
Verifying a real-world regex implementation

Yulu Pan

2025-10-02
Software Engineer at Indeed Technologies Japan

Self Introduction

• I’m Yulu Pan from Japan👋
‣ pandaman in the Lean Zulip

• Software Engineer at Indeed Technologies Japan
• Started Lean around 2023, mainly interested in

software verification
• Author of lean-regex, a formally verified regex engine
• Functional induction is my favorite feature🤗

1 / 25

https://github.com/pandaman64/lean-regex
https://web.archive.org/web/20250618120119/https://lean-lang.org/blog/2024-5-17-functional-induction/

Overview of lean-regex

What is lean-regex?

• lean-regex is a regex engine for Lean 4 as a programming language
• It provides regex features programmers expect

‣ Substring search
‣ Submatches (capture groups)
‣ Character classes (\d, \w, \s, [a-z], etc.)
‣ Anchors (^, $, \b, \B)

• All features are given a formal operational semantics
‣ The matcher implementation is proved correct with respect to the semantics

• Linear-time matching via nondeterministic finite automaton (NFA)
‣ Optimizations are verified correct

• Looking for contributors!

3 / 25

https://github.com/pandaman64/lean-regex

Formal verification of lean-regex

Scope of formal verification

• Formally specified regex semantics, including position-aware features
‣ Anchors (^, $, \b, \B) matches the current position without consuming inputs
‣ Capture groups record positions of submatches

• Prove soundness and completeness of the matcher
• Limitations today:

‣ Parser and preprocessing are terminating, but not yet verified for correctness
– We had a bug in preprocessing😓

‣ Disambiguation policy is not specified or verified

5 / 25

https://github.com/pandaman64/lean-regex/issues/84

Specifying regex semantics

• Computer science usually talks about regular expressions and regular languages
‣ Strings are treated as sequences of characters
‣ A regular expression denotes a regular language
‣ The focus is on a set membership problem: whether a string belongs to the language

• Distinct features of real-world regex engines
‣ Operate on UTF-8 encoded strings and iterators
‣ Perform substring search: find a match inside a string, not necessarily the whole string
‣ Position-aware features requires tracking positions and submatches

• We defined the semantics of real-world regexes as a (big-step) operational semantics

6 / 25

Operational semantics of real-world regexes

• Regex syntax

𝑒 ≔ ∅ | 𝜀 | 𝑐 | 𝑒1 ⋅ 𝑒2 | 𝑒1 ∪ 𝑒2 | 𝑒*
| ^ | $ | (𝑒)𝑖

• Semantics: it →
𝑒

it' | 𝑀
‣ “Regex 𝑒 matches the substring from position it to position it', with captures 𝑀”
‣ it ≔ ⟨𝑤1, 𝑤2⟩

– Valid iterator representing a position in 𝑤 = 𝑤1 ⋅ 𝑤2
‣ 𝑀 ≔ ∅ | 𝑀[𝑖 ↦ (it, it')]

– Sequence of captured submatches
– 𝑀1 + 𝑀2 concatenates captured submatches

7 / 25

Select rules from the operational semantics

⟨𝑤1, 𝑐𝑤2⟩ →
𝑐

⟨𝑤1𝑐, 𝑤2⟩ | ∅
it →

𝑒1
it' | 𝑀

it →→→→→→
𝑒1∪𝑒2

it' | 𝑀

it →
𝑒2

it' | 𝑀

it →→→→→→
𝑒1∪𝑒2

it' | 𝑀

it →
𝑒

it' | 𝑀

it →
(𝑒)𝑖

it' | 𝑀[𝑖 ↦ (it, it')]

it.pos = 0

it →
^

it | ∅

it.atEnd

it →
$

it | ∅

it →
𝑒1

it' | 𝑀1 it' →
𝑒2

it'' | 𝑀2

it →→→→→
𝑒1⋅𝑒2

it'' | 𝑀1 + 𝑀2

8 / 25

Correctness properties

• Proved that the matcher is sound and complete with respect to the operational semantics
‣ Soundness: if the matcher returns .some m, m is a match after the starting position
‣ Completeness: if a match exists after the starting position, the matcher returns .some m

– Contraposition: if the matcher returns .none, no match exists
• The matcher operates on String.Iterator and correctness holds only for “valid” iterators

‣ ValidFor from Batteries allowed List-based resoning for valid iterators

9 / 25

https://github.com/leanprover-community/batteries/blob/903b509acff8e83c0dd7820d164968e0cb941b97/Batteries/Data/String/Lemmas.lean#L462

Proof strategy

Equivalent Sound/CompleteRegex
Semantics

NFA
Path

NFA
Simulation

1. Correctness of compilation: compiled NFA has a path iff the regex matches
• Mostly textbook proofs
• Challenge 1: Reusing proofs for intermediate data
• Challenge 2: Reasoning about NFAs with different sizes

2. Correctness of search: NFA simulation finds a path iff one exists
• Proved invariants about paths and capture groups for graph traversal algorithms
• The search may find a better match if multiple matches exist

10 / 25

Challenge 1: Reusable proofs with ProofData

• NFA compilation involves intermediate NFAs
• Example: compiling 𝑒1 ∪ 𝑒2

Figure 1: Construction of an NFA for 𝑒1 ∪ 𝑒2

• Problem: it’s hard to reuse proofs about intermediate NFAs
‣ nfa₁ and nfa₂ are not available in the top-level theorem command

• Required to prove the same lemmas (e.g., lifting paths across NFAs) over and over again
11 / 25

Challenge 1: Reusable proofs with ProofData

• Adapted the ProofData idiom from the Carleson project
• Defined a class for each Node variant to represent the compilation inputs

class ProofData where -- inputs for the NFA compilation
 nfa : NFA
 next : Nat
 e : Expr

class Alternate extends ProofData where -- inputs specific to `e₁ ∪ e₂`
 e₁ : Expr
 e₂ : Expr
 expr_eq : e = .alternate e₁ e₂

-- intermediate NFAs and their properties
def Alternate.nfa₁ [Alternate] : NFA := ...
theorem Alternate.liftPath₁ [Alternate] : Path nfa₁ ... := ...

12 / 25

https://leanprover.zulipchat.com/#narrow/channel/113488-general/topic/parameters/near/462827468

Challenge 1: Reusable proofs with ProofData

• Proofs introduce ProofData via e.g., let pd := Alternate.intro nfa next e₁ e₂
• Good

‣ Proofs about intermediate NFAs can be reused across different theorems
• Bad

‣ More boilerplate
‣ nfa and pd.nfa are def-eq but not syntactically equal; rw and simp often fail

• Hard to discover these kinds of idioms
‣ Wrote a blog post about this: https://zenn.dev/pandaman64/articles/lean-proof-data-en
‣ While we already have many great resources and posts, I’d love to see more posts about

idioms and techniques you’ve found useful in Lean!

13 / 25

https://zenn.dev/pandaman64/articles/lean-proof-data-en

Challenge 2: Type of automaton state indices

• NFA states stored in an array; each node embeds transitions
• States identified by indices

inductive Node where
 | done -- accepting state
 | char (c : Char) (next : Nat) -- transition on a character
 | split (next₁ next₂ : Nat) -- ε-transition to two states
 -- and others

structure NFA where
 nodes : Array NFA.Node -- array of states
 start : Nat -- start state

14 / 25

Challenge 2: Type of automaton state indices

• Nat vs Fin for indices when defining a path through an NFA
• Correctness of compilation:

‣ Compilation involves pushing states to the end of the nodes array
‣ Fin indices required a lot of casts when reasoning about NFAs with different sizes
‣ Ended up using Nat as the index type

• Correctness of search:
‣ The algorithm operates on a single NFA
‣ Fin over the fixed NFA was more convenient

• Defined Nat-indexed and Fin-indexed paths and proved equivalence

15 / 25

Performance of lean-regex

Complexity

• Linear-time matching thanks to nondeterministic finite automaton (NFA) simulation
‣ This complexity bound itself is not formally verified

• Lean Array allows constant-time node access and cheap construction!

Figure 2: Matching ^(a+)+$ against a^nX

17 / 25

Absolute performance today

• 3000+ times slower than highly-optimized engines (e.g., rust-lang/regex)
‣ The best engines uses DFAs, SIMD-acclerated searches, etc.

• 7-10 times (or more) slower than the same algorithm in Rust
• Profiling indicates heavy allocation and deallocation (around 50% of the time)

Figure 3: Profiling of the matcher. Top five functions come from allocation and deallocation.

18 / 25

https://github.com/pandaman64/rebar/pull/1

Avenues for verified optimizations

• Prefilters: extract string literals from a regex and perform fast substring search
‣ A simple prefilter doubled the speed in the best case

– The optimization is verified correct!
‣ Integrate Knuth-Morris-Pratt from Batteries?

• Deterministic finite automaton (DFA) compilation
‣ Requires a lot more verification effort, though

• Reduce allocations
‣ Avoiding structure and nested pairs improved the performance by 5-20%
‣ https://github.com/pandaman64/lean-regex/pull/131

• Eager to learn more performance tricks!
‣ Goal: only 3x slower than the Rust counterpart

19 / 25

https://github.com/pandaman64/lean-regex/pull/112
https://github.com/leanprover-community/batteries/blob/903b509acff8e83c0dd7820d164968e0cb941b97/Batteries/Data/String/Matcher.lean#L11
https://github.com/pandaman64/lean-regex/pull/131

Future directions

Future directions

• Performance improvements
‣ Extending the prefilter to handle more cases (thanks Michiel!)
‣ Certified elaboration of a regex to Lean functions (à la re2c)

• Feature compatibility
‣ Unicode classes
‣ Modes: multiline, case-insensitive, etc

• Formal verification of disambiguation policy
• NFA visualization with ProofWidget (thanks Krishna!)

Figure 4: NFA visualization of (𝑎|𝜀)

21 / 25

https://github.com/pandaman64/lean-regex/pull/119
https://github.com/pandaman64/lean-regex/pull/123

Summary

• lean-regex is a real-world regex engine with formal guarantees
‣ NFA-based linear-time matching with position-aware features

• Formal proofs for soundness and completeness
‣ Disambiguation policy is not verified yet; even a formal specification is not easy

• It’s not very fast, but there is room for verified optimizations
• We are looking for contributors!

https://github.com/pandaman64/lean-regex

22 / 25

https://github.com/pandaman64/lean-regex

Appendix: Disambiguation policy

• Regex engines implement disambiguation policies (e.g., greedy, POSIX)
‣ A disambiguation policy selects a single match from a set of possible matches
‣ e.g., matching foo|foobar against foobar gives foo in the greedy policy

• lean-regex intends to implement the greedy policy
‣ Not verified yet
‣ Specifying the policy itself is subtle

23 / 25

Appendix: Edge cases in the greedy policy

• Kleene star of empty matches
• Example: matching (^|a)* against aaa

‣ In the beginning of the string, both ^ and a can match
‣ Greedy policy prioritizes ^, which doesn’t advance the position
‣ Matching ^ again will loop indefinitely

– Popular engines like rust-lang/regex match ^ just once, never prioritizing a

24 / 25

References

• Alain Frisch, Luca Cardelli. Greedy regular expression matching. ACM POPL 2004

25 / 25

	Self Introduction
	Overview of lean-regex
	What is lean-regex?

	Formal verification of lean-regex
	Scope of formal verification
	Specifying regex semantics
	Operational semantics of real-world regexes
	Select rules from the operational semantics
	Correctness properties
	Proof strategy
	Challenge 1: Reusable proofs with ProofData
	Challenge 1: Reusable proofs with ProofData
	Challenge 1: Reusable proofs with ProofData
	Challenge 2: Type of automaton state indices
	Challenge 2: Type of automaton state indices

	Performance of lean-regex
	Complexity
	Absolute performance today
	Avenues for verified optimizations

	Future directions
	Future directions
	Summary
	Appendix: Disambiguation policy
	Appendix: Edge cases in the greedy policy
	References

