
Formalizing Possibly Infinite Trees of Finite Degree
König’s Lemma for Chase Termination

Lukas Gerlach

Knowledge-Based Systems Group, TU Dresden, Germany

02.10.2025



Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧.𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧.𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

With the fact 𝑅(𝑎, 𝑏), we can obtain different ChaseBranches .

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧.𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

With the fact 𝑅(𝑎, 𝑏) , we can obtain different ChaseBranches .

𝑅(𝑎, 𝑏)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧. 𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

With the fact 𝑅(𝑎, 𝑏), we can obtain different ChaseBranches .

𝑅(𝑎, 𝑏) 𝑅(𝑏, 𝑛1)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧.𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

With the fact 𝑅(𝑎, 𝑏), we can obtain different ChaseBranches .

𝑅(𝑎, 𝑏) 𝑅(𝑏, 𝑛1) 𝑅(𝑛1, 𝑏)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


Background / Short Motivation 💡

My work revolves around the chase algorithm on existential rules.
See https://dmfa.dev/lean

𝑅(𝑥, 𝑦) → ∃𝑧.𝑅(𝑦, 𝑧) ∨ 𝑅(𝑦, 𝑥)

We can generalize this into an infinite ChaseTree .

𝑅(𝑎, 𝑏)
𝑅(𝑏, 𝑛1)

𝑅(𝑛1, 𝑛2)
…
…

𝑅(𝑛1, 𝑏)
𝑅(𝑏, 𝑎)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 1 / 10

https://dmfa.dev/lean


What about inductive trees? 🌲

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



What about inductive trees? 🌲

inductive BinaryTree a with 

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



What about inductive trees? 🌲

inductive BinaryTree a with 
| leaf a -> BinaryTree a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



What about inductive trees? 🌲

inductive BinaryTree a with 
| leaf a -> BinaryTree a
| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



What about inductive trees? 🌲

inductive BinaryTree a with 
| leaf a -> BinaryTree a
| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Inductive types express the least fixed point, i.e. the minimal set of trees
obtainable from the two constructors. 

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



What about inductive trees? 🌲

inductive BinaryTree a with 
| leaf a -> BinaryTree a
| inner a -> BinaryTree a -> BinaryTree a -> BinaryTree a

Inductive types express the least fixed point, i.e. the minimal set of trees
obtainable from the two constructors. We want the greatest fixed point
instead, i.e. a coinductive definition!

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 2 / 10



Plan of Attack ⚔

1.
2.
3.
4.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2.
3.
4.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3.
4.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4. Define branches in trees.
5.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4. Define branches in trees.
5. Prove König’s Lemma.

https://dmfa.dev/trees

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10

https://dmfa.dev/trees


Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4. Define branches in trees.
5. Prove König’s Lemma.

König’s Lemma: (Special Case for Trees)

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10



Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4. Define branches in trees.
5. Prove König’s Lemma.

König’s Lemma: (Special Case for Trees)

If each branch of a tree with finite degree is finite,

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10



Plan of Attack ⚔

1. Take a hint from infinite lists.
2. Define possibly infinite lists.
3. Define possibly infinite trees with finite degree.
4. Define branches in trees.
5. Prove König’s Lemma.

König’s Lemma: (Special Case for Trees)

If each branch of a tree with finite degree is finite,
then there are only finitely many branches.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 3 / 10



Infinite Lists aka. Stream’ 🏄

def Stream' (α : Type u) := Nat → α -- From Mathlib
-- We call the same thing InfiniteList instead.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 4 / 10



Infinite Lists aka. Stream’ 🏄

def Stream' (α : Type u) := Nat → α -- From Mathlib
-- We call the same thing InfiniteList instead.

How to make this possibly infinite? 

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 4 / 10



Infinite Lists aka. Stream’ 🏄

def Stream' (α : Type u) := Nat → α -- From Mathlib
-- We call the same thing InfiniteList instead.

How to make this possibly infinite? How about InfiniteList (Option α)?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 4 / 10



Infinite Lists aka. Stream’ 🏄

def Stream' (α : Type u) := Nat → α -- From Mathlib
-- We call the same thing InfiniteList instead.

How to make this possibly infinite? How about InfiniteList (Option α)?

structure PossiblyInfiniteList (α : Type u) where
  infinite_list : InfiniteList (Option α)
  no_holes : ∀ n : Nat, infinite_list n ≠ none -> 
             ∀ m : Fin n, infinite_list m ≠ none

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 4 / 10



Infinite Lists aka. Stream’ 🏄

def Stream' (α : Type u) := Nat → α -- From Mathlib
-- We call the same thing InfiniteList instead.

How to make this possibly infinite? How about InfiniteList (Option α)?

structure PossiblyInfiniteList (α : Type u) where
  infinite_list : InfiniteList (Option α)
  no_holes : ∀ n : Nat, infinite_list n ≠ none -> 
             ∀ m : Fin n, infinite_list m ≠ none

Now we only need to turn the InfiniteList into an InfiniteTree. How?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 4 / 10



From List to Tree - Change the Address! 📫

-- List addresses are `Nat`. Tree addresses are `List Nat`!
def FiniteDegreeTreeStub (a : Type u) := List Nat -> Option a

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 5 / 10



From List to Tree - Change the Address! 📫

-- List addresses are `Nat`. Tree addresses are `List Nat`!
def FiniteDegreeTreeStub (a : Type u) := List Nat -> Option a

Also: Each node must have a child that is none.
finitely_many_children

[]: some 1

[0]: some 4

Must not be none!
no_holes_in_children

…

[0,1]: some 9

…

[1]: some 7

…

[2]: none

Nothing should be here!
no_orphans

…

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 5 / 10



Defining Branches 🪾

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take node.length = node

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take node.length = node

Is that it?

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 6 / 10



Defining Branches 🪾 (2)

[]: some 1

[0]: some 4

…

…

[0,1]: some 9

…

[1]: some 7

…

[2]: none

…

…

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 7 / 10



Defining Branches 🪾 (2)

[]: some 1

[0]: some 4

…

…

[0,1]: some 9

…

[1]: some 7

…

[2]: none

…

…

Should the green be a valid branch address? ✋

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 7 / 10



Defining Branches 🪾 (2)

[]: some 1

[0]: some 4

…

…

[0,1]: some 9

…

[1]: some 7

…

[2]: none

…

…

Should the pink be a valid branch address? ✋

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 7 / 10



Defining Branches 🪾 (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take n.length = n ∧ t.address_is_maximal ns

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 8 / 10



Defining Branches 🪾 (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take n.length = n ∧ t.address_is_maximal ns
def address_is_maximal (t : PIT α) (ns : IL Nat) : Prop :=
  -- If the branch is not infinite, it should end in a leaf
  ∀ n, t (ns.take (n+1)) = none -> t (0 :: (ns.take n)) = none

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 8 / 10



Defining Branches 🪾 (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take n.length = n ∧ t.address_is_maximal ns
def address_is_maximal (t : PIT α) (ns : IL Nat) : Prop :=
  -- If the branch is not infinite, it should end in a leaf
  ∀ n, t (ns.take (n+1)) = none -> t (0 :: (ns.take n)) = none

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 8 / 10



Defining Branches 🪾 (3)

-- Start from the end; PIT = PossiblyInfiniteTree; PIL = PIList
def branches (t : PIT α) : Set (PIL α) := t.branches_through []
def branches_through (t : PIT α) (n : List Nat) : Set (PIL α) :=
  (t.addresses_through n).map t.branch_for_address
def addresses_through (t : PIT α) (n : List Nat) : Set (IL Nat) := 
  fun ns => ns ∈ ns.take n.length = n ∧ t.address_is_maximal ns
def address_is_maximal (t : PIT α) (ns : IL Nat) : Prop :=
  -- If the branch is not infinite, it should end in a leaf
  ∀ n, t (ns.take (n+1)) = none -> t (0 :: (ns.take n)) = none

📢 This also ensures that every ChaseTree branch is a proper ChaseBranch .

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 8 / 10



Proving König’s Lemma 👑

König’s Lemma: (Special Case for Trees)

If each branch of a tree with finite degree is finite,
then there are only finitely many branches.

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : ∃ (ns : IL Nat), ∀ i, ¬ t.branches_through (ns.take i).fin

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : ∃ (ns : IL Nat), ∀ i, ¬ t.branches_through (ns.take i).fin
let ns := fun n => (inf_node contra n.succ).val.head

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : ∃ (ns : IL Nat), ∀ i, ¬ t.branches_through (ns.take i).fin
let ns := fun n => (inf_node contra n.succ).val.head
noncomputable def inf_node {t} (n_fin : ¬ t.branches.fin) (d) : 
  { n : List Nat // n.length = d ∧ ¬ (t.branches_through n).fin }

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : ∃ (ns : IL Nat), ∀ i, ¬ t.branches_through (ns.take i).fin
let ns := fun n => (inf_node contra n.succ).val.head
noncomputable def inf_node {t} (n_fin : ¬ t.branches.fin) (d) : 
  { n : List Nat // n.length = d ∧ ¬ (t.branches_through n).fin }
theorem inf_node_extends_prev {t} (n_fin : ¬ t.branches.fin) (d) : 
  (inf_node n_fin d.succ).val = 
    (inf_node n_fin d.succ).val.head :: (inf_node n_fin d).val

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



Proving König’s Lemma 👑

theorem branches_finite_of_each_branch_finite (t : FinDegTree α) : 
  (∀ b, b ∈ t.branches -> ∃ i, b i = none) -> t.branches.fin
-- towards contradiction, "Classical.choose" an infinite branch
have : ∃ (ns : IL Nat), ∀ i, ¬ t.branches_through (ns.take i).fin
let ns := fun n => (inf_node contra n.succ).val.head
noncomputable def inf_node {t} (n_fin : ¬ t.branches.fin) (d) : 
  { n : List Nat // n.length = d ∧ ¬ (t.branches_through n).fin }
theorem inf_node_extends_prev {t} (n_fin : ¬ t.branches.fin) (d) : 
  (inf_node n_fin d.succ).val = 
    (inf_node n_fin d.succ).val.head :: (inf_node n_fin d).val

📢 If every branch in a ChaseTree is finite, so is the whole ChaseTree .

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 9 / 10



This talk is finite and we’ve reached its end 🏁

Thank you so much for having me! 🤓

I hope you can get all your
goals accomplished 🎉

Feel free to reach out in Lean Zulipchat or via mail:
lukas.gerlach@tu-dresden.de

hi@monsterkrampe.dev

⭐ Check out https://dmfa.dev/lean and https://dmfa.dev/trees ⭐

Lukas Gerlach (TU Dresden) Formalizing Possibly Infinite Trees of Finite Degree - Chasing Existential Rules 02.10.2025 10 / 10

https://dmfa.dev/lean
https://dmfa.dev/trees

	Background / Short Motivation 💡
	What about inductive trees? 🌲
	Plan of Attack ⚔
	Infinite Lists aka. Stream' 🏄
	From List to Tree - Change the Address! 📫
	Defining Branches 🪾
	Defining Branches 🪾 (2)
	Defining Branches 🪾 (3)
	Proving König's Lemma 👑
	This talk is finite and we've reached its end 🏁

