
Automatic Geometry Theorem Proving
Using Polynomial Elaboration

Mauricio Barba da Costa
with Fabian Zaiser, Cameron Freer, Katie Collins, Josh Tenenbaum,

and Vikash Mansinghka

October 2, 2025

Mauricio Barba da Costa October 2, 2025 1 / 27

The State of Euclidean Geometry in Lean

Freek Wiedijk’s 100 Theorems Challenge

Tracks progress of theorem provers in formalizing 100 classic theorems:
Currently 82 theorems formalized in Lean

Source: https://leanprover-community.github.io/100.html

Mauricio Barba da Costa October 2, 2025 2 / 27

Missing Euclidean Geometry Theorems

Figure 1: Euclidean geometry theorems from Wiedijk’s list not yet formalized
in Lean

Mauricio Barba da Costa October 2, 2025 3 / 27

Related Work

Other work has also pointed out the deficiency of Mathlib’s Euclidean
geometry library and tried to expand it

LeanGeo and LeanEuclid
Repositories formalizing synthetic Euclidean geometry via Jeremy
Avigad’s System E
Axiomatic construction makes it difficult to port to Mathlib

Our approach complements these efforts with automated algebraic
proving

Mauricio Barba da Costa October 2, 2025 4 / 27

Summary

Key contributions:

Demonstrated algebraic automation of classical geometry theorems

Identified an unsound theorem in an educational theorem-proving
tool that we found in the process of formalizing a library of
geometry theorems

Reduced complex manual proofs to single tactic calls

Outlined path toward grind-based automation in Mathlib

Highlighted limitations and future research directions

Mauricio Barba da Costa October 2, 2025 5 / 27

From Geometry to Algebra

Key Insight: Euclidean geometry statements can often be proved
using purely algebraic methods

Method:
1 Define geometric primitives using coordinates and polynomial

constraints

2 Unfold definitions to obtain systems of polynomial equations

3 Apply polynomial solver (Gröbner basis)

This reduces geometric reasoning to algebraic computation

Mauricio Barba da Costa October 2, 2025 6 / 27

Existing Tools: JGEX and GeoGebra

This algebraic approach is not new:

JGEX: Automated geometry theorem prover
GeoGebra: Educational geometry software

Problem: These tools are not formally verified

⇒ Can produce unexpected results!

Mauricio Barba da Costa October 2, 2025 7 / 27

Unsound Theorem in JGEX

Figure 2: Construction of a degenerate angle equal to every other angle. The
angle equality predicate is not transitive in this system

Mauricio Barba da Costa October 2, 2025 8 / 27

Unsound Theorem in JGEX

Figure 2: The conclusion of the statement is that two angles are equal to each
other

Mauricio Barba da Costa October 2, 2025 9 / 27

Unsound Theorem in JGEX

Figure 2: JGEX proves that the conclusion is true

Mauricio Barba da Costa October 2, 2025 10 / 27

Unsound Theorem in JGEX

Figure 2: But, the angles D C B and E F G are clearly not the same

Mauricio Barba da Costa October 2, 2025 11 / 27

Examples of Converting Geometry to Algebra

@[euclid_simp]
def Collinear

(p1 p2 p3 : EuclidPoint)
: Prop :=
(p2 .x - p1 .x) *
(p3 .y - p1 .y) -
(p2 .y - p1 .y) *
(p3 .x - p1 .x) = 0

@[euclid_simp]
def Rotate (P : EuclidPoint) (center :

EuclidPoint) (u : EuclidPoint) :
EuclidPoint :=

let dx := P.x - center.x
let dy := P.y - center.y
EuclidPoint.mk

(center.x + dx * u.x - dy * u.y)
(center.y + dx * u.y + dy * u.x)

These definitions can be simplified to polynomial equalities that
depend only on the coordinates of points in R2

The @[euclid_simp] tag tells Lean’s elaborator how to recursively
convert statements into polynomial expressions
Lean’s formal verification guarantees that this transformation is
sound

Mauricio Barba da Costa October 2, 2025 12 / 27

The algebraic_euclid Tactic

Figure 3: Converting the converse of the Pythagorean theorem into an
algebraic statement and proving it using grind

Mauricio Barba da Costa October 2, 2025 13 / 27

Example: Pappus’s Theorem

theorem Pappus_Theorem
(h1 : Col A B C)
(h2 : Col P Q R)
(h4 : Col X A Q)
(h5 : Col X B P)
(h6 : Col Y A R)
(h7 : Col Y C P)
(h8 : Col Z B R)
(h9 : Col Z C Q)
(h10 : ¬(A - Q) || (B - P))
:
Col X Y Z
:= by algebraic_euclid

Mauricio Barba da Costa October 2, 2025 14 / 27

Example: Pappus’s Theorem (Elaboration)

After elaboration, the geometric statement becomes:
h1 : (B.x - A.x) * (C.y - A.y) - (B.y - A.y) * (C.x - A.x) = 0
h2 : (Q.x - P.x) * (R.y - P.y) - (Q.y - P.y) * (R.x - P.x) = 0
h4 : (A.x - X.x) * (Q.y - X.y) - (A.y - X.y) * (Q.x - X.x) = 0
h5 : (B.x - X.x) * (P.y - X.y) - (B.y - X.y) * (P.x - X.x) = 0
h6 : (A.x - Y.x) * (R.y - Y.y) - (A.y - Y.y) * (R.x - Y.x) = 0
h7 : (C.x - Y.x) * (P.y - Y.y) - (C.y - Y.y) * (P.x - Y.x) = 0
h8 : (B.x - Z.x) * (R.y - Z.y) - (B.y - Z.y) * (R.x - Z.x) = 0
h9 : (C.x - Z.x) * (Q.y - Z.y) - (C.y - Z.y) * (Q.x - Z.x) = 0
h10 : ¬(Q.x - A.x) * (P.y - B.y) - (P.x - B.x) * (Q.y - A.y) = 0
⊢ (Y.x - X.x) * (Z.y - X.y) - (Y.y - X.y) * (Z.x - X.x) = 0

Pure polynomial algebra—ready for grind!

Almost 100 theorems that we’ve proven with a one-line proof in this
way

Mauricio Barba da Costa October 2, 2025 15 / 27

Mathlib’s Algebraic Foundation

One reason the Euclidean geometry library in Mathlib might be so
small is that existing Euclidean geometry theorems in Mathlib can
be extremely cumbersome

Good news: Mathlib’s Euclidean geometry is already quite
algebraic

With careful setup, many Mathlib theorems become one-liners

Mauricio Barba da Costa October 2, 2025 16 / 27

Example: The sum of the angles of a triangle

Current Mathlib proof:

theorem angle_add_angle_add_angle_eq_pi
{p 1 p 2 : P} (p 3 : P) (h : p 2 ̸= p 1) :
∠ p 1 p 2 p 3 + ∠ p 2 p 3 p 1 + ∠ p 3 p 1 p 2 = π := by
rw [add_assoc , add_comm , add_comm (∠ p 2 p 3 p 1),

angle_comm p 2 p 3 p 1]
unfold angle
rw [← angle_neg_neg (p 1 -v p 3),

← angle_neg_neg (p 1 -v p 2),
neg_vsub_eq_vsub_rev , neg_vsub_eq_vsub_rev ,
neg_vsub_eq_vsub_rev , neg_vsub_eq_vsub_rev ,
← vsub_sub_vsub_cancel_right p 3 p 2 p 1 ,
← vsub_sub_vsub_cancel_right p 2 p 3 p 1]

exact angle_add_angle_sub_add_angle_sub_eq_pi _
fun he => h (vsub_eq_zero_iff_eq .1 he)

Extensive manual rewriting required

Mauricio Barba da Costa October 2, 2025 17 / 27

Example: Stewart’s Theorem

Current Mathlib proof:

/-- Stewart ’s Theorem. -/
theorem dist_sq_mul_dist_add_dist_sq_mul_dist

(a b c p : P) (h : angle b p c = π) :
dist a b ^ 2 * dist c p + dist a c ^ 2 * dist b p =
dist b c * (dist a p ^ 2 + dist b p * dist c p) := by
rw [pow_two , pow_two , law_cos a p b, law_cos a p c,

eq_sub_of_add_eq
(angle_add_angle_eq_pi_of_angle_eq_pi a h),

Real.cos_pi_sub ,
dist_eq_add_dist_of_angle_eq_pi h]

ring

Multiple law of cosines applications and angle manipulations

Mauricio Barba da Costa October 2, 2025 18 / 27

Sum of Angles of a Triangle: Algebraic Version

With algebraic approach:

theorem Proposition32
(h1 : |A - B| ̸= 0)
(h2 : |A - C| ̸= 0)
(h3 : |B - C| ̸= 0)
(h4 : |B - A| ̸= 0)
: ((∠ B A C (by nondegen)) + (∠ C B A (by nondegen)) +
(∠ A C B (by nondegen))) = (⊥ + ⊥) := by
algebraic_euclid

Single tactic call

Mauricio Barba da Costa October 2, 2025 19 / 27

Stewart’s Theorem: Algebraic Version

With algebraic approach:

theorem StewartTheorem
(h1 : Between B D C)
: |A - D|^2 * |B - C| + |B - D| * |D - C| * |B - C| =

|A - B|^2 * |D - C| + |A - C|^2 * |B - D|
:= by

algebraic_euclid

Single tactic call

Mauricio Barba da Costa October 2, 2025 20 / 27

Why Current Mathlib Theorems Resist Automation

Issues preventing direct grind application:

1 Some definitions are adverse to polynomial solving. E.g. angles
defined by radians cannot be not handled by purely polynomial
solvers

2 Definitions also need explicit unfolding strategies

Solution: With targeted changes to definitions and grind
configuration, many theorems become automatable

Mauricio Barba da Costa October 2, 2025 21 / 27

When the Method Fails

Fundamental limitations:

1 Existential quantifiers: Gröbner basis methods cannot handle
statements requiring witness construction

2 Ordering properties: Statements relying on <, ≤ over R cannot
be proved purely algebraically

E.g. x2 ≥ 0 is necessary for many geometric theorems but can’t be
proved with a polynomial solver

3 Computational complexity: Gröbner basis is doubly
exponential in number of variables

4 Difficult to diagnose grind failures:
Too many variables?
Missing ordering constraints?
Missing nondegeneracy condition?

Mauricio Barba da Costa October 2, 2025 22 / 27

Potential Workarounds

For ordering properties:

Tag relevant ordering theorems with @[grind] to help automation

For complexity:

Some problems simplified by fixing coordinate system (origin + unit
point)

For existentials:

Provide explicit constructions, then use algebraic methods to verify
properties

Mauricio Barba da Costa October 2, 2025 23 / 27

Future Work: Machine Learning Integration

Strongly scaffolded domain for LM-based theorem proving:

Rapid conjecture generation and verification cycle

Alternate between:
LM generates lemmas/subgoals
grind proves them algebraically

Reinforcement learning to bootstrap geometry library

Euclidean geometry as a testbed for neural-symbolic theorem proving

Mauricio Barba da Costa October 2, 2025 24 / 27

Takeaways

1 A tactic similar to algebraic_euclid could be useful for proving
Euclidean geometry statements in Mathlib

2 Modifying the Euclidean geometry library to work with
algebraic_euclid requires thoughtful design choices

3 Many exciting directions for the grind tactic in Lean

Mauricio Barba da Costa October 2, 2025 25 / 27

References

Resources:
Lean 100 Theorems:
leanprover-community.github.io/100.html

Wiedijk’s List: cs.ru.nl/˜freek/100/
LeanGeo & LeanEuclid projects
Mathlib documentation

Mauricio Barba da Costa October 2, 2025 26 / 27

Thank You!

Questions?

barba@mit.edu

Mauricio Barba da Costa October 2, 2025 27 / 27

	Introduction
	Background
	The Algebraic Method
	Implementation in Lean
	Results
	Integration with Mathlib

