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Euler's polyhedron formula
For a 2-dimensional polyhedron 𝑝 that is a homo­
logical sphere,

𝑉 − 𝐸 + 𝐹 = 2
(number of Vertices, Edges, and Faces).
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General statement
More generally, for an 𝑑-dimensional homological
sphere 𝑝, we have

𝑑
∑
𝑗≥0

(−1)𝑗 𝑘𝑗 = 1 − (−1)𝑑,

where 𝑘𝑗 is the number of 𝑗-dimensional faces of 𝑝.
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Combinatorial definition
A polyhedron is a finite sequence 𝐼 of incidence
relations with a boundary operator ∂𝑘 for each
dimension 𝑘 is defined as

∂𝑘(𝑥) := {𝑦 ∈ 𝑃𝑘−1|𝐼𝑘(𝑦, 𝑥)}
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Homology spheres
A polyhedron is a homological sphere if

∂2 = 0
Every vertex assumed to be incident with a
virtual −1-dimensional ‘face’ (i.e., im ∂0 =
𝐶−1, with 𝐶−1 being 1-dimensional)
Every (𝑑 − 1)-dimensional face is stipulated
to be incident with a virtual 𝑑-dimensional
‘whole polyhedron’ (i.e., ker∂𝑑 = 0)
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Euler-Poincaré theorem
Theorem: In a chain complex ⟨𝐶𝑘, ∂𝑘⟩, we have

∑
𝑘
(−1)𝑘 |𝐶𝑘| =∑

𝑘
(−1)𝑘 |𝐻𝑘|,

where 𝐻𝑘 = im ∂𝑘+1/ker ∂𝑘.
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First proof attempt
First proof attempt (with assistance from Claude
Code, Loogle, and Leanserch) took a couple of
weeks.

It made no attempt at linking up with Math­
lib's chain complex machinery (every stated in
terms of incidence relations and finite-dimen­
sional vector spaces over 𝑍2),

It was also ugly, unpleasant, and gave me a
headache.
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2nd attempt
I used the ChainComplex in Mathlib (fewer
headaches, yay!).

Used augmentation to ‘properly’ obtain the
existence of the virtual −1-dimensional face

I was feeling bold: I made a PR and posted
about it on Zulip. Yay!
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Not so fast…
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Reviewer feedback
This work is combinatorial only; what about
real polyhedra?

This doesn't connect with larger discussions
about formalizing such things, such as combi­
natorial maps, planar graphs, and the issue
there of the Jordan curve theorem.

By the way: Your formalization proves ⊥! 
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Current status
Euler-Poincaré for ℤ-indexed chain complexes
factored out into its own PR. (In review)

Working on developing enough convex geom­
etry to be dangerous (enough to associate a
chain complex with a convex polyhedron and
prove that they homology spheres).
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Further work
Exploring CW complexes as generalizations of
‘real’ polyhedra; goal is to get an Euler poly­
hedron formula in that setting.

Combinatorial maps (should be straightforward
to associate a combinatorial map with a con­
vex polyhedron and a CW complex).
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