Formalizing Possibly Infinite Trees of Finite Degree

Konig's Lemma for Chase Termination

Lukas Gerlach

Knowledge-Based Systems Group, TU Dresden, Germany

02.10.2025

Technische

: ... International Center
0 Universitat b

Dresden for Computational Logic

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

R(z,y) — 3z.R(y,2) V R(y, x)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https:;//dmfa.dev/lean

R(z,y) —» 32.R(y,2) V R(y, x)

With the fact R(a, b), we can obtain different ChaseBranches.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https:;//dmfa.dev/lean

R(z,y) —» 32.R(y,2) V R(y, x)

With the fact R(a,b), we can obtain different ChaseBranches.

R(a,b)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https:;//dmfa.dev/lean

R(z,y) — Jz. R(y,z) V R(y, x)

With the fact R(a, b), we can obtain different ChaseBranches.

R(a,b) —— R(b,nq)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https:;//dmfa.dev/lean

R(z,y) — 32z.R(y,2) V R(y, z)

With the fact R(a, b), we can obtain different ChaseBranches.

R(a,b) —— R(b,ny) |—— R(nqy,b)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

Background / Short Motivation

My work revolves around the chase algorithm on existential rules.
See https:;//dmfa.dev/lean

R(z,y) —» 3z.R(y,2) V R(y, x)

We can generalize this into an infinite ChaseTree.
R(b,a)
P

T R(banl) -

R(a,b) R(ny,b)

\ nnn
R(ny,ny)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/lean

What about inductive trees? &

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

What about inductive trees? &

inductive BinaryTree a with

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

What about inductive trees? &

| leaf a -> BinaryTree a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

What about inductive trees? &

| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

What about inductive trees? &

inductive BinaryTree a with
| leaf a -> BinaryTree a
| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Inductive types express the least fixed point, i.e. the minimal set of trees
obtainable from the two constructors.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

What about inductive trees? &

inductive BinaryTree a with
| leaf a -> BinaryTree a
| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Inductive types express the least fixed point, i.e. the minimal set of trees
obtainable from the two constructors. We want the greatest fixed point
instead, i.e. a coinductive definition!

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Plan of Attack ;<

vn »~ W NV

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

Take a hint from infinite lists.

1.
2.
3.
4
5

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

1. Take a hint from infinite lists.

2. Define possibly infinite lists.
3.

4.
5

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

1. Take a hint from infinite lists.
2. Define possibly infinite lists.

3. Define possibly infinite trees with finite degree.
4,

5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.

4. Define branches in trees.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

Take a hint from infinite lists.

Define possibly infinite lists.

Define possibly infinite trees with finite degree.
Define branches in trees.

vn »~ W NV

Prove Konig's Lemma.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

https://dmfa.dev/trees

Plan of Attack ;<

Take a hint from infinite lists.
Define possibly infinite lists.

Define possibly infinite trees with finite degree.
Define branches in trees.

buln ~ W N

Prove Konig's Lemma.

Konig's Lemma: (Special Case for Trees)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Plan of Attack ;<

Take a hint from infinite lists.
Define possibly infinite lists.

Define possibly infinite trees with finite degree.
Define branches in trees.

buln ~ W N

Prove Konig's Lemma.

Konig's Lemma: (Special Case for Trees)
If each branch of a tree with finite degree is finite,

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Plan of Attack ;<

Take a hint from infinite lists.
Define possibly infinite lists.

Define possibly infinite trees with finite degree.
Define branches in trees.

buln ~ W N

Prove Konig's Lemma.

Konig's Lemma: (Special Case for Trees)
If each branch of a tree with finite degree is finite,

then there are only finitely many branches.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Infinite Lists aka. Stream’ »4

def Stream' (a : Type u) := Nat - «

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Infinite Lists aka. Stream’ »4

def Stream' (a : Type u) := Nat - «

How to make this possibly infinite?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Infinite Lists aka. Stream’ »4

def Stream' (a : Type u) := Nat - «

How to make this possibly infinite? How about InfinitelList (Option a)?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Infinite Lists aka. Stream’ »4

def Stream' (a : Type u) := Nat - «

How to make this possibly infinite? How about InfinitelList (Option a)?

structure PossiblyInfinitelList (a : Type u) where
infinite list : InfinitelList (Option a)
no holes : V n : Nat, infinite list n # none ->
Vm: Fin n, infinite list m # none

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Infinite Lists aka. Stream’ »4

def Stream' (a : Type u) := Nat - «

How to make this possibly infinite? How about InfinitelList (Option a)?

structure PossiblyInfinitelList (a : Type u) where
infinite list : InfinitelList (Option a)
no holes : V n : Nat, infinite list n # none ->
Vm: Fin n, infinite list m # none

Now we only need to turn the InfiniteList into an InfiniteTree. How?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

From List to Tree - Change the Address! ff

def FiniteDegreeTreeStub (a : Type u) := List Nat -> Option a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

From List to Tree - Change the Address! ff

def FiniteDegreeTreeStub (a : Type u) := List Nat -> Option a

]: some 1
[0]: some 4]: some 7 [2]: none
7 \ | |
Must not be none! Nothing should be here!
. [0,1]: some 9
no_holes_in_children no_orphans

Also: Each node must have a child that is none.
finitely_many children

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

def branches (t : PIT a) : Set (PIL a) := t.branches through []

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

def branches through (t : PIT a) (n : List Nat) : Set (PIL a) :=
(t.addresses through n).map t.branch for address

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

def addresses through (t : PIT a) (n : List Nat) : Set (IL Nat) :=
fun ns => ns € ns.take node.length = node

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches &+

def branches (t : PIT a) : Set (PIL a) := t.branches through []

def branches through (t : PIT a) (n : List Nat) : Set (PIL a) :=
(t.addresses through n).map t.branch for address

def addresses through (t : PIT o) (n : List Nat) : Set (IL Nat) :=
fun ns => ns € ns.take node.length = node

Is that it?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches < (2)

]: some 1
[O]: some 4]: some 7 [2]: none

/ N |

[0,1]: some 9

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches < (2)

]: some 1
[O]: some 4]: some 7 [2]: none

PN | |

[0,1]: some 9

Should the green be a valid branch address?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches < (2)

]: some 1
[0]: some 4]: some 7 [2]: none -

/ . | |

[0,1]: some 9

Should the pink be a valid branch address?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Defining Branches ¥+ (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList

def branches (t : PIT a) : Set (PIL a) := t.branches through []

def branches through (t : PIT a) (n : List Nat) : Set (PIL a) :=
(t.addresses through n).map t.branch for address

def addresses through (t : PIT a) (n : List Nat) : Set (IL Nat) :=
fun ns => ns € ns.take n.length = n A t.address is maximal ns

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Defining Branches < (3)

def address is maximal (t : PIT a) (ns : IL Nat) : Prop :=

YV n, t (ns.take (n+1l)) = none -> t (0 :: (ns.take n)) = none

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 0210.2025

Defining Branches ¥+ (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT a) : Set (PIL a) := t.branches through []
def branches through (t : PIT a) (n : List Nat) : Set (PIL a) :=
(t.addresses through n).map t.branch for address
def addresses through (t : PIT a) (n : List Nat) : Set (IL Nat) :=
fun ns => ns € ns.take n.length = n A t.address is maximal ns
def address is maximal (t : PIT a) (ns : IL Nat) : Prop :=
-- If the branch 1s not infinite, 1t should end in a leaf
YV n, t (ns.take (n+1l)) = none -> t (0 :: (ns.take n)) = none

0210.2025

Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules

Lukas Gerlach (TU Dresden)

Defining Branches ¥+ (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT a) : Set (PIL a) := t.branches through []
def branches through (t : PIT a) (n : List Nat) : Set (PIL a) :=
(t.addresses through n).map t.branch for address
def addresses through (t : PIT a) (n : List Nat) : Set (IL Nat)
fun ns => ns € ns.take n.length = n A t.address is maximal ns
def address is maximal (t : PIT a) (ns : IL Nat) : Prop :=
-- If the branch 1s not infinite, 1t should end in a leaf

YV n, t (ns.take (n+1l)) = none -> t (0 :: (ns.take n)) = none

¥ ! This also ensures that every ChaseTree branch is a proper ChaseBranch.

0210.2025

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules

Proving Konig's Lemma =2

Konig's Lemma: (Special Case for Trees)
If each branch of a tree with finite degree is finite,

then there are only finitely many branches.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

theorem branches finite of each branch finite (t : FinDegTree «)
(V b, b € t.branches -> 3 1, b 1 = none) -> t.branches.fin

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

have : 3 (ns : IL Nat), V i, - t.branches through (ns.take 1i).fin

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

let ns := fun n => (inf node contra n.succ).val.head

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

noncomputable def inf node {t} (n fin : - t.branches.fin) (d)
{ n : List Nat // n.length = d A = (t.branches through n).fin }

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

theorem inf node extends prev {t} (n fin : - t.branches.fin) (d)
(inf node n fin d.succ).val =
(inf node n fin d.succ).val.head :: (inf node n fin d).val

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

Proving Konig's Lemma =2

theorem branches finite of each branch finite (t : FinDegTree «)
(V b, b € t.branches -> 3 i, b 1 = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : 3 (ns : IL Nat), V i, - t.branches through (ns.take 1i).fin
let ns := fun n => (inf node contra n.succ).val.head
noncomputable def inf node {t} (n fin : - t.branches.fin) (d)
{ n : List Nat // n.length = d A = (t.branches through n).fin }
theorem inf node extends prev {t} (n fin : - t.branches.fin) (d)

(inf node n fin d.succ).val =
(inf node n fin d.succ).val.head :: (inf node n fin d).val

¥ ! If every branch in a ChaseTree is finite, so is the whole ChaseTree.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

This talk is finite and we've reached its end ==

Thank you so much for having me! =@

| hope you can get all your

goals accomplished £

Feel free to reach out in Lean Zulipchat or via mail:

lukas.gerlach@tu-dresden.de
hi@monsterkrampe.dev

Check out https:;//dmfa.dev/lean and https:;//dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025

https://dmfa.dev/lean
https://dmfa.dev/trees

	Background / Short Motivation 💡
	What about inductive trees? 🌲
	Plan of Attack ⚔
	Infinite Lists aka. Stream' 🏄
	From List to Tree - Change the Address! 📫
	Defining Branches 🪾
	Defining Branches 🪾 (2)
	Defining Branches 🪾 (3)
	Proving König's Lemma 👑
	This talk is finite and we've reached its end 🏁

