An overview of MathComp-Analysis and
its applications

Reynald Affeldt

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

September 27, 2025

Credits

Joint work with

Cyril Cohen
Yoshihiro Imai
Yoshihiro Ishiguro
Ayumu Saito

Zachary Stone

MATHCOMP-ANALYSIS’ authors:

| 2

VVYyVVVYyVVYYVYY

R. A.

Yves Bertot
Alessandro Bruni
C. C.

Marie Kerjean
Assia Mahboubi
Kazuhiko Sakaguchi
Z. S.

Pierre-Yves Strub
Laurent Théry

Several contributors (see github)

Context: The Mathematical Components project

https://github.com/math-comp/math-comp

A set of Rocq packages about mathematics:

Math Comp

» MATHCOMP provides group theory and
algebra

> extensions: finite maps (finmap),
multinomials, etc.

» major results: the Four-Color theorem
[Gonthier, 2008], the odd order theorem
[Gonthier et al., 2013a], Abel-Ruffini
[Bernard et al., 2021], etc.

> tooling: automation (algebra-tactics),
DSL to build hierarchies of mathematical
structures (HIERARCHY-BUILDER), etc.

The above libraries are “constructive”, in the
v uctive, Picture taken last month
sense that they do not use classical axioms in a high-school in France

https://github.com/math-comp/math-comp

The MATHCOMP-ANALYSIS extension

> MATHCOMP-ANALYSIS extends MATHCOMP with classical reasoning

P However, many “back-ports” are made to MATHCOMP,
e.g., automatic discharge of numeric goals

(see Alessandro Bruni’s talk at ITP [Affeldt et al., 2025a])
» MATHCOMP-ANALYSIS is about 100 files for about 90,000 l.o.c.

MATHCOMP-ANALYSIS in terms of OPAM packages

ot

. Classical reasoning: cog-mathcomp-classical

Real numbers: cog-mathcomp-reals
Compatibility with RocqQ’s standard library:
cog-mathcomp-reals-stdlib, cog-mathcomp-analysis-stdlib

P This enables, e.g., the use of the COQINTERVAL tactic
[Melquiond, 2008]

(see [Affeldt et al., 2024a] and Alessandro Bruni’s talk at ITP
[Affeldt et al., 2025a))

(Discrete distributions: cog-mathcomp-experimental-reals)

Analysis per se: cog-mathcomp-analysis

Outline

Overview of MATHCOMP-ANALYSIS
Basics

Applications

Classical reasoning

cog-mathcomp-classical package

Classical axioms can be found in boolp.v [Affeldt et al., 2018,
Sect. 5]:

P> Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type)
(f g : forall x : A, B x),
(forall x : A, fx=gx) > f =g.

P> Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.

» Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, Px) > 4{x : A | P x}.

Naive set theory

cog-mathcomp-classical package

Please, consider using classical_sets.v!:
» complete (many lemmas, 3408 l.o.c.)

» readable statements (notations, consistent naming convention),
e.g., using company-coq in emacs:
Lemma in_setI (x : T) AB: (x €E AnB) = (x € A) & (x € B).
Proof. by apply/idP/andP; rewrite !inE. Qed.

Lemma setI_bigcupr F P A :
A n \bigcup_(i in P) F i = \bigcup_(i in P) (A n F 1i).
Proof.
rewrite predeqE - t; split -» [[At [k ? ?1]|[k ? [At ?11];
by [3 k |split = //; 3 kl.
Qed.

> well tested (used pervasively in MATHCOMP-ANALYSIS)

More about the cog-mathcomp-classical package in Takafumi
Saikawa’s talk in the next session [Saikawa et al., 2025]

'rather than, say, Ensembles

Real numbers

cog-mathcomp-reals package

Real numbers are defined in reals.v incrementally w.r.t. MATHCOMP.
It is a combination of:

» an archimedean real field (from MATHCOMP)
> a real-closed field (from MATHCOMP)

> with properties of sup (from MATHCOMP-ANALYSIS)

NormedZmodule
POrderedZmodule

IntegralDomain

ArchiRealClosedField

Compatibility with the real numbers of ROCQ’s standard library comes
from the fact that they form a model of the resulting interface

Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)

Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)
Addition for R:
» Unsurprising: 2 4+ oo = 400, 2 — 0o = —00, etc.
> But: co — 00 = —0
P it is not undefined as in the mathematical practice
» thanks to this, extended real numbers form an additive monoid,

enabling the use of MATHCOMP’s iterated operators
[Bertot et al., 2008]

Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)
Addition for R:
» Unsurprising: 2 4+ oo = 400, 2 — 0o = —00, etc.
> But: co — 00 = —0
P it is not undefined as in the mathematical practice
» thanks to this, extended real numbers form an additive monoid,

enabling the use of MATHCOMP’s iterated operators
[Bertot et al., 2008]

Multiplication for R:
» Unsurprising:

P 400 X 400 = 400, —00 X —00 = 400
> +00 X —00 = —00 X 400 = —00
> —2 X 400 =—00

» Standard in measure theory: 0 X o0 =0

Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:

1 1
>6_—i-oo,+ =0
1

L = —0Q, thusi;ﬁ—m

> But: T T
P in fact, }m = —% only when z € R\ {0}

Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:

> l:«Foo7 Tloo =0
1

0
L = —0Q, thusi;ﬁ—m

> But: T T
P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1
w(A) /yeA |f(y)|du

Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:

> l:«Foo7 Tloo =0
1

0
L = —0Q, thusi;ﬁ—m

> But: T T
P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1
w(A) /yeA |f(y)|du

Formalization using MATHCOMP-ANALYSIS:
Definition iavg £ A := (mu A)"-1 * \int[mul _(y in A) ~| (£ y%:E |.

Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:
1 1
> 5=t 55 =0
L1 1 1
> But: — = —o0, thus — # — 75

P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1 /
|f(y)ldp
M(A) yeEA
Formalization using MATHCOMP-ANALYSIS:

Definition iavg £ A := (mu A)"-1 * \int[mul _(y in A) ~| (£ y%:E |.

Before version 1.12.0, we were using a cast to reals (fine) with an injection back
(%:E)

Definition iavg f A :=
(fine (mu A))"-1%:E * \int[mul_(y in A) ~| (£ yY%:E |.

Outline

Overview of MATHCOMP-ANALYSIS

Measure theory

Applications

Measurable structures in MATHCOMP-ANALYSIS

> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and

P countable union

Measurable structures in MATHCOMP-ANALYSIS

> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and
P countable union
» In fact, there are also “poorer” structures of importance:

semiring ring of algebra
of sets sets of sets
contains 0 v v /

closed under N

closed under “semi-difference”
closed under U

contains the whole set

closed under countable union

v v
% % v v
v % v %

v v v

“semi-difference”: VA, B € G,3D C G, D pairwise-disjoint A\ B = Uj_; D;

Measurable structures in MATHCOMP-ANALYSIS

> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and

P countable union
» In fact, there are also “poorer” structures of importance:

semiring ring of algebra

of sets sets of sets
contains 0 v v v v
closed under N v v v v
closed under “semi-difference” v v v v
closed under U v v v
contains the whole set v v
closed under countable union Y

“semi-difference”: VA, B € G,3D C G, D pairwise-disjoint A\ B = Uj_; D;

» These structures intuitively form a hierarchy:

semiring of sets

U-closed

contains the whole set

algebra of sets

countable U-closed

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

semiring of sets

SemiRingOfSets

U-closed

RingQ0fSets

contains the
whole set

AlgebraOfSets

countable U-closed

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

semiring of sctsl

SemiRingOfSets

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :
{ measurableU : @setU_closed T measurable }.

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T) nat,
(forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }.

Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T) nat,
(forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }.

HB.structure Definition Measurable d :=
{T of AlgebraOfSets d T & hasMeasurableCountableUnion d T }.

Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra

of sets sets of sets
contains v v v v
closed under N v v v
closed under “semi-difference” v % v v
closed under U v v v
contains the whole set v v
closed under countable union v v

o-rings are used in [Halmos, 1974] and enable generalizations

Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra

of sets sets of sets
contains v v v v v
closed under N v
closed under “semi-difference” v % v
closed under U % v

contains the whole set
closed under countable union

o-rings are used in [Halmos, 1974] and enable generalizations

With HIERARCHY-BUILDER, adding o-rings is simple:

Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra

of sets sets of sets
contains v v v v v
closed under N v
closed under “semi-difference” v v
closed under U % v v v
contains the whole set v v
closed under countable union v v

o-rings are used in [Halmos, 1974] and enable generalizations

With HIERARCHY-BUILDER, adding o-rings is simple:

SemiRingOfSets

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra
of sets sets of sets
contains v v v v v
closed under N v v
closed under “semi-difference” v v v v
closed under U v v
contains the whole set v v
closed under countable union v v

o-rings are used in [Halmos, 1974] and enable generalizations

With HIERARCHY-BUILDER, adding o-rings is simple:

SemiRingOfSets

U-closed U-closed

SemiRingOfSets

RingOfSets RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

contains the
whole set

AlgebraOfSets

countable U-closed

countable U-closed

SigmaRing

contains the
whole set

Measures in MATHCOMP-ANALYSIS
A (non-negative) measure is a function u : ¥x — [0, 0] such that
> 1(0) =0 and
> S u(Fy) e (U, Fi) for pairwise-disjoint measurable sets F;

Measures in MATHCOMP-ANALYSIS
A (non-negative) measure is a function u : ¥x — [0, 0] such that
> 1(0) =0 and
> S u(Fy) e (U, Fi) for pairwise-disjoint measurable sets F;

Measure-like functions also form a hierarchy
[Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]:

p20, (U Fy) = Yo n(Fy) |

w(F;) — — w(U, F;

vy finite, u(U) = 32524 v (U)

YU, p(U) # iooi

FinNumFun
FiniteMeasure

JF;, T =U; Fi AVi, u(F;) < +oo

SigmaFiniteContent

SigmaFiniteMeasure

w(U; Fi) = im0 n(Fy)
w(T) <1
AdditiveCharge
-, SubProbability
it n(Fy) — — pu(U; F
w(T) =1

Probability

Kernels in MATHCOMP-ANALYSIS

A kernel X ~~Y is a function k : X — 3y — [0, 00] such that
—_———

measure

VU € Xy, x — ka2 U is a measurable function.

Kernels in MATHCOMP-ANALYSIS

A kernel X ~~Y is a function k : X — 3y — [0, 00] such that
—_———

measure

VU € Xy, x — ka2 U is a measurable function.

Kernels also form a hierarchy [Affeldt et al., 2025b]:

YU, z +— fx U is measurable

Vo, kx is a—ﬁnit?/ Jv; finite, k = Z?io v,

[a—ﬁnite transition kernel] s-finite kernel

Vz, k x is finite

[ﬁnite transition kernel]

Ir, Ve, kax T <7r

finite kernel

sup, {kxzT} <1

subprobability kernel

Ve, kx T =1

probability kernel

The key property of s-finite kernels
Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing

\ /

zmkzxiﬁisz

def)\xU./k;(x,y) Udix
y

The key property of s-finite kernels
Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing

\ /

I[i]k: X% 7
def
=)\xU./k;(x,y)Udlm
y

» Direct definition using the Lebesgue integral in
MATHCOMP-ANALYSIS:

Definition kcomp 1 k x U := \int[1l x]_y k (x, y) U.

The key property of s-finite kernels

Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing
@kzxiﬁisz
def

=)\xU./k;(x,y)Udlm
y

» Direct definition using the Lebesgue integral in
MATHCOMP-ANALYSIS:

Definition kcomp 1 k x U := \int[1l x]_y k (x, y) U.

» The difficulty of the stability proof is to establish measurability
[Affeldt et al., 2025b, Sect. 5]

Outline

Overview of MATHCOMP-ANALYSIS

The Lebesgue integral

Applications

Overview of the formalization of the Lebesgue integral

Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:

> For f integrable on R, define F(z) &' [fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).

Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:

» For f integrable on R, define F(x) def [fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).

» Second FTC for Lebesgue integration for continuous functions
[Affeldt et al., 2025c]:

» For f with antiderivative F in]a, b[, f continuous within
[a,b], F differentiable in]a, b[with F(x) — F(a) and
r—a

F(x) —= F(b), we have:
T—0"

/ f(z)dp = F(b) - F(a).
z€la,b]

Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:
» For f integrable on R, define F(x) def [fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).

» Second FTC for Lebesgue integration for continuous functions
[Affeldt et al., 2025c]:

» For f with antiderivative F in]a, b[, f continuous within
[a,b], F differentiable in]a, b[with F(x) — F(a) and
r—a

F(x) —= F(b), we have:
z—b—

[f@du=rF) - Fo).
z€la,b]

» From the FTC, follow

» integration by parts
> integration by substitution (a.k.a. change of variables)
» continuity/differentiation under the integral sign

over bounded and unbounded intervals [Affeldt et al., 2025¢]

Outline

Overview of MATHCOMP-ANALYSIS

Probability distributions

Applications

Available probability distributions

probability.v

)
L — o
=1
Y a b

Uniform

o pa
2o
(((“\\%%
B

Poisson

(Pictures are taken from Wikipedia)

Example: the Beta distribution

Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l

At — =
fue[o,l] w1 —wu)t~tdp B(a,b)

Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l
fue[o,u ua_l(l - u)b_ldﬂ ,B(a, b)

At —

Formalization of the Beta probability density function beta_pdf:
> At (1 —)71 (9,1) encoded as
XMonemX01 a b = (fun ¢t =>t "+ a.-1 * (1 - t) "+ b.-1 _ “[0, 11)
> ((a,b) encoded as [XMonemX01labz dpu

» Definition beta_pdf a b ¢t := XMonemX01 a b ¢ / B ab.

Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l

At — =
fue[o,l] w1 —)b~ tdp B(a,b)

Formalization of the Beta probability density function beta_pdf:
> At (1 —)71 (9,1) encoded as
XMonemX01 a b = (fun ¢t =>t "+ a.-1 * (1 - t) "+ b.-1 _ “[0, 11)
> ((a,b) encoded as [XMonemX01labz dpu

» Definition beta_pdf a b ¢t := XMonemX01 a b ¢ / B ab.

Formalization of the probability measure beta_prob a b:

Uw— beta_pdfabtdpu
teU

Properties of the Beta distribution and of the § function

» Integration w.r.t. probability measure:
Lemma integral_beta_prob a b f U :
measurable U -> measurable_fun U f ->
\int [beta_prob a b]_(x in U) ~|f x| < +oo ->
\int [beta_prob a b]_(x in U) f x =
\int[mu] _(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodym’s change of variables
[Ishiguro and Affeldt, 2024])

Properties of the Beta distribution and of the § function

» Integration w.r.t. probability measure:

Lemma integral_beta_prob a b £ U :
measurable U -> measurable_fun U f ->
\int [beta_prob a b]_(x in U) ~|f x| < +oo ->
\int [beta_prob a b]_(x in U) f x =
\int[mu] _(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodym’s change of variables

[Ishiguro and Affeldt, 2024])

» Symmetry of the 8 function:
Lemma betafun_sym (a b : nat) : S ab=/8Db a.

(using integration by substitution)

Properties of the Beta distribution and of the § function

» Integration w.r.t. probability measure:

Lemma integral_beta_prob a b £ U :
measurable U -> measurable_fun U f ->
\int [beta_prob a b]_(x in U) ~|f x| < +oo ->
\int [beta_prob a b]_(x in U) f x =
\int[mu] _(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodym’s change of variables
[Ishiguro and Affeldt, 2024])

» Symmetry of the 8 function:
Lemma betafun_sym (a b : nat) : S ab=/Db a.

(using integration by substitution)

» Relation with the factorial (a,b > 0):

(@ — 1)I(b—1)!

pab= (@ +b)—1)!

(by induction, symmetry of 3, and integration by parts)

Outline

Overview of MATHCOMP-ANALYSIS

Applications
Probabilistic programming

Motivation: Eddy’s table game [Eddy, 2004]

>

game with two players (Alice and Bob) in a casino
the casino rolls a ball to determine p (and hides it)

Alice has won 5 out of 8 games

vvyYyvyy

the casino repeatedly rolls balls until a player has 6 points
Alice bets she will win

what is her probability to win?

Encoding as a probabilistic program [Shan, 2018b]:

(
let p := sample (uniform(0,1)) in
let 2 := sample (binomial(8, p)) in
let _:= guard(z = 5) in
let y := sample (binomial(3,p)) in
return(1 < y))

Intuitive semantics

» Intuitively, each instruction is an s-finite kernel:
» sample (...) is a probability kernel
> (...) is a probability kernel
» score (f k) is an s-finite kernel
P its meaning: we observe £ from the distribution with
density f
> for example, we observe k = 4 with the density
fr(k) = ’"k—fefr (probability mass function of the Poisson
distribution)
> guard(x = n) 4" if 2 = n then tt else score (0).
» the semantics of let x := ey in ey is kernel composition

» because it is stable for s-finite kernels (as we saw Slide 18)

Shan’s proof of Eddy’s table game

Proof represented by a sequence of program transformations
[Shan, 2018b, Shan, 2018a]:

(0 (1
let p := sample (uf)iforr'n(O, 1)) i'" let p := sample (uniform(0, 1)) in
let := sample (bmon'ual(S, p)) in — let := sample (binomial(8, p)) in
let _ := guard(z = 5) n . let - := guard(z = 5) in
ieettgr;jlsi";f;l)e (binomial(3, p)) in sample (bernoulli (1 - (1 - p)g)))
4
(3 (2
let _ := score (é) in Slide 40 let p := sample (uniform(0, 1)) in
5 3 s
let p := sample (beta(6,4)) in = let _:= score (56P (1-p)) in
sample (bernoulli (1 —(1-— p)d))) sample (bernoulli (1 - (1 - p)‘j)))
1
(4 (sample (bernoulli (%)))
let _ := score (é) in —
(10 5
sample (bernoulh (i1)))

sfPPL: a first-order probabilistic language

2Measurability is not always easy to establish, e.g., m+> normal_probms

sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

2Measulrability is not always easy to establish, e.g., m+> normal_probms

sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

» Expressions (f is a measurable function?):

e == tt|b|n|r]|fler,...,en) | (e1,e2) | mi(e) | m2(e)
ifethene; elsees | z | return(e) | let « := ey in eq |
sample (e) | score (e) | normalize (e)

2Measulrability is not always easy to establish, e.g., m+> normal_probms

sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

» Expressions (f is a measurable function?):

e == tt|b|n|r]|fler,...,en) | (e1,e2) | mi(e) | m2(e)
ifethene; elsees | z | return(e) | let « := ey in eq |
sample (e) | score (e) | normalize (e)

> Type contexts:
Dio=(z1:Ar;.. 5200 Ap)

2Measumbility is not always easy to establish, e.g., m+> normal_probms

sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

» Expressions (f is a measurable function?):

e == tt|b|n|r]|fler,...,en) | (e1,e2) | mi(e) | m2(e)
ifethene; elsees | z | return(e) | let « := ey in eq |
sample (e) | score (e) | normalize (e)

> Type contexts:
Dio=(z1:Ar;.. 5200 Ap)
» Type judgments:

» deterministic expressions: I'Fp e: A
» probabilistic expressions: I'Fp e : A

2Measumbility is not always easy to establish, e.g., m+> normal_probms

sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

» Expressions (f is a measurable function?):

e == tt|b|n|r]|fler,...,en) | (e1,e2) | mi(e) | m2(e)
ifethene; elsees | z | return(e) | let « := ey in eq |
sample (e) | score (e) | (e)

> Type contexts:
Dio=(z1:Ar;.. 5200 Ap)
» Type judgments:

» deterministic expressions: I'Fp e: A
» probabilistic expressions: I'Fp e : A

Examples:
T'hoe: P(A) I'toe:R
I'p sample(e) : A T'bpscore(e) : U
I'Fpe: A
I'tp (e) : P(A)

2MeasulraLbility is not always easy to establish, e.g., m+> normal_probms

Formal syntax for sfPPL (excerpt)
Intrinsically-typed syntax: dependent inductive type with 3 indices
1. flag: deterministic or probabilistic
2. typ: the type of the expression
3. ctx: association list variable<>type

Inductive exp : flag -> ctx -> typ —> Type :=

Formal syntax for sfPPL (excerpt)
Intrinsically-typed syntax: dependent inductive type with 3 indices
1. flag: deterministic or probabilistic
2. typ: the type of the expression
3. ctx: association list variable<>type
Inductive exp : flag -> ctx -> typ —> Type :=

(* real constants are deterministic *)

| exp_real g : R -> exp D g Real

(* addition of real numbers *)

| exp_add g : exp D g Real -> exp D g Real -> exp D g Real

(* a Bernoulli measure of some real parameter *)

| exp_bernoulli g : exp D g Real -> exp D g (Prob Bool)

(* Poisson pmf *)

| exp_poisson g : nat -> exp D g Real -> exp D g Real

(* the type of a wvariable depends on the context *)

| exp_var g str t : t = lookup Unit g str -> exp D g t

(* the context is extended inside a let expression *)

| exp_letin g t1 t2 str : exp P g t1 -> exp P ((str, t1) :: g) t2 ->
exp P g t2

(* sampling from a probability distribution *)

| exp_sample gt : exp D g (Prob t) -> expP g t

(* normalization *)

| exp_normalize gt : exp P gt -> exp D g (Prob t)

(* scoring *)

| exp_score g : exp D g Real -> exp P g Unit

Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
:exp [::] _ :=
exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

[erer1)

(exp_var "y"

[eref1])).

Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
cexp [::] _ :=
exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

foreri)
(exp_var "y"

[eref1])).

"exp_var "x" (erefl (lookup Unit ?gl "x"))" has type
"exp 7gl (lookup Unit ?gl "x")" while it is expected to
have type "exp 7gl Real".

Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add (* same program with explicit variables *)

cexp [::] _ :=

exp_letin "x" (exp_real 1)
(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"
fereis)

(exp_var "y"

[eref1]))).

Qexp_letin [::]

_ "x" (exp_real 1)

(Gexp_letin 7g0 _ "y" (exp_real 2)

(Gexp_add 7gl Real

(Gexp_var 7gl _ "x
‘@erefl (Lookup Unit 7gl "x") ‘)

(Gexp_var 7gl _ "y"
‘@erefl (lookup Unit ?gi

) \))).

have type "exp ?gl Real".

"exp_var "x" (erefl (lookup Unit 7gl "x"))" has type
"exp ?7gl (lookup Unit ?gl "x")" while it is expected to

Solution #1: bidirectional
hints [The Rocq Development Team, 2025a]

Special annotation & to direct unification:

Arguments exp_add {g} &. (* unify preferentially g first *)
Arguments exp_letin {g} & {A B}.

As a result:
1. gl unifies to [:: ("y", Real), ("x", Real)l
2. lookup Unit gl "x" evaluates to Real

Example letin_add : exp [::] _ :=
exp_letin "x" (exp_real 1)
(exp_letin "y" (exp_real 2)

(exp_add
(exp_var "x" erefl)
(exp_var "y" erefl))).

let x := 1 in let y := 2 in x + y =

[ssue #2: universally quantified strings

Encoding
let x := 1 in let y := 2 inx +y

with universally quantified strings for variable identifiers fails:

Fail Example
letin_add (x y : string) (xy : x !=y) (yx : y !=x) : exp [::] =
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add
(exp_var x erefl)
(exp_var y erefl))).

cannot unify "lookup Unit [:: (y, Real); (x, Real)] x"
and "Real".

Solution # 2: unification using canonical structures

Overview

Direct application of [Gonthier et al., 2013b]
Goal: a proof of

‘R = lookup ((y,R) :: (2, R) :: []) x‘

1. We introduce the following structure:
Record find z ¢ := Find I' (¢t = Lookup I)
[——

ctx_prf
2. We look for an instance P, : find 2 R such that

> the 1st projection is I'(Fy) = (y,R) = (2, R) =],
» the 2nd projection ctx_prf provides the desired proof

Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) :c‘

Unification using canonical structures:

1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y

Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) :c‘

Unification using canonical structures:
1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y
2. A structure P; : find z R is simply such that
> I'(P) = (x,R) ==]

Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) :c‘

Unification using canonical structures:

1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y
2. A structure P; : find z R is simply such that
> I'(P) = (x,R) ==]
3. There is a canonical way to construct /7

» The instance that puts (z,R) at the head
(say, “found z R []”)

Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) x‘

Unification using canonical structures:

1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y

2. A structure P; : find z R is simply such that

> I'(P) = (x,R) ==]
3. There is a canonical way to construct /7

» The instance that puts (z,R) at the head

(say, “found z R []”)

4. Given P, there is a canonical way to build P

» The instance that puts (y,R) at the head providing x # y
(say, “recurse z Ry R {H : infer (y = x)} (f : find z ¢)”)

Solution # 2: unification using canonical structures

Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) x‘

Unification using canonical structures:

1.

We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y

. A structure P; : find x R is simply such that

> I'(P) = (x,R) ==]
There is a canonical way to construct P

» The instance that puts (z,R) at the head
(say, “found z R []”)

. Given Py, there is a canonical way to build Py

» The instance that puts (y,R) at the head providing x # y
(say, “recurse z Ry R {H : infer (y = x)} (f : find z ¢)”)

To control the order, there are “tags” that Rocq unfolds
when unification fails

Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:

Definition exp_var' str {t : typ} (f : find str t) :=
Qexp_var L(f) t str (ctx_prf f).
~—~— | —

1st projection 2nd projection

Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:
Definition exp_var' str {t : typ} (f : find str t) :=
Qexp_var L(f) t str (ctx_prf f).
~—~—~ | S —

1st projection 2nd projection

let x := 1 in let y := 2 inx +y

Example letin_add (x y : string)
(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add (exp_var' x _) (exp_var' y _))).

Formal syntax of sfPPL applied to Eddy’s table game

Using ROcQ’s custom entries [The Rocq Development Team, 2025b]:

Definition guard {g} str n
: @exp R P [:: (str,) ; gl _ :=
[if #{str} == {n}:N then return TT
else Score {0}:R].

Definition tableO : @exp R _ [::] _ :=
normalize([Normalize
let p := sample (uniform(0, 1)) in let "p" :
let z := sample (binomial(8,p)) in let "x"
let _ := guard(z = 5) in let "_" {guard "x" 5} in
let y := sample (binomial(3,p)) in let "y" := Sample Binomial {3} #{"p"} in
return(y > 1)) return {1}:N <= #{"y"}].

Sample Uniform {0} {1} {1trOi} in
Sample Binomial {8} #{"p"} in

Formal semantics of sfPPL [Saito and Affeldt, 2023]

Basic idea of the semantics [Staton, 2017]:

» deterministic expressions compile to measurable functions:
[TFoe:A]:[I] — [A]
» probabilistic expressions compile to s-finite kernel:

[T ke e: A] : [T]<25]A]

Formally, we provide two functions execD and execP so that semantics can
be computed by syntax-directed rewrites

» Example: semantics of let expressions is composition of s-finite kernels
(see Slide 18)

Lemma execP_letin g x t1 t2
(el : exp P g t1) (e2 : exp P ((x, t1) :: g) t2) :

execP [let x := el in e2] =
kcomp' (execP el) (execP e2).

normalize(0

let p := sample (uniform(0, 1)) in
:= sample (binomial(8, p)) in

guard(z = 5) in

let y := sample (binomial(3, p)) in

return(l < y))

normalize(3
let - := score (% in

let p := sample (beta(6,4)) in
sample (bernoulli (1 —(1-— p)3)))

1
normalize(4
let _ := score (é) in
sample (bernoulli (%)))

Slide 40
«—

Reminder: Shan’s proof of Eddy’s table game

normalize(1
:= sample (uniform(0, 1)) in
sample (binomial(8, p)) in

let _:= guard(z = 5) in

sample (bernoulli (1 - (1 - p)a)))
N

normalize(2

let p := sample (uniform(0, 1)) in

let _ := score (56p5(1 - p)s) in

sample (bernoulli (1 - (1 - p)3)))

normalize (sample (bernoulli (%)))

5

Sample transformation: 3 — 4

(
let _ := score (%) in
let p := sample (beta(6,4)) in
sample (bernoulli (1 — (1 — p)?)))

J collapses samplings

let _ := score (l) in
sample (bernoulli (12)))

The heart of transformation 3 — 4

let p := sample (beta(6,4)) in
sample (bernoulli (1 — (1 — p)?))

I

10
sample (bernoulli <11>>

Semantically, for all U:

10
/M<l—<1—z>3>dWU=mwm<u>U

z

Proving transformation 3 — 4
Goal:

1
| bemontt (1 = (1 = 2)°) dteta(6.4) U = beruouti (17) U

z

This can be derived from:

1
/lmcmlli((l—z)3)dbcw(6,4)U=lm<mlli<n>U

This is an instance of (for all a, b, ¢, d):

fze[O 1) bernoulli (z¢(1 — 2)?) dbeta(a,b) =

bernoully <W>

Which is proved using the relation probability measure/density function and the

relation between the 3 function and factorial (see Slide 24)—and the 1ra tactic

Outline

Overview of MATHCOMP-ANALYSIS

Applications

Other applications of MATHCOMP-ANALYSIS

Other applications

» Observing a noisy draw from a normal distribution
[Affeldt et al., 2025c¢]

» Quantum programming [Zhou et al., 2023)
» Study of fuzzy logics by Natalia Slusarz [Affeldt et al., 2024b)

» Truth values are not boolean values but ranges of real
numbers/extended real numbers

» The semantics of formulas becomes real-valued function
whose differentiation properties are a topic of interest (e.g.,
shadow-lifting [Varnai and Dimarogonas, 2020])

The papers used for this talk

To check the related work

About MATHCOMP-ANALYSIS:
> asymptotic reasoning [Affeldt et al., 2018]
» formalization of hierarchies [Affeldt et al., 2020]
» measure theory [Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]
> first fundamental theorem of calculus [Affeldt and Stone, 2024]
»

probability theory (see Alessandro Bruni’s talk at ITP
[Affeldt et al., 2025a))

About probabilistic programming using MATHCOMP- ANALYSIS:

> kernels [Affeldt et al., 2023], probabilistic termination
[Affeldt et al., 2025b]

» Syntax and semantics [Saito and Affeldt, 2023]

» Lebesgue integration toolbox and probability distribution
[Affeldt et al., 2025¢]

Summary

We have explained several aspects of MATHCOMP-ANALYSIS:
» basic theories and their relation with MATHCOMP
» measure theory and its pervasive use of hierarchies
» the toolbox of Lebesgue integration and probability distributions

» omitted aspect: topology

We focused in particular on one application:
» sfPPL: a first-order probabilistic programming language

» intrinsically-typed encoding using Rocq features (bidirectional
hints, canonical structures, custom entries)

» the mechanization of Shan’s proof of Eddy’s table game by
rewriting

https://github.com/math-comp/analysis

https://github.com/math-comp/analysis

[Affeldt et al., 2024a] Affeldt, R., Barrett, C. W., Bruni, A., Daukantas, I., Khan, H.,
Saikawa, T., and Schiirmann, C. (2024a).
Robust mean estimation by all means (short paper).
In 15th In itional Conference on Interactive Theorem Proving (ITP 2024), September 9-14,
2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 39:1-39:8. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik.

[Affeldt et al., 2025a] Affeldt, R., Bruni, A., Cohen, C., Roux, P., and Saikawa, T. (2025a).
Formalizing concentration inequalities in Rocq: infrastructure and automation.
In 16th In ional Conference on Interactive Theorem Proving (ITP 2025), R
Iceland, Se wber 29-October 2, 2025, volume 352 of Leibniz International Proc
Informatics, pages 21:1-21:20. Schloss Dagstuhl.

[Affeldt et al., 2024b] Affeldt, R., Bruni, A., Komendantskaya, E., Slusarz, N., and Stark, K.
(2024b).
Taming differentiable logics with Coq formalisation.
In 15th International Conference on Interactive Theorem Proving (ITP 2024), September 9-14,
2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 4:1-4:19. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik.

[Affeldt and Cohen, 2023] Affeldt, R. and Cohen, C. (2023).
Measure construction by extension in dependent type theory with application to
integration.
J. Autom. Reason., 67(3):28:1-28:27.

[Affeldt et al., 2020] Affeldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., and
Sakaguchi, K. (2020).
Competing inheritance paths in dependent type theory: A case study in functional analysis.
In 10th International Joint Conference on Automated Reasoning (IJCAR 2020), Paris, France,
July 1-4, 2020, volume 12167 of Lecture Notes in Computer Science, pages 3—20. Springer.
Part II.

[Affeldt et al., 2018] Affeldt, R., Cohen, C., and Rouhling, D. (2018).
Formalization techniques for asymptotic reasoning in classical analysis.
J. Formaliz. Reason., 11(1):43-76.

[Affeldt et al., 2023] Affeldt, R., Cohen, C., and Saito, A. (2023).
Semantics of probabilistic programs using s-finite kernels in Coq.
In 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP
2023), Boston, MA, USA, January 16-17, 2023, pages 3—16. ACM.

[Affeldt et al., 2025b] Affeldt, R., Cohen, C., and Saito, A. (2025b).
Semantics of probabilistic programs using s-finite kernels in dependent type theory.
ACM Transactions on Probabilistic Machine Learning, 1(3):16:1-16:34.

[Affeldt et al., 2025¢] Affeldt, R., Ishiguro, Y., and Stone, Z. (2025c¢).
A formal foundation for equational reasoning on probabilistic programs.
In 23rd Asian Symposium on Programming Languages and Systems (APLAS 2025), October
27-30, 2025, Bengaluru, India, Lecture Notes in Computer Science. Springer.
In press.

[Affeldt and Stone, 2024] Affeldt, R. and Stone, Z. (2024).
A comprehensive overview of the lebesgue differentiation theorem in Cogq.

In 15th International Conference on Interactive Theorem Proving (ITP 2024), September 9-14,

2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 5:1-5:19. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik.

[Bernard et al., 2021] Bernard, S., Cohen, C., Mahboubi, A., and Strub, P. (2021).
Unsolvability of the quintic formalized in dependent type theory.

In 12th International Conference on Interactive Theorem Proving (ITP 2021), June 29-July 1,

2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs, pages 8:1-8:18. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik.

[Bertot et al., 2008] Bertot, Y., Gonthier, G., Biha, S. O., and Pasca, I. (2008).
Canonical big operators.
In International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2008),
Montreal, Canada, August 18-21, 2008, volume 5170 of Lecture Notes in Computer Science,
pages 86-101. Springer.

[Cohen et al., 2020] Cohen, C., Sakaguchi, K., and Tassi, E. (2020).
Hierarchy Builder: Algebraic hierarchies made easy in Coq with Elpi (system description).
In 5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020), June 29—-July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages
34:1-34:21. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

[Eddy, 2004] Eddy, S. R. (2004).
‘What is Bayesian statistics?
Nature Biotechnology, 22(9):1177-1178.

[Gonthier, 2008] Gonthier, G. (2008).
Formal proof—the four-color theorem.
Notices of the AMS, 55(11):1382-1393.

[Gonthier et al., 2013a] Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot,
F., Roux, S. L., Mahboubi, A., O’Connor, R., Biha, S. O., Pasca, 1., Rideau, L., Solovyev,
A., Tassi, E., and Théry, L. (2013a).

A machine-checked proof of the odd order theorem.

In 4th International Conference on Interactive Theorem Proving (ITP 2013), Rennes, France,
July 22-26, 2013, volume 7998 of Lecture Notes in Computer Science, pages 163-179.
Springer.

[Gonthier et al., 2013b] Gonthier, G., Ziliani, B., Nanevski, A., and Dreyer, D. (2013b).
How to make ad hoc proof automation less ad hoc.
J. Funct. Program., 23(4):357—-401.

[Halmos, 1974] Halmos, P. R. (1974).
Measure Theory.

Springer.

[Ishiguro and Affeldt, 2024] Ishiguro, Y. and Affeldt, R. (2024).
The Radon-Nikodym theorem and the Lebesgue-Stieltjes measure in Coq.
Computer Software, 41(2).

[Melquiond, 2008] Melquiond, G. (2008).
Proving bounds on real-valued functions with computations.
In 4th International Joint Conference on Automated Reasoning (IJCAR 2008), Sydney,
Australia, August 12-15, 2008, volume 5195 of Lecture Notes in Computer Science, pages
2-17. Springer.

[Saikawa et al., 2025] Saikawa, T., Matsuda, K., and Tsuji, Y. (2025).
Formalization of matching numbers with finmap and mathcomp-classical.
In The Rocgshop 2025, Reykjavik, Iceland, September 27, 2025.

[Saito and Affeldt, 2023] Saito, A. and Affeldt, R. (2023).
Experimenting with an intrinsically-typed probabilistic programming language in Coq.
In 21st Asian Sy
26-29, 2023, Taipei, Taiwan, volume 14405, pages 182-202. Springer.

[Shan, 2018a] Shan, C. (2018a).
Calculating distributions.
In 20th International Symposium on Principles and Practice of Declarative Programming

(PPDP 2018), Frankfurt am Main, Germany, September 3-5, 2018, pages 2:1-2:5. ACM.

[Shan, 2018b] Shan, C.-C. (2018b).
Equational reasoning for probabilistic programming.
POPL 2018 TutorialFest.
Available at: https://homes.luddy.indiana.edu/ccshan/rational/equational-handout.pdf.

[Staton, 2017] Staton, S. (2017).
Commutative semantics for probabilistic programming.
In 26th European Symposium on Programming (ESOP 2017), Uppsala, Sweden, April 22-29,
2017, volume 10201 of Lecture Notes in Computer Science, pages 855—879. Springer.

[The Rocq Development Team, 2025a] The Rocq Development Team (2025a).
Bidirectionality hints.
Inria.
Chapter Setting properties of a function’s arguments of
[The Rocq Development Team, 2025c], direct link.

posium on Programming Languages and Systems (APLAS 2023), November

https://homes.luddy.indiana.edu/ccshan/rational/equational-handout.pdf
https://rocq-prover.org/doc/V9.0.0/refman/language/extensions/arguments-command.html?+hints=#bidirectionality-hints

[The Rocq Development Team, 2025b] The Rocq Development Team (2025b).
Custom entries.
Inria.
Chapter Syntax extensions and notation scopes of [The Rocq Development Team, 2025c],
direct link.

[The Rocq Development Team, 2025¢c] The Rocq Development Team (2025c).
The Rocq Proof Assistant Reference Manual.
Inria.
Available at https://rocq-prover.org/doc/V9.0.0/refman/index.html. Version 9.0.0.

[Varnai and Dimarogonas, 2020] Varnai, P. and Dimarogonas, D. V. (2020).
On robustness metrics for learning STL tasks.
In 2020 American Control Conference (ACC 2020), Denver, CO, USA, July 1-3, 2020, pages
5394-5399. IEEE.

[Zhou et al., 2023] Zhou, L., Barthe, G., Strub, P., Liu, J., and Ying, M. (2023).
CoqQ: Foundational verification of quantum programs.
Proc. ACM Program. Lang., T(POPL):833-865.

https://rocq-prover.org/doc/V9.0.0/refman/user-extensions/syntax-extensions.html?+entries=#custom-entries
https://rocq-prover.org/doc/V9.0.0/refman/index.html

	Overview of MathComp-Analysis
	Basics
	Measure theory
	The Lebesgue integral
	Probability distributions

	Applications
	Probabilistic programming
	Other applications of MathComp-Analysis

