_angle_eq_pi_of_angle_eq_pi a h),
Real.cos_pi_sub,
dist_eq_add_dist_of_angle_eq_pi h]
ring

Multiple law of cosines applications and angle manipulations
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Sum of Angles of a Triangle: Algebraic Version

With algebraic approach:

theorem Proposition32

(h1 : |A - Bl # 0)

(h2 : |A - C| # 0)

(h3 : |B - Cl| # 0)

(h4 : IB - Al # O)

((£ B A C (by nondegen)) + (L C B A (by nondegen)) +

(L A C B (by nondegen))) = (L + 1) := by
algebraic_euclid

Single tactic call
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'm: Algebraic Version

With algebraic approach:

theorem StewartTheorem
(hl1 : Between B D C)
|[A - D|~2 * |[B - C| + |B - D| * |[D - C| * |B - C| =
|A - B|"2 * |[D - C|] + |A - Cl|~2 * |B - DI
:= by
algebraic_euclid

Single tactic call
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Why Current Mathlib Theorems Resist Automation

Issues preventing direct grind application:

@ Some definitions are adverse to polynomial solving. E.g. angles
defined by radians cannot be not handled by purely polynomial
solvers

@ Definitions also need explicit unfolding strategies

Solution: With targeted changes to definitions and grind
configuration, many theorems become automatable
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When the Method Fails

Fundamental limitations:

Q@ Existential quantifiers: Groébner basis methods cannot handle
statements requiring witness construction

@ Ordering properties: Statements relying on <, < over R cannot
be proved purely algebraically

E.g. 22 > 0 is necessary for many geometric theorems but can’t be
proved with a polynomial solver

@ Computational complexity: Grobner basis is doubly
exponential in number of variables

@ Difficult to diagnose grind failures:
e Too many variables?
e Missing ordering constraints?
e Missing nondegeneracy condition?
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Potential Workarounds

For ordering properties:

Tag relevant ordering theorems with @[grind] to help automation

For complexity:

Some problems simplified by fixing coordinate system (origin -+ unit
point)

For existentials:

Provide explicit constructions, then use algebraic methods to verify
properties
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Future Work: Machine Learning Integration

Strongly scaffolded domain for LM-based theorem proving:

e Rapid conjecture generation and verification cycle

o Alternate between:

o LM generates lemmas/subgoals
e grind proves them algebraically

o Reinforcement learning to bootstrap geometry library

FEuclidean geometry as a testbed for neural-symbolic theorem proving
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Takeaways

@ A tactic similar to algebraic_euclid could be useful for proving
Fuclidean geometry statements in Mathlib

© Modifying the Euclidean geometry library to work with
algebraic_euclid requires thoughtful design choices

@ Many exciting directions for the grind tactic in Lean
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Thank You!

Questions?

barba@mit.edu
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