Veritying a real-world regex implementation

Yulu Pan
2025-10-02

Software Engineer at Indeed Technologies Japan

Self Introduction

I’'m Yulu Pan from Japan
» pandaman in the Lean Zulip

Software Engineer at Indeed Technologies Japan

Started Lean around 2023, mainly interested in
software verification

Author of lean-regex, a formally verified regex engine

Functional induction is my favorite feature @

1/25

https://github.com/pandaman64/lean-regex
https://web.archive.org/web/20250618120119/https://lean-lang.org/blog/2024-5-17-functional-induction/

Overview of lean-regex

What is lean-regex?

- lean-regex is a regex engine for Lean 4 as a programming language
o It provides regex features programmers expect
» Substring search
» Submatches (capture groups)
» Character classes (\d, \w, \s, [a-z], etc.)
» Anchors (*, $, \b, \B)
o All features are given a formal operational semantics
» The matcher implementation is proved correct with respect to the semantics
 Linear-time matching via nondeterministic finite automaton (NFA)
» Optimizations are verified correct
- Looking for contributors!

3/25

https://github.com/pandaman64/lean-regex

Formal verification of lean-regex

Scope of formal verification

- Formally specified regex semantics, including position-aware features
» Anchors (%, $, \b, \B) matches the current position without consuming inputs
» Capture groups record positions of submatches
« Prove soundness and completeness of the matcher
 Limitations today:
» Parser and preprocessing are terminating, but not yet verified for correctness
~ We had a bug in preprocessing£:

» Disambiguation policy is not specified or verified

5/25

https://github.com/pandaman64/lean-regex/issues/84

Specitying regex semantics

- Computer science usually talks about regular expressions and regular languages
» Strings are treated as sequences of characters
» A regular expression denotes a regular language
» The focus is on a set membership problem: whether a string belongs to the language
 Distinct features of real-world regex engines
» Operate on UTF-8 encoded strings and iterators
» Perform substring search: find a match inside a string, not necessarily the whole string
» Position-aware features requires tracking positions and submatches
« We defined the semantics of real-world regexes as a (big-step) operational semantics

6/25

Operational semantics of real-world regexes

« Regex syntax

e=0|e|cle ey]|egUe, | €*
|73] (e);

. Semantics: it — it' | M
» “Regex e matches the substring from position it to position it', with captures M”
> it = (w,y, wy)
— Valid iterator representing a position in w = w; - w,
» M =0 | M[i > (it,it")]
— Sequence of captured submatches
- M, + M, concatenates captured submatches

7/25

Select rules from the operational semantics

€1 €9
it —it' | M it —»it' | M
C
(wy, cwy) — (wye,wy) | 0 it 2% iy | M it 23 iy | M
it — it' | M it.pos =0 it.atEnd
(e); . L. .5
it — it' | M[i — (it,it")] it — it | it — it | ()

€ €o
it —it' | M; it' —it" | M,

€1°€9

8/25

Correctness properties

 Proved that the matcher is sound and complete with respect to the operational semantics
> Soundness: if the matcher returns .some m, m is a match after the starting position
» Completeness: if a match exists after the starting position, the matcher returns .some m
— Contraposition: if the matcher returns .none, no match exists
« The matcher operates on String.Iterator and correctness holds only for “valid” iterators
» ValidFor from Batteries allowed List-based resoning for valid iterators

9/25

https://github.com/leanprover-community/batteries/blob/903b509acff8e83c0dd7820d164968e0cb941b97/Batteries/Data/String/Lemmas.lean#L462

Proof strategy

Re gex Equivalent \ NFA / Sound/Complete NFA

\

Semantics " Path " Simulation

1. Correctness of compilation: compiled NFA has a path iff the regex matches
« Mostly textbook proofs
« Challenge 1: Reusing proofs for intermediate data
o Challenge 2: Reasoning about NFAs with different sizes

2. Correctness of search: NFA simulation finds a path iff one exists
 Proved invariants about paths and capture groups for graph traversal algorithms
« The search may find a better match if multiple matches exist

10/ 25

Challenge 1: Reusable proofs with ProofData

« NFA compilation involves intermediate NFAs
- Example: compiling e; U e,

«©
@1 1 (= F
~Q I J0r

Figure 1: Construction of an NFA for e; U e,

 Problem: it’s hard to reuse proofs about intermediate NFAs
» nfa: and nfaz are not available in the top-level theorem command

« Required to prove the same lemmas (e.g., lifting paths across NFAs) over and over again
11/ 25

Challenge 1: Reusable proofs with ProofData

 Adapted the ProofData idiom from the Carleson project

 Defined a class for each Node variant to represent the compilation inputs

class ProofData where -- inputs for the NFA compilation
nfa : NFA
next : Nat
e : Expr
class Alternate extends ProofData where -- inputs specific to "e1 U ez’
ex1 : Expr
e2 : Expr
expr eq : e = .alternate e1 e:

-- intermediate NFAs and their properties
def Alternate.nfa: [Alternate] : NFA := ...
theorem Alternate.liftPath: [Alternate] : Path nfa:

12/ 25

https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/parameters/near/462827468

Challenge 1: Reusable proofs with ProofData

« Proofs introduce ProofData via e.g., let pd := Alternate.intro nfa next e: e:
« Good

» Proofs about intermediate NFAs can be reused across different theorems
. Bad

» More boilerplate
» nfa and pd.nfa are def-eq but not syntactically equal; rw and simp often fail
 Hard to discover these kinds of idioms
» Wrote a blog post about this: https://zenn.dev/pandaman64/articles/lean-proof-data-en
» While we already have many great resources and posts, I'd love to see more posts about
idioms and techniques you’ve found useful in Lean!

13 /25

https://zenn.dev/pandaman64/articles/lean-proof-data-en

Challenge 2: Type of automaton state indices

- NFA states stored in an array; each node embeds transitions
- States identified by indices

inductive Node where

| done -- accepting state
| char (c : Char) (next : Nat) -- transition on a character
| split (nexti nextz2 : Nat) -- e-transition to two states

-- and others
structure NFA where

nodes : Array NFA.Node -- array of states
start : Nat -- start state

14/ 25

Challenge 2: Type of automaton state indices

Nat vs Fin for indices when defining a path through an NFA
Correctness of compilation:

» Compilation involves pushing states to the end of the nodes array
» Fin indices required a lot of casts when reasoning about NFAs with different sizes
> Ended up using Nat as the index type

Correctness of search:
» The algorithm operates on a single NFA
» Fin over the fixed NFA was more convenient

Defined Nat-indexed and Fin-indexed paths and proved equivalence

15/ 25

Performance of lean-regex

Complexity

 Linear-time matching thanks to nondeterministic finite automaton (NFA) simulation
» This complexity bound itself is not formally verified
« Lean Array allows constant-time node access and cheap construction!

] python
1077 — ean
g 101_
Q
£ 100
()]
& 1071
g
< 1072/ /
10731 ‘\/\/
0 5 10 15 20 25

Length of input string

Figure 2: Matching "~ (a+)+$ against a”nX

17 /25

Absolute performance today

« 3000+ times slower than highly-optimized engines (e.g., rust-lang/regex)
» The best engines uses DFAs, SIMD-acclerated searches, etc.
 7-10 times (or more) slower than the same algorithm in Rust
o Profiling indicates heavy allocation and deallocation (around 50% of the time)

Total (samples) Self
16% 1,804 1,804 P lean_dec_ref _cold lean_runner
9.6% 1,112 1,112 P [mi_free lean_runner
8.2% 942 942 > lean_dec_ref /home/pandaman/.elan/toolchains/leanprover--lean4---v4.23.0-
7.0% 809 809 P mi_malloc_small lean_runner
6.1% 707 707 > lean_inc /home/pandaman/.elan/toolchains/leanprover--lean4--v4.23.0-rc2/i
5.1% 583 583 P | |_Regex_VM__u03b5Closure___redArg /home/pandaman/rebar/engines/lean/.l
4.1% 473 473 > lean_is_st /home/pandaman/.elan/toolchains/leanprover-lean4---v4.23.0-rc2
3.9% 446 446 | 2 lean_ctor_set /home/pandaman/.elan/toolchains/leanprover--lean4---v4.23.C
3.5% 399 399 P | lean_copy_expand_array lean_runner
3.2% 371 371 P [|_Regex_VM_stepChar___redArg /home/pandaman/rebar/engines/lean/.lake/p.
3.1% 363 363 P | |_Regex_Data_SparseSet_insert___redArg /home/pandaman/rebar/engines/lea
2.6% 303 303 > lean_ctor_get /home/pandaman/.elan/toolchains/leanprover-lean4--v4.23.(

Figure 3: Profiling of the matcher. Top five functions come from allocation and deallocation.

18 /25

https://github.com/pandaman64/rebar/pull/1

Avenues for verified optimizations

Prefilters: extract string literals from a regex and perform fast substring search

» A simple prefilter doubled the speed in the best case
— The optimization is verified correct!
» Integrate Knuth-Morris-Pratt from Batteries?

Deterministic finite automaton (DFA) compilation
» Requires a lot more verification effort, though
Reduce allocations

» Avoiding structure and nested pairs improved the performance by 5-20%
» https://github.com/pandaman64/lean-regex/pull/131

Eager to learn more performance tricks!
» Goal: only 3x slower than the Rust counterpart

19/ 25

https://github.com/pandaman64/lean-regex/pull/112
https://github.com/leanprover-community/batteries/blob/903b509acff8e83c0dd7820d164968e0cb941b97/Batteries/Data/String/Matcher.lean#L11
https://github.com/pandaman64/lean-regex/pull/131

Future directions

Future directions

Performance improvements

» Extending the prefilter to handle more cases (thanks Michiel!)

» Certified elaboration of a regex to Lean functions (a la re2c)
Feature compatibility

» Unicode classes

» Modes: multiline, case-insensitive, etc

Formal verification of disambiguation policy
NFA visualization with ProofWidget (thanks Krishna!)

Y
Y

—» save 04 ¢ | split 23 » epsilon 1 har 'a’ 1
» All Messages (0)

Figure 4: NFA visualization of (ale)

21/ 25

https://github.com/pandaman64/lean-regex/pull/119
https://github.com/pandaman64/lean-regex/pull/123

lean-regex is a real-world regex engine with formal guarantees

» NFA-based linear-time matching with position-aware features

Formal proofs for soundness and completeness

» Disambiguation policy is not verified yet; even a formal specification is not easy
It’s not very fast, but there is room for verified optimizations

We are looking for contributors!

https://github.com/pandamané64/lean-regex

22/ 25

https://github.com/pandaman64/lean-regex

Appendix: Disambiguation policy

« Regex engines implement disambiguation policies (e.g., greedy, POSIX)
» A disambiguation policy selects a single match from a set of possible matches
» e.g., matching foo|foobar against foobar gives foo in the greedy policy

 lean-regex intends to implement the greedy policy
» Not verified yet

» Specifying the policy itself is subtle

23/ 25

Appendix: Edge cases in the greedy policy

« Kleene star of empty matches

- Example: matching (~|a)* against aaa
» In the beginning of the string, both ~ and a can match
» Greedy policy prioritizes ~, which doesn’t advance the position
» Matching ~ again will loop indefinitely

— Popular engines like rust-lang/regex match * just once, never prioritizing a

24 /25

References

o Alain Frisch, Luca Cardelli. Greedy regular expression matching. ACM POPL 2004

25/ 25

	Self Introduction
	Overview of lean-regex
	What is lean-regex?

	Formal verification of lean-regex
	Scope of formal verification
	Specifying regex semantics
	Operational semantics of real-world regexes
	Select rules from the operational semantics
	Correctness properties
	Proof strategy
	Challenge 1: Reusable proofs with ProofData
	Challenge 1: Reusable proofs with ProofData
	Challenge 1: Reusable proofs with ProofData
	Challenge 2: Type of automaton state indices
	Challenge 2: Type of automaton state indices

	Performance of lean-regex
	Complexity
	Absolute performance today
	Avenues for verified optimizations

	Future directions
	Future directions
	Summary
	Appendix: Disambiguation policy
	Appendix: Edge cases in the greedy policy
	References

