PSBP

Program Specification Based Programming
ITP 2025 Lean Workshop

Luc Duponcheel
Programmer and Cyclist

September 30, 2025



Ceci n'est pas une pipe

Leci nest nos une fufie.

Mi



Programs and Computations

AL



Programs and Computations

® the words program and computation
have a specific technical meaning in this talk



Programs and Computations

® the words program and computation

have a specific technical meaning in this talk
® a program is a,

potentially effectful, function abstraction



Programs and Computations

® the words program and computation

have a specific technical meaning in this talk
® a program is a,

potentially effectful, function abstraction
® 3 computation is a,

potentially effectful, expression abstraction

AL



Open Components and Closed Components

A



Open Components and Closed Components

® programs are closed components
(apb >=> bpc) >=> cpd =
apb >=> (bpc >=> cpd)

(associativity law)

S~



Open Components and Closed Components

® programs are closed components
(apb >=> bpc) >=> cpd =
apb >=> (bpc >=> cpd)
(associativity law)
® computations are open components

ca >>= afcb >>= bfcc =
ca >>= fun a => afcb a >>= bfcc

(associativity law)



Complexity and Difficulty

A



Complexity and Difficulty

® programs are less complex than computations

“i
.



Complexity and Difficulty

® programs are less complex than computations

® too much complexity becomes difficult for human beings



Complexity and Difficulty

® programs are less complex than computations
® too much complexity becomes difficult for human beings

® many times being confronted with complexity is not fun

A



Complexity and Difficulty

programs are less complex than computations
too much complexity becomes difficult for human beings
many times being confronted with complexity is not fun

programs are, perhaps, more difficult than computations

AL



Complexity and Difficulty

programs are less complex than computations

too much complexity becomes difficult for human beings
many times being confronted with complexity is not fun
programs are, perhaps, more difficult than computations

once and for all understanding difficulty is fun

AL



Denotational versus Operational

A



Denotational versus Operational

® programs are denotational artifacts

“ni



Denotational versus Operational

® programs are denotational artifacts

® computations are operational artifacts



Denotational versus Operational

® programs are denotational artifacts
® computations are operational artifacts
® thinking denotationally is more natural for human beings



PSBP




PSBP

® is a program specification based programming library



PSBP

® is a program specification based programming library

® can be seen as a domain specific language for
the theory of programming domain

A



PSBP

® is a program specification based programming library

® can be seen as a domain specific language for
the theory of programming domain

® can be seen as a programming course for Lean itself



PSBP

is a program specification based programming library

can be seen as a domain specific language for
the theory of programming domain

can be seen as a programming course for Lean itself

comes with documentation that can be seen as a course for
students interested in the theory of programming



PSBP




® PSBP supports

PSBP

A



PSBP

® PSBP supports
® pointfree programming

“i
o



PSBP

® PSBP supports

® pointfree programming
® positional programming



PSBP

® PSBP supports
® pointfree programming
® positional programming
® effectful programming



PSBP




® PSBP is work in progress

PSBP



PSBP

® PSBP is work in progress
® all contributions are welcome

“i
.



fibonacci

unsafe def fibonacci

[Functional program]

[Sequential program]

[Creational program]

[Conditional program]

program Nat Nat :=
if_ isZero one $
if_ isOne one §$

(minusTwo >=> fibonacci) &&&
(minusOne >=> fibonacci) >=>
add

M

10



factorial

unsafe def factorial
[Functional program]
[Sequential program]
[Creational program]
[Conditional program]
program Nat Nat :=
if_ isZero one $

(identity) &&&
(minusOne >=> factorial) >=>
multiply

M

11



factorial

unsafe def factorial
[Functional program]
[Sequential program]
[Creational program]
[Conditional program]
program Nat Nat :=
if_ isZero one $

let_ (minusOne >=> factorial) $

multiply

M

12



13

Programs versus Program Specifications

AL



Programs versus Program Specifications

® fibonacci and factorial are not programs

13

H’.’



Programs versus Program Specifications

® fibonacci and factorial are not programs

® fibonacci and factorial are program specifications

13



Programs versus Program Specifications

® fibonacci and factorial are not programs
® fibonacci and factorial are program specifications

® compare this with the painting that is a pipe description
think of a specification as a (special kind of) description

AL

13



Programs versus Program Specifications

fibonacci and factorial are not programs
fibonacci and factorial are program specifications
compare this with the painting that is a pipe description
think of a specification as a (special kind of) description

by abuse of language
program is used instead of program specification

AL

13



abbrev function a b

14

Abbreviation

= a-=+b

A



Functional

class Functional
(program : Type = Type = Type) where
asProgram {a b : Typel} :
function a b =+ program a b

15

A



Functional

class Functional
(program : Type = Type = Type) where
asProgram {a b : Typel} :
function a b =+ program a b

® a function (from a to b) can be used as
an effectfree program (from a to b)

15



Functional

class Functional
(program : Type = Type = Type) where
asProgram {a b : Typel} :
function a b =+ program a b

® a function (from a to b) can be used as
an effectfree program (from a to b)

® by abuse of language
(from a to b) is used instead of (from type a to type b)

15 o~



Sequential

class Sequential
(program : Type - Type - Type) where
andThenProgram {a b ¢ : Type} :
program a b -+ program b c¢c -+ program a c

infix1:50 " >=> " => andThenProgram

16

A



Sequential

class Sequential
(program : Type = Type = Type) where
andThenProgram {a b c : Typel} :
program a b -+ program b c¢c -+ program a c

infix1:50 " >=> " => andThenProgram
® a program (from a to b) and a program (from b to c)

can be sequentially combined
obtaining a program (from a to c)

16



Functorial

class Functorial
(program : Type - Type = Type) where
functionAction {a b ¢ : Typel} :
function b ¢ + (program a b =+ program a c)

17

A



Functorial

class Functorial
(program : Type - Type = Type) where
functionAction {a b ¢ : Type} :
function b ¢ + (program a b =+ program a c)

® a function (from b to c) can act, effectfree,
upon a program (from a to b)
obtaining a program (from a to c)

“‘
i

17



Creational

class Creational
(program : Type = Type = Type) where
sequentialProduct {a b ¢ : Typel} :
program a b = program a ¢ =+ program a (b x c)

infix1:60 " &&& " => sequentialProduct

N\

18



Creational

class Creational
(program : Type = Type =+ Type) where
sequentialProduct {a b ¢ : Typel}
program a b = program a c = program a (b x ¢)

infix1:60 " &&& " => sequentialProduct

® a program (from a to b) and a program (from a to c)
can be sequentially combined
obtaining program (from a to b x c)
transforming to a final product value

H’i
i

18



Conditional

class Conditional
(program : Type = Type = Type) where
sum {a b c : Type} :
program c a -+ program b a = program (c + b) a

infix1:55 " ||| " => sum

A

19



Conditional

class Conditional
(program : Type = Type =+ Type) where
sum {a b c : Type} :
program c a -+ program b a = program (c + b) a

infix1:55 " ||| " => sum

® a program (from c to a) and a program (from b to a)
can be combined
obtaining a program (from ¢ + b to a)
transforming from an initial sum value

H”
i

19



Parallel

class Parallel (program : Type =+ Type - Type) where
bothPar {a b ¢ d : Type} :
program a c¢ = program b d = program (a x b) (c x d)

infix1:60 " [&| " => bothPar

N\

20



Parallel

class Parallel (program : Type =+ Type - Type) where
bothPar {a b ¢ d : Type} :
program a c¢ = program b d = program (a x b) (c x d)

infix1:60 " |&| " => bothPar

® programs can be combined in parallel

“’.‘

20



parallelFibonacci

unsafe def fibonacci

[Functional program]

[Sequential program]

[Creational program]

[Conditional program]

program Nat Nat :=
if_ isZero one $
if_ isOne one $

(minusTwo >=> fibonacci) &l&
(minusOne >=> fibonacci) >=>
add

21

A



22

Implementations

A



Implementations

® mplementations of program specifications are
computation valued function based

22



Implementations

® mplementations of program specifications are
computation valued function based

® definitions of functions are
expression based

22

A



Implementations

implementations of program specifications are
computation valued function based

definitions of functions are
expression based

Sync

22

A



Implementations

implementations of program specifications are
computation valued function based

definitions of functions are
expression based

Sync
Async

22

AL



Implementations

implementations of program specifications are
computation valued function based

definitions of functions are
expression based

Sync
Async

22

AL



23

Reactive Implementations

AL



Reactive Implementations

® abbrev ReactiveT

(r : Type)
(computation: Type =+ Type)
(a : Type) :=

(a = computation r) - computation r

23

A



24

Parallel Implementations

AL



® async Task

24

Parallel Implementations

AL



® async Task

® actor 777

24

Parallel Implementations

AL



® async Task
® actor 777

24

Parallel Implementations

AL



WithState

class WithState
(s : outParam Type)
(program : Type = Type = Type) where
readState {a : Type} : program a s
writeState : program s Unit

N\

25



WithState

class WithState
(s : outParam Type)
(program : Type = Type = Type) where
readState {a : Type} : program a s
writeState : program s Unit

® Programs can handle state.

25

AL



26

WithState Implementations

A



WithState Implementations

® StateT
(from Lean standard library)

26



WithFailure

class WithFailure
(e : outParam Type)
(program : Type =+ Type + Type) where
failWith {a b : Type} : function a e =+ program a b

A

27



WithFailure

class WithFailure
(e : outParam Type)
(program : Type =+ Type + Type) where
failWith {a b : Type} : function a e =+ program a b

® programs can handle failure

A

27



28

WithFailure Implementations

AL



WithFailure Implementations

® def FailureT
(e : Type)
(computation : Type -+ Type)
(b : Type) : Type :=
computation (e + b)

28

AL



WithFailure Implementations

® def FailureT
(e : Type)
(computation : Type -+ Type)
(b : Type) : Type :=
computation (e + b)
® Monad
for first failure

28

AL



WithFailure Implementations

® def FailureT
(e : Type)
(computation : Type -+ Type)
(b : Type) : Type :=
computation (e + b)
® Monad
for first failure
® Applicative and Monoid
for accumulating failure

28

“‘



29

GitHub repository

AL



GitHub repository

® https://github.com/LucDuponcheelAtGitHub/PSBP

29

H”
i



GitHub repository

® https://github.com/LucDuponcheelAtGitHub/PSBP

® Program Specification Bases Programming in Lean

29

AL



30

More GitHub repositories

A



More GitHub repositories

e https://github.com/LucDuponcheel AtGitHub/yoneda

30

“i
i



More GitHub repositories

e https://github.com/LucDuponcheel AtGitHub/yoneda

® Pointfree Yoneda Lemma for
Endofunctors of Functional Categories

A

30



More GitHub repositories

e https://github.com/LucDuponcheel AtGitHub/yoneda

® Pointfree Yoneda Lemma for
Endofunctors of Functional Categories

® https://github.com/LucDuponcheelAtGitHub/timeHybrids

A

30



More GitHub repositories

https://github.com/LucDuponcheel AtGitHub/yoneda

Pointfree Yoneda Lemma for
Endofunctors of Functional Categories

https://github.com/LucDuponcheel AtGitHub/timeHybrids

Time Hybrids
Unifying Framework for a Theory of Reality

A

30



More GitHub repositories

https://github.com/LucDuponcheel AtGitHub/yoneda

Pointfree Yoneda Lemma for
Endofunctors of Functional Categories

https://github.com/LucDuponcheel AtGitHub/timeHybrids

Time Hybrids
Unifying Framework for a Theory of Reality

all collaboration to convert to MathLib-like Lean is welcome

30 E



31

Thanks for attending

luc.duponcheel@gmail.com




