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Context: The Mathematical Components project
https://github.com/math-comp/math-comp

A set of Rocq packages about mathematics:

▶ MathComp provides group theory and
algebra

▶ extensions: finite maps (finmap),
multinomials, etc.

▶ major results: the Four-Color theorem
[Gonthier, 2008], the odd order theorem
[Gonthier et al., 2013a], Abel-Ruffini
[Bernard et al., 2021], etc.

▶ tooling: automation (algebra-tactics),
DSL to build hierarchies of mathematical
structures (Hierarchy-Builder), etc.

The above libraries are “constructive”, in the
sense that they do not use classical axioms

Picture taken last month
in a high-school in France

https://github.com/math-comp/math-comp


The MathComp-Analysis extension
▶ MathComp-Analysis extends MathComp with classical reasoning

▶ However, many “back-ports” are made to MathComp,
e.g., automatic discharge of numeric goals

(see Alessandro Bruni’s talk at ITP [Affeldt et al., 2025a])

▶ MathComp-Analysis is about 100 files for about 90,000 l.o.c.



MathComp-Analysis in terms of Opam packages

1. Classical reasoning: coq-mathcomp-classical

2. Real numbers: coq-mathcomp-reals

3. Compatibility with Rocq’s standard library:

coq-mathcomp-reals-stdlib, coq-mathcomp-analysis-stdlib

▶ This enables, e.g., the use of the CoqInterval tactic
[Melquiond, 2008]

(see [Affeldt et al., 2024a] and Alessandro Bruni’s talk at ITP

[Affeldt et al., 2025a])

4. (Discrete distributions: coq-mathcomp-experimental-reals)

5. Analysis per se: coq-mathcomp-analysis
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Classical reasoning
coq-mathcomp-classical package

Classical axioms can be found in boolp.v [Affeldt et al., 2018,
Sect. 5]:

▶ Axiom functional_extensionality_dep :

forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),

(forall x : A, f x = g x) -> f = g.

▶ Axiom propositional_extensionality :

forall P Q : Prop, P <-> Q -> P = Q.

▶ Axiom constructive_indefinite_description :

forall (A : Type) (P : A -> Prop),

(exists x : A, P x) -> {x : A | P x}.



Naive set theory
coq-mathcomp-classical package

Please, consider using classical_sets.v1:

▶ complete (many lemmas, 3408 l.o.c.)

▶ readable statements (notations, consistent naming convention),
e.g., using company-coq in emacs:

▶ well tested (used pervasively in MathComp-Analysis)

More about the coq-mathcomp-classical package in Takafumi
Saikawa’s talk in the next session [Saikawa et al., 2025]

1rather than, say, Ensembles



Real numbers
coq-mathcomp-reals package

Real numbers are defined in reals.v incrementally w.r.t. MathComp.
It is a combination of:

▶ an archimedean real field (from MathComp)

▶ a real-closed field (from MathComp)

▶ with properties of sup (from MathComp-Analysis)

Compatibility with the real numbers of Rocq’s standard library comes
from the fact that they form a model of the resulting interface



Extended real numbers (1/2)
coq-mathcomp-reals package

A deceptively simple data structure (R def
= R ∪ {−∞,+∞}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)

Addition for R:
▶ Unsurprising: 2 +∞ = +∞, 2−∞ = −∞, etc.

▶ But: ∞−∞ = −∞
▶ it is not undefined as in the mathematical practice
▶ thanks to this, extended real numbers form an additive monoid,

enabling the use of MathComp’s iterated operators

[Bertot et al., 2008]

Multiplication for R:
▶ Unsurprising:

▶ +∞×+∞ = +∞, −∞×−∞ = +∞
▶ +∞×−∞ = −∞×+∞ = −∞
▶ −2×+∞ = −∞

▶ Standard in measure theory: 0×±∞ = 0
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Extended real numbers (2/2)
coq-mathcomp-reals package

Inversion for R:
▶ 1

0
= +∞, 1

+∞ = 0

▶ But: 1
−∞ = −∞, thus 1

−∞ ̸= − 1
+∞

▶ in fact, 1
−x

= − 1
x

only when x ∈ R \ {0}

Sample application: “average” of a real-valued function f over a set A

1

µ(A)

∫
y∈A

|f(y)|dµ

Formalization using MathComp-Analysis:

Definition iavg f A := (mu A)^-1 * \int[mu]_(y in A) `| (f y)%:E |.

Before version 1.12.0, we were using a cast to reals (fine) with an injection back
(%:E)

Definition iavg f A :=
(fine (mu A))^-1%:E * \int[mu]_(y in A) `| (f y)%:E |.
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Measurable structures in MathComp-Analysis
▶ A σ-algebra ΣX on a set X is a collection of subsets of X that

▶ contains ∅
▶ is closed under complement and

▶ countable union

▶ In fact, there are also “poorer” structures of importance:
semiring ring of algebra σ-algebra

of sets sets of sets
contains ∅ ✓ ✓ ✓ ✓
closed under ∩ ✓ ✓ ✓ ✓
closed under “semi-difference” ✓ ✓ ✓ ✓
closed under ∪ ✓ ✓ ✓
contains the whole set ✓ ✓
closed under countable union ✓

“semi-difference”: ∀A,B ∈ G, ∃D ⊆ G, D pairwise-disjoint A \ B =
⋃n

i=1 Di

▶ These structures intuitively form a hierarchy:

semiring of sets

ring of sets

algebra of sets

σ-algebra

∪-closed

contains the whole set

countable ∪-closed
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Measurable structures in MathComp-Analysis
Formalization using Hierarchy-Builder [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

SemiRingOfSets

RingOfSets

AlgebraOfSets

σ-algebra

∪-closed

semiring of sets

contains the
whole set

countable ∪-closed

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable set0 ;
measurableI : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingOfSets d :=
{T of Pointed T & isSemiRingOfSets d T}.

HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T)^nat,

(forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }.

HB.structure Definition Measurable d :=
{T of AlgebraOfSets d T & hasMeasurableCountableUnion d T }.
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Extensibility of hierarchies using Hierarchy-Builder

In fact, there is yet another measurable structure:
semi ring ring of algebra σ-ring σ-algebra

of sets sets of sets
contains ∅ ✓ ✓ ✓ ✓ ✓
closed under ∩ ✓ ✓ ✓ ✓ ✓
closed under “semi-difference” ✓ ✓ ✓ ✓ ✓
closed under ∪ ✓ ✓ ✓ ✓
contains the whole set ✓ ✓
closed under countable union ✓ ✓

σ-rings are used in [Halmos, 1974] and enable generalizations

With Hierarchy-Builder, adding σ-rings is simple:

SemiRingOfSets

RingOfSets

AlgebraOfSets

σ-algebra

∪-closed

contains the
whole set

countable ∪-closed

⇒

SemiRingOfSets

RingOfSets

AlgebraOfSets SigmaRing

σ-algebra

∪-closed

contains the
whole set countable ∪-closed

countable ∪-closed
contains the
whole set
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Measures in MathComp-Analysis
A (non-negative) measure is a function µ : ΣX → [0,∞] such that

▶ µ(∅) = 0 and

▶
∑n

i=0 µ(Fi) −−−−−→
n→+∞

µ(
⋃

i Fi) for pairwise-disjoint measurable sets Fi

Measure-like functions also form a hierarchy
[Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]:

Content

Measure

SFiniteMeasure

SigmaFiniteContent

SigmaFiniteMeasure

FinNumFun

FiniteMeasure

AdditiveCharge

Charge

SubProbability

Probability

µ ≥ 0, µ(
⋃

i Fi) =
∑n

i=0 µ(Fi)

∑n
i=0 µ(Fi) −−−−−−→

n→+∞
µ(

⋃
i Fi)

∃νi finite, µ(U) =
∑∞

i=0 νi(U)

∃Fi,⊤ =
⋃

i Fi ∧ ∀i, µ(Fi) < +∞

∀U, µ(U) ̸= ±∞

µ(
⋃

i Fi) =
∑n

i=0 µ(Fi)

∑n
i=0 µ(Fi) −−−−−−→

n→+∞
µ(

⋃
i Fi)

µ(⊤) ≤ 1

µ(⊤) = 1
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Kernels in MathComp-Analysis

A kernel X ⇝ Y is a function k : X → ΣY → [0,∞]︸ ︷︷ ︸
measure

such that

∀U ∈ ΣY , x 7→ k xU is a measurable function.

Kernels also form a hierarchy [Affeldt et al., 2025b]:

kernel

s-finite kernelσ-finite transition kernel

finite transition kernel

finite kernel

subprobability kernel

probability kernel

∀U, x 7→ f xU is measurable

∃νi finite, k =
∑∞

i=0 νi∀x, k x is σ-finite

∀x, k x is finite

∃r, ∀x, k x⊤ < r

supx{k x⊤} ≤ 1

∀x, k x⊤ = 1
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The key property of s-finite kernels

Stability by composition [Staton, 2017]:

l : X s-fin Y

''

k : X × Y s-fin Z

vv

l ; k : X s-fin Z

def
= λxU.

∫
y

k (x, y)Udl x

▶ Direct definition using the Lebesgue integral in
MathComp-Analysis:

Definition kcomp l k x U := \int[l x]_y k (x, y) U.

▶ The difficulty of the stability proof is to establish measurability
[Affeldt et al., 2025b, Sect. 5]
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Overview of the formalization of the Lebesgue integral

▶ First FTC for Lebesgue integration [Affeldt and Stone, 2024]:

▶ For f integrable on R, define F (x)
def
=

∫ x

−∞ f(t)dt.

Then F is differentiable and F ′(x) = f(x) (a.e.).

▶ Second FTC for Lebesgue integration for continuous functions

[Affeldt et al., 2025c]:

▶ For f with antiderivative F in ]a, b[, f continuous within
[a, b], F differentiable in ]a, b[ with F (x) −−−−→

x→a+
F (a) and

F (x) −−−−→
x→b−

F (b), we have:

∫
x∈[a,b]

f(x)dµ = F (b)− F (a).

▶ From the FTC, follow

▶ integration by parts
▶ integration by substitution (a.k.a. change of variables)
▶ continuity/differentiation under the integral sign

over bounded and unbounded intervals [Affeldt et al., 2025c]
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Available probability distributions
probability.v

Bernoulli Binomial Uniform

Normal
Exponential Poisson

Beta

(Pictures are taken from Wikipedia)



Example: the Beta distribution

The Beta probability density function (a, b > 0 and t ∈ [0, 1]):

λt 7→ ta−1(1− t)b−1∫
u∈[0,1]

ua−1(1− u)b−1dµ
=

ta−1(1− t)b−1

β(a, b)

Formalization of the Beta probability density function beta_pdf:

▶ λt.ta−1(1− t)b−1|[0,1] encoded as

XMonemX01 a b = (fun t => t ^+ a.-1 * (1 - t) ^+ b.-1 \_ `[0, 1])

▶ β(a, b) encoded as
∫
x
XMonemX01 a b xdµ

▶ Definition beta_pdf a b t := XMonemX01 a b t / β a b.

Formalization of the probability measure beta_prob a b:

U 7→
∫
t∈U

beta_pdf a b tdµ
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Properties of the Beta distribution and of the β function

▶ Integration w.r.t. probability measure:
Lemma integral_beta_prob a b f U :

measurable U -> measurable_fun U f ->
\int[beta_prob a b]_(x in U) `|f x| < +oo ->

\int[beta_prob a b]_(x in U) f x =
\int[mu]_(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodým’s change of variables

[Ishiguro and Affeldt, 2024])

▶ Symmetry of the β function:
Lemma betafun_sym (a b : nat) : β a b = β b a.

(using integration by substitution)

▶ Relation with the factorial (a, b > 0):

β a b =
(a− 1)!(b− 1)!

((a+ b)− 1)!

(by induction, symmetry of β, and integration by parts)
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Motivation: Eddy’s table game [Eddy, 2004]

▶ game with two players (Alice and Bob) in a casino

▶ the casino rolls a ball to determine p (and hides it)

▶ Alice has won 5 out of 8 games

▶ the casino repeatedly rolls balls until a player has 6 points

▶ Alice bets she will win

▶ what is her probability to win?

Encoding as a probabilistic program [Shan, 2018b]:

normalize(
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in
let y := sample (binomial(3, p)) in
return(1 ≤ y))



Intuitive semantics

▶ Intuitively, each instruction is an s-finite kernel:
▶ sample (. . .) is a probability kernel
▶ normalize (. . .) is a probability kernel
▶ score (f k) is an s-finite kernel

▶ its meaning: we observe k from the distribution with
density f

▶ for example, we observe k = 4 with the density

fr(k) =
rk

k!
e−r (probability mass function of the Poisson

distribution)

▶ guard(x = n)
def
= ifx = n then tt else score (0).

▶ the semantics of let x := e1 in e2 is kernel composition
▶ because it is stable for s-finite kernels (as we saw Slide 18)



Shan’s proof of Eddy’s table game

Proof represented by a sequence of program transformations
[Shan, 2018b, Shan, 2018a]:

normalize( 0
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in
let y := sample (binomial(3, p)) in
return(1 ≤ y))

→

normalize( 1
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in

sample
(
bernoulli

(
1− (1− p)3

))
)

↓

normalize( 3
let := score

(
1
9

)
in

let p := sample (beta(6, 4)) in

sample
(
bernoulli

(
1− (1− p)3

))
)

Slide 40
←

normalize( 2
let p := sample (uniform(0, 1)) in

let := score
(
56p5(1− p)3

)
in

sample
(
bernoulli

(
1− (1− p)3

))
)

↓

normalize( 4
let := score

(
1
9

)
in

sample
(
bernoulli

(
10
11

))
)

→
normalize

(
sample

(
bernoulli

(
10
11

)))
5



sfPPL: a first-order probabilistic language

▶ Types:
A ::= U | B | N | R | P (A) | A1 ×A2

▶ Expressions (f is a measurable function2):

e ::= tt | b | n | r | f(e1, . . . , en) | (e1, e2) | π1(e) | π2(e)
if e then e1 else e2 | x | return(e) | let x := e1 in e2 |
sample (e) | score (e) | normalize (e)

▶ Type contexts:
Γ ::= (x1 : A1; . . . ;xn : An)

▶ Type judgments:

▶ deterministic expressions: Γ ⊢D e : A
▶ probabilistic expressions: Γ ⊢P e : A

Examples:

Γ ⊢D e : P (A)

Γ ⊢P sample (e) : A

Γ ⊢D e : R

Γ ⊢P score (e) : U
Γ ⊢P e : A

Γ ⊢D normalize (e) : P (A)

2Measurability is not always easy to establish, e.g., m 7→ normal_probms
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▶ Types:

A ::= U | B | N | R | P (A) | A1 ×A2

▶ Expressions (f is a measurable function2):

e ::= tt | b | n | r | f(e1, . . . , en) | (e1, e2) | π1(e) | π2(e)
if e then e1 else e2 | x | return(e) | let x := e1 in e2 |
sample (e) | score (e) | normalize (e)

▶ Type contexts:
Γ ::= (x1 : A1; . . . ;xn : An)

▶ Type judgments:

▶ deterministic expressions: Γ ⊢D e : A
▶ probabilistic expressions: Γ ⊢P e : A

Examples:

Γ ⊢D e : P (A)

Γ ⊢P sample (e) : A

Γ ⊢D e : R

Γ ⊢P score (e) : U
Γ ⊢P e : A

Γ ⊢D normalize (e) : P (A)

2Measurability is not always easy to establish, e.g., m 7→ normal_probms



Formal syntax for sfPPL (excerpt)
Intrinsically-typed syntax: dependent inductive type with 3 indices

1. flag: deterministic or probabilistic

2. typ: the type of the expression

3. ctx: association list variable↔type

Inductive exp : flag -> ctx -> typ -> Type :=

(* real constants are deterministic *)
| exp_real g : R -> exp D g Real
(* addition of real numbers *)
| exp_add g : exp D g Real -> exp D g Real -> exp D g Real
(* a Bernoulli measure of some real parameter *)
| exp_bernoulli g : exp D g Real -> exp D g (Prob Bool)
(* Poisson pmf *)
| exp_poisson g : nat -> exp D g Real -> exp D g Real
(* the type of a variable depends on the context *)
| exp_var g str t : t = lookup Unit g str -> exp D g t
(* the context is extended inside a let expression *)
| exp_letin g t1 t2 str : exp P g t1 -> exp P ((str, t1) :: g) t2 ->

exp P g t2
(* sampling from a probability distribution *)
| exp_sample g t : exp D g (Prob t) -> exp P g t
(* normalization *)
| exp_normalize g t : exp P g t -> exp D g (Prob t)
(* scoring *)
| exp_score g : exp D g Real -> exp P g Unit
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(* the type of a variable depends on the context *)
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(* the context is extended inside a let expression *)
| exp_letin g t1 t2 str : exp P g t1 -> exp P ((str, t1) :: g) t2 ->

exp P g t2
(* sampling from a probability distribution *)
| exp_sample g t : exp D g (Prob t) -> exp P g t
(* normalization *)
| exp_normalize g t : exp P g t -> exp D g (Prob t)
(* scoring *)
| exp_score g : exp D g Real -> exp P g Unit



Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y

using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
: exp [::] _ :=

exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

erefl )
(exp_var "y"

erefl ))).
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erefl )
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"exp_var "x" (erefl (lookup Unit ?g1 "x"))" has type
"exp ?g1 (lookup Unit ?g1 "x")" while it is expected to
have type "exp ?g1 Real".
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using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
: exp [::] _ :=

exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

erefl )
(exp_var "y"

erefl ))).

(* same program with explicit variables *)

@exp_letin [::] _ "x" (exp_real 1)

(@exp_letin ?g0 _ "y" (exp_real 2)

(@exp_add ?g1 Real

(@exp_var ?g1 _ "x"

@erefl (lookup Unit ?g1 "x") )

(@exp_var ?g1 _ "y"

@erefl (lookup Unit ?g1 "y") ))).

"exp_var "x" (erefl (lookup Unit ?g1 "x"))" has type
"exp ?g1 (lookup Unit ?g1 "x")" while it is expected to
have type "exp ?g1 Real".



Solution #1: bidirectional
hints [The Rocq Development Team, 2025a]

Special annotation & to direct unification:

Arguments exp_add {g} &. (* unify preferentially g first *)
Arguments exp_letin {g} & {A B}.

As a result:

1. g1 unifies to [:: ("y", Real), ("x", Real)]

2. lookup Unit g1 "x" evaluates to Real

let x := 1 in let y := 2 in x + y ⇒

Example letin_add : exp [::] _ :=
exp_letin "x" (exp_real 1)
(exp_letin "y" (exp_real 2)
(exp_add
(exp_var "x" erefl)
(exp_var "y" erefl))).



Issue #2: universally quantified strings

Encoding

let x := 1 in let y := 2 in x + y

with universally quantified strings for variable identifiers fails:

Fail Example
letin_add (x y : string) (xy : x != y) (yx : y != x) : exp [::] _ :=

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add
(exp_var x erefl)
(exp_var y erefl))).

cannot unify "lookup Unit [:: (y, Real); (x, Real)] x"
and "Real".



Solution # 2: unification using canonical structures
Overview

Direct application of [Gonthier et al., 2013b]
Goal: a proof of

R = lookup ((y,R) :: (x,R) :: []) x

1. We introduce the following structure:
Record find x t := Find Γ (t = lookup Γ x)︸ ︷︷ ︸

ctx_prf

2. We look for an instance P0 : find x R such that

▶ the 1st projection is Γ(P0) = (y,R) :: (x,R) :: [],
▶ the 2nd projection ctx_prf provides the desired proof



Solution # 2: unification using canonical structures
Details

Goal: a proof of R = lookup ((y,R) :: (x,R) :: []) x

Unification using canonical structures:

1. We look for P0 : find x R such that
Γ(P0) = (y,R) :: Γ(P1) for some P1 : find x R with x ̸= y

2. A structure P1 : find x R is simply such that
▶ Γ(P1) = (x,R) :: []

3. There is a canonical way to construct P1

▶ The instance that puts (x,R) at the head
(say, “found x R []”)

4. Given P1, there is a canonical way to build P0

▶ The instance that puts (y,R) at the head providing x ̸= y
(say, “recurse x R y R {H : infer (y != x)} (f : find x t)”)

5. To control the order, there are “tags” that Rocq unfolds
when unification fails
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Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:

Definition exp_var' str {t : typ} (f : find str t) :=

@exp_var Γ(f)︸︷︷︸
1st projection

t str (ctx prf f)︸ ︷︷ ︸
2nd projection

.

let x := 1 in let y := 2 in x + y

⇓
Example letin_add (x y : string)

(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add (exp_var' x _) (exp_var' y _))).



Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:

Definition exp_var' str {t : typ} (f : find str t) :=

@exp_var Γ(f)︸︷︷︸
1st projection

t str (ctx prf f)︸ ︷︷ ︸
2nd projection

.

let x := 1 in let y := 2 in x + y

⇓
Example letin_add (x y : string)

(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add (exp_var' x _) (exp_var' y _))).



Formal syntax of sfPPL applied to Eddy’s table game

Using Rocq’s custom entries [The Rocq Development Team, 2025b]:

normalize(
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in
let y := sample (binomial(3, p)) in
return(y ≥ 1))

Definition guard {g} str n
: @exp R P [:: (str, _) ; g] _ :=

[if #{str} == {n}:N then return TT
else Score {0}:R].

Definition table0 : @exp R _ [::] _ :=
[Normalize
let "p" := Sample Uniform {0} {1} {ltr01} in
let "x" := Sample Binomial {8} #{"p"} in
let "_" := {guard "x" 5} in
let "y" := Sample Binomial {3} #{"p"} in
return {1}:N <= #{"y"}].



Formal semantics of sfPPL [Saito and Affeldt, 2023]

Basic idea of the semantics [Staton, 2017]:

▶ deterministic expressions compile to measurable functions:

JΓ ⊢D e : AK : JΓK → JAK

▶ probabilistic expressions compile to s-finite kernel:

JΓ ⊢P e : AK : JΓK s-fin JAK

Formally, we provide two functions execD and execP so that semantics can
be computed by syntax-directed rewrites

▶ Example: semantics of let expressions is composition of s-finite kernels
(see Slide 18)

Lemma execP_letin g x t1 t2
(e1 : exp P g t1) (e2 : exp P ((x, t1) :: g) t2) :

execP [let x := e1 in e2] =
kcomp' (execP e1) (execP e2).



Reminder: Shan’s proof of Eddy’s table game

normalize( 0
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in
let y := sample (binomial(3, p)) in
return(1 ≤ y))

→

normalize( 1
let p := sample (uniform(0, 1)) in
let x := sample (binomial(8, p)) in
let := guard(x = 5) in

sample
(
bernoulli

(
1− (1− p)3

))
)

↓

normalize( 3
let := score

(
1
9

)
in

let p := sample (beta(6, 4)) in

sample
(
bernoulli

(
1− (1− p)3

))
)

Slide 40
←

normalize( 2
let p := sample (uniform(0, 1)) in

let := score
(
56p5(1− p)3

)
in

sample
(
bernoulli

(
1− (1− p)3

))
)

↓

normalize( 4
let := score

(
1
9

)
in

sample
(
bernoulli

(
10
11

))
)

→
normalize

(
sample

(
bernoulli

(
10
11

)))
5



Sample transformation: 3 → 4

normalize(
let := score

(
1
9

)
in

let p := sample (beta(6, 4)) in
sample

(
bernoulli

(
1− (1− p)3

))
)

↓ collapses samplings

normalize(
let := score

(
1
9

)
in

sample
(
bernoulli

(
10
11

))
)



The heart of transformation 3 → 4

let p := sample (beta(6, 4)) in
sample

(
bernoulli

(
1− (1− p)3

))
↓

sample

(
bernoulli

(
10

11

))
Semantically, for all U :∫

z
bernoulli

(
1− (1− z)3

)
dbeta (6, 4) U = bernoulli

(
10

11

)
U



Proving transformation 3 → 4

Goal:∫
z
bernoulli

(
1− (1− z)3

)
dbeta (6, 4) U = bernoulli

(
10

11

)
U

This can be derived from:∫
z
bernoulli

(
(1− z)3

)
dbeta (6, 4) U = bernoulli

(
1

11

)
U

This is an instance of (for all a, b, c, d):∫
x∈[0,1] bernoulli

(
xc(1− x)d

)
dbeta (a, b) =

bernoulli
(
β (a+c) (b+d)

β a b

)
Which is proved using the relation probability measure/density function and the

relation between the β function and factorial (see Slide 24)—and the lra tactic
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Other applications

▶ Observing a noisy draw from a normal distribution
[Affeldt et al., 2025c]

▶ Quantum programming [Zhou et al., 2023]

▶ Study of fuzzy logics by Natalia Slusarz [Affeldt et al., 2024b]

▶ Truth values are not boolean values but ranges of real
numbers/extended real numbers

▶ The semantics of formulas becomes real-valued function
whose differentiation properties are a topic of interest (e.g.,
shadow-lifting [Várnai and Dimarogonas, 2020])



The papers used for this talk
To check the related work

About MathComp-Analysis:

▶ asymptotic reasoning [Affeldt et al., 2018]

▶ formalization of hierarchies [Affeldt et al., 2020]

▶ measure theory [Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]

▶ first fundamental theorem of calculus [Affeldt and Stone, 2024]

▶ probability theory (see Alessandro Bruni’s talk at ITP
[Affeldt et al., 2025a])

About probabilistic programming using MathComp-Analysis:

▶ kernels [Affeldt et al., 2023], probabilistic termination
[Affeldt et al., 2025b]

▶ Syntax and semantics [Saito and Affeldt, 2023]

▶ Lebesgue integration toolbox and probability distribution
[Affeldt et al., 2025c]



Summary

We have explained several aspects of MathComp-Analysis:

▶ basic theories and their relation with MathComp

▶ measure theory and its pervasive use of hierarchies

▶ the toolbox of Lebesgue integration and probability distributions

▶ omitted aspect: topology

We focused in particular on one application:

▶ sfPPL: a first-order probabilistic programming language

▶ intrinsically-typed encoding using Rocq features (bidirectional
hints, canonical structures, custom entries)

▶ the mechanization of Shan’s proof of Eddy’s table game by
rewriting

https://github.com/math-comp/analysis

https://github.com/math-comp/analysis
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