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Ceci n’est pas une pipe
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Programs and Computations

• the words program and computation
have a specific technical meaning in this talk

• a program is a,
potentially effectful, function abstraction

• a computation is a,
potentially effectful, expression abstraction
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Open Components and Closed Components

• programs are closed components

(apb >=> bpc) >=> cpd =

apb >=> (bpc >=> cpd)

(associativity law)

• computations are open components

ca >>= afcb >>= bfcc =

ca >>= fun a => afcb a >>= bfcc

(associativity law)
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Complexity and Difficulty

• programs are less complex than computations

• too much complexity becomes difficult for human beings

• many times being confronted with complexity is not fun

• programs are, perhaps, more difficult than computations

• once and for all understanding difficulty is fun
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Denotational versus Operational

• programs are denotational artifacts

• computations are operational artifacts

• thinking denotationally is more natural for human beings
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PSBP

• is a program specification based programming library

• can be seen as a domain specific language for
the theory of programming domain

• can be seen as a programming course for Lean itself

• comes with documentation that can be seen as a course for
students interested in the theory of programming
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PSBP

• PSBP supports

• pointfree programming
• positional programming
• effectful programming

8



PSBP

• PSBP supports

• pointfree programming
• positional programming
• effectful programming

8



PSBP

• PSBP supports
• pointfree programming

• positional programming
• effectful programming

8



PSBP

• PSBP supports
• pointfree programming
• positional programming

• effectful programming

8



PSBP

• PSBP supports
• pointfree programming
• positional programming
• effectful programming

8



PSBP

• PSBP is work in progress

• all contributions are welcome
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fibonacci

unsafe def fibonacci

[Functional program]

[Sequential program]

[Creational program]

[Conditional program] :

program Nat Nat :=

if_ isZero one $

if_ isOne one $

(minusTwo >=> fibonacci) &&&

(minusOne >=> fibonacci) >=>

add
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factorial

unsafe def factorial

[Functional program]

[Sequential program]

[Creational program]

[Conditional program] :

program Nat Nat :=

if_ isZero one $

(identity) &&&

(minusOne >=> factorial) >=>

multiply
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factorial

unsafe def factorial

[Functional program]

[Sequential program]

[Creational program]

[Conditional program] :

program Nat Nat :=

if_ isZero one $

let_ (minusOne >=> factorial) $

multiply
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Programs versus Program Specifications

• fibonacci and factorial are not programs

• fibonacci and factorial are program specifications

• compare this with the painting that is a pipe description
think of a specification as a (special kind of) description

• by abuse of language
program is used instead of program specification
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Abbreviation

abbrev function a b := a � b
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Functional

class Functional

(program : Type � Type � Type) where

asProgram {a b : Type} :

function a b � program a b

• a function (from a to b) can be used as
an effectfree program (from a to b)

• by abuse of language
(from a to b) is used instead of (from type a to type b)
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Sequential

class Sequential

(program : Type � Type � Type) where

andThenProgram {a b c : Type} :

program a b � program b c � program a c

infixl:50 " >=> " => andThenProgram

• a program (from a to b) and a program (from b to c)
can be sequentially combined
obtaining a program (from a to c)
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Functorial

class Functorial

(program : Type � Type � Type) where

functionAction {a b c : Type} :

function b c � (program a b � program a c)

• a function (from b to c) can act, effectfree,
upon a program (from a to b)
obtaining a program (from a to c)
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Creational

class Creational

(program : Type � Type � Type) where

sequentialProduct {a b c : Type} :

program a b � program a c � program a (b x c)

infixl:60 " &&& " => sequentialProduct

• a program (from a to b) and a program (from a to c)
can be sequentially combined
obtaining program (from a to b x c)
transforming to a final product value
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Conditional

class Conditional

(program : Type � Type � Type) where

sum {a b c : Type} :

program c a � program b a � program (c + b) a

infixl:55 " ||| " => sum

• a program (from c to a) and a program (from b to a)
can be combined
obtaining a program (from c + b to a)
transforming from an initial sum value

19



Conditional

class Conditional

(program : Type � Type � Type) where

sum {a b c : Type} :

program c a � program b a � program (c + b) a

infixl:55 " ||| " => sum

• a program (from c to a) and a program (from b to a)
can be combined
obtaining a program (from c + b to a)
transforming from an initial sum value

19



Parallel

class Parallel (program : Type � Type � Type) where

bothPar {a b c d : Type} :

program a c � program b d � program (a x b) (c x d)

infixl:60 " |&| " => bothPar

• programs can be combined in parallel
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parallelFibonacci

unsafe def fibonacci

[Functional program]

[Sequential program]

[Creational program]

[Conditional program] :

program Nat Nat :=

if_ isZero one $

if_ isOne one $

(minusTwo >=> fibonacci) &|&

(minusOne >=> fibonacci) >=>

add
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Implementations

• implementations of program specifications are
computation valued function based

• definitions of functions are
expression based

• Sync

• Async

• ...
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Reactive Implementations

• abbrev ReactiveT

(r : Type)

(computation: Type � Type)

(a : Type) :=

(a � computation r) � computation r
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Parallel Implementations

• async Task

• actor ???

• ...

24



Parallel Implementations

• async Task

• actor ???

• ...

24



Parallel Implementations

• async Task

• actor ???

• ...

24



Parallel Implementations

• async Task

• actor ???

• ...

24



WithState

class WithState

(s : outParam Type)

(program : Type � Type � Type) where

readState {a : Type} : program a s

writeState : program s Unit

• Programs can handle state.
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WithState Implementations

• StateT

(from Lean standard library)
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WithFailure

class WithFailure

(e : outParam Type)

(program : Type � Type � Type) where

failWith {a b : Type} : function a e � program a b

• programs can handle failure
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WithFailure Implementations

• def FailureT

(e : Type)

(computation : Type � Type)

(b : Type) : Type :=

computation (e + b)

• Monad

for first failure

• Applicative and Monoid

for accumulating failure
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GitHub repository

• https://github.com/LucDuponcheelAtGitHub/PSBP

• Program Specification Bases Programming in Lean
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More GitHub repositories

• https://github.com/LucDuponcheelAtGitHub/yoneda

• Pointfree Yoneda Lemma for
Endofunctors of Functional Categories

• https://github.com/LucDuponcheelAtGitHub/timeHybrids

• Time Hybrids
Unifying Framework for a Theory of Reality

• all collaboration to convert to MathLib-like Lean is welcome
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Thanks for attending

luc.duponcheel@gmail.com
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