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Context: The Mathematical Components project

https://github.com/math-comp/math-comp

A set of Rocq packages about mathematics:

Math Comp

» MATHCOMP provides group theory and
algebra

> extensions: finite maps (finmap),
multinomials, etc.

» major results: the Four-Color theorem
[Gonthier, 2008], the odd order theorem
[Gonthier et al., 2013a], Abel-Ruffini
[Bernard et al., 2021], etc.

> tooling: automation (algebra-tactics),
DSL to build hierarchies of mathematical
structures (HIERARCHY-BUILDER), etc.

The above libraries are “constructive”, in the
v uctive, Picture taken last month
sense that they do not use classical axioms in a high-school in France



https://github.com/math-comp/math-comp

The MATHCOMP-ANALYSIS extension

> MATHCOMP-ANALYSIS extends MATHCOMP with classical reasoning

P However, many “back-ports” are made to MATHCOMP,
e.g., automatic discharge of numeric goals

(see Alessandro Bruni’s talk at ITP [Affeldt et al., 2025a])
» MATHCOMP-ANALYSIS is about 100 files for about 90,000 l.o.c.




MATHCOMP-ANALYSIS in terms of OPAM packages

ot

. Classical reasoning: cog-mathcomp-classical

Real numbers: cog-mathcomp-reals
Compatibility with RocqQ’s standard library:
cog-mathcomp-reals-stdlib, cog-mathcomp-analysis-stdlib

P This enables, e.g., the use of the COQINTERVAL tactic
[Melquiond, 2008]

(see [Affeldt et al., 2024a] and Alessandro Bruni’s talk at ITP
[Affeldt et al., 2025a))

(Discrete distributions: cog-mathcomp-experimental-reals)

Analysis per se: cog-mathcomp-analysis
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Classical reasoning

cog-mathcomp-classical package

Classical axioms can be found in boolp.v [Affeldt et al., 2018,
Sect. 5]:

P> Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type)
(f g : forall x : A, B x),
(forall x : A, fx=gx) > f =g.

P> Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.

» Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, Px) > 4{x : A | P x}.



Naive set theory

cog-mathcomp-classical package

Please, consider using classical_sets.v!:
» complete (many lemmas, 3408 l.o.c.)

» readable statements (notations, consistent naming convention),
e.g., using company-coq in emacs:
Lemma in_setI (x : T) AB: (x €E AnB) = (x € A) & (x € B).
Proof. by apply/idP/andP; rewrite !inE. Qed.

Lemma setI_bigcupr F P A :
A n \bigcup_(i in P) F i = \bigcup_(i in P) (A n F 1i).
Proof.
rewrite predeqE - t; split -» [[At [k ? ?1]|[k ? [At ?11];
by [3 k |split = //; 3 kl.
Qed.

> well tested (used pervasively in MATHCOMP-ANALYSIS)

More about the cog-mathcomp-classical package in Takafumi
Saikawa’s talk in the next session [Saikawa et al., 2025]

'rather than, say, Ensembles



Real numbers

cog-mathcomp-reals package

Real numbers are defined in reals.v incrementally w.r.t. MATHCOMP.
It is a combination of:

» an archimedean real field (from MATHCOMP)
> a real-closed field (from MATHCOMP)

> with properties of sup (from MATHCOMP-ANALYSIS)

NormedZmodule
POrderedZmodule

IntegralDomain

ArchiRealClosedField

Compatibility with the real numbers of ROCQ’s standard library comes
from the fact that they form a model of the resulting interface



Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)



Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)
Addition for R:
» Unsurprising: 2 4+ oo = 400, 2 — 0o = —00, etc.
> But: co — 00 = —0
P it is not undefined as in the mathematical practice
» thanks to this, extended real numbers form an additive monoid,

enabling the use of MATHCOMP’s iterated operators
[Bertot et al., 2008]



Extended real numbers (1/2)

cog-mathcomp-reals package

A deceptively simple data structure (R LRU {—00,400}) and a

surprisingly long theory (constructive_ereal.v: 4796 l.o.c)
Addition for R:
» Unsurprising: 2 4+ oo = 400, 2 — 0o = —00, etc.
> But: co — 00 = —0
P it is not undefined as in the mathematical practice
» thanks to this, extended real numbers form an additive monoid,

enabling the use of MATHCOMP’s iterated operators
[Bertot et al., 2008]

Multiplication for R:
» Unsurprising:

P 400 X 400 = 400, —00 X —00 = 400
> +00 X —00 = —00 X 400 = —00
> —2 X 400 =—00

» Standard in measure theory: 0 X o0 =0



Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:

1 1
>6_—i-oo,+ =0
1

L = —0Q, thusi;ﬁ—m

> But: T T
P in fact, }m = —% only when z € R\ {0}



Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:

> l:«Foo7 Tloo =0
1

0
L = —0Q, thusi;ﬁ—m

> But: T T
P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1
w(A) /yeA |f(y)|du
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> But: T T
P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1
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Formalization using MATHCOMP-ANALYSIS:
Definition iavg £ A := (mu A)"-1 * \int[mul _(y in A) ~| (£ y%:E |.



Extended real numbers (2/2)

cog-mathcomp-reals package

Inversion for R:
1 1
> 5=t 55 =0
L1 1 1
> But: — = —o0, thus — # — 75

P in fact, }m = 7% only when z € R\ {0}

Sample application: “average” of a real-valued function f over a set A

1 /
|f(y)ldp
M(A) yeEA
Formalization using MATHCOMP-ANALYSIS:

Definition iavg £ A := (mu A)"-1 * \int[mul _(y in A) ~| (£ y%:E |.

Before version 1.12.0, we were using a cast to reals (fine) with an injection back
(%:E)

Definition iavg f A :=
(fine (mu A))"-1%:E * \int[mul_(y in A) ~| (£ yY%:E |.
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Measurable structures in MATHCOMP-ANALYSIS

> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and

P countable union
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> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and
P countable union
» In fact, there are also “poorer” structures of importance:

semiring ring of algebra
of sets sets of sets
contains 0 v v /

closed under N

closed under “semi-difference”
closed under U

contains the whole set
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“semi-difference”: VA, B € G,3D C G, D pairwise-disjoint A\ B = Uj_; D;



Measurable structures in MATHCOMP-ANALYSIS

> A Y x on a set X is a collection of subsets of X that

P contains 0
P is closed under complement and

P countable union
» In fact, there are also “poorer” structures of importance:

semiring ring of algebra

of sets sets of sets
contains 0 v v v v
closed under N v v v v
closed under “semi-difference” v v v v
closed under U v v v
contains the whole set v v
closed under countable union Y

“semi-difference”: VA, B € G,3D C G, D pairwise-disjoint A\ B = Uj_; D;

» These structures intuitively form a hierarchy:

semiring of sets

U-closed

contains the whole set

algebra of sets

countable U-closed




Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

semiring of sets

SemiRingOfSets

U-closed

RingQ0fSets

contains the
whole set

AlgebraOfSets

countable U-closed



Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

semiring of sctsl

SemiRingOfSets

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed




Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed




Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :
{ measurableU : @setU_closed T measurable }.



Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO ;
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.
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Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.
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Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T) nat,
(forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }.



Measurable structures in MATHCOMP-ANALYSIS

Formalization using HIERARCHY-BUILDER [Cohen et al., 2020] to construct the
Lebesgue measure by extension [Affeldt and Cohen, 2023]

HB.mixin Record isSemiRingOfSets (d : measure_display) T := {
measurable : set (set T) ;
measurable0 : measurable setO
measurablel : setI_closed measurable;
semi_measurableD : semi_setD_closed measurable }.

HB.structure Definition SemiRingQOfSets d :=
semiring of sets {T of Pointed T & isSemiRingOfSets d T}.

SemiRingOfSets |HB.mixin Record SemiRingOfSets_isRingOfSets d T of SemiRingOfSets d T :=
{ measurableU : @setU_closed T measurable }.
U-closed

RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

HB.structure Definition RingOfSets d :=
{T of SemiRingOfSets d T & SemiRingOfSets_isRingOfSets d T }.

HB.mixin Record RingOfSets_isAlgebraOfSets d T of RingOfSets d T :=
{ measurableT : measurable [set: T] }.

HB.structure Definition AlgebraOfSets d :=
{T of RingOfSets d T & RingOfSets_isAlgebraOfSets d T }.

HB.mixin Record hasMeasurableCountableUnion d T of SemiRingOfSets d T := {
bigcupT_measurable : forall F : (set T) nat,
(forall i, measurable (F i)) -> measurable (\bigcup_i (F i)) }.

HB.structure Definition Measurable d :=
{T of AlgebraOfSets d T & hasMeasurableCountableUnion d T }.



Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra

of sets sets of sets
contains v v v v
closed under N v v v
closed under “semi-difference” v % v v
closed under U v v v
contains the whole set v v
closed under countable union v v

o-rings are used in [Halmos, 1974] and enable generalizations
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With HIERARCHY-BUILDER, adding o-rings is simple:
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Extensibility of hierarchies using HIERARCHY-BUILDER

In fact, there is yet another measurable structure:

semi ring ring of algebra o-algebra
of sets sets of sets
contains v v v v v
closed under N v v
closed under “semi-difference” v v v v
closed under U v v
contains the whole set v v
closed under countable union v v

o-rings are used in [Halmos, 1974] and enable generalizations

With HIERARCHY-BUILDER, adding o-rings is simple:

SemiRingOfSets

U-closed U-closed

SemiRingOfSets

RingOfSets RingOfSets

contains the
whole set

AlgebraOfSets

countable U-closed

contains the
whole set

AlgebraOfSets

countable U-closed

countable U-closed

SigmaRing

contains the
whole set




Measures in MATHCOMP-ANALYSIS
A (non-negative) measure is a function u : ¥x — [0, 0] such that
> 1(0) =0 and
> S u(Fy) e (U, Fi) for pairwise-disjoint measurable sets F;



Measures in MATHCOMP-ANALYSIS
A (non-negative) measure is a function u : ¥x — [0, 0] such that
> 1(0) =0 and
> S u(Fy) e (U, Fi) for pairwise-disjoint measurable sets F;

Measure-like functions also form a hierarchy
[Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]:

p20, (U Fy) = Yo n(Fy) |

w(F;) — — w(U, F;

vy finite, u(U) = 32524 v (U)

YU, p(U) # iooi

FinNumFun
FiniteMeasure

JF;, T =U; Fi AVi, u(F;) < +oo

SigmaFiniteContent

SigmaFiniteMeasure

w(U; Fi) = im0 n(Fy)
w(T) <1
AdditiveCharge
-, SubProbability
it n(Fy) — — pu(U; F
w(T) =1

Probability



Kernels in MATHCOMP-ANALYSIS

A kernel X ~~Y is a function k : X — 3y — [0, 00] such that
—_———

measure

VU € Xy, x — ka2 U is a measurable function.



Kernels in MATHCOMP-ANALYSIS

A kernel X ~~Y is a function k : X — 3y — [0, 00] such that
—_———

measure

VU € Xy, x — ka2 U is a measurable function.

Kernels also form a hierarchy [Affeldt et al., 2025b]:

YU, z +— fx U is measurable

Vo, kx is a—ﬁnit?/ Jv; finite, k = Z?io v,

[a—ﬁnite transition kernel] s-finite kernel

Vz, k x is finite

[ﬁnite transition kernel]

Ir, Ve, kax T <7r

finite kernel

sup, {kxzT} <1

subprobability kernel

Ve, kx T =1

probability kernel



The key property of s-finite kernels
Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing

\ /

zmkzxiﬁisz

def )\xU./k;(x,y) Udix
y



The key property of s-finite kernels
Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing

\ /

I[i]k: X% 7
def
= )\xU./k;(x,y)Udlm
y

» Direct definition using the Lebesgue integral in
MATHCOMP-ANALYSIS:

Definition kcomp 1 k x U := \int[1l x]_y k (x, y) U.



The key property of s-finite kernels

Stability by composition [Staton, 2017]:

1. x sy E:X xy&ing
@kzxiﬁisz
def

= )\xU./k;(x,y)Udlm
y

» Direct definition using the Lebesgue integral in
MATHCOMP-ANALYSIS:

Definition kcomp 1 k x U := \int[1l x]_y k (x, y) U.

» The difficulty of the stability proof is to establish measurability
[Affeldt et al., 2025b, Sect. 5]
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Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:

> For f integrable on R, define F(z) &' [ fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).



Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:

» For f integrable on R, define F(x) def [ fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).

» Second FTC for Lebesgue integration for continuous functions
[Affeldt et al., 2025c]:

» For f with antiderivative F in ]a, b[, f continuous within
[a,b], F differentiable in ]a, b[ with F(x) — F(a) and
r—a

F(x) —= F(b), we have:
T—0"

/ f(z)dp = F(b) - F(a).
z€la,b]



Overview of the formalization of the Lebesgue integral
» First FTC for Lebesgue integration [Affeldt and Stone, 2024]:
» For f integrable on R, define F(x) def [ fodt.
Then F is differentiable and F'(z) = f(z) (a.e.).

» Second FTC for Lebesgue integration for continuous functions
[Affeldt et al., 2025c]:

» For f with antiderivative F in ]a, b[, f continuous within
[a,b], F differentiable in ]a, b[ with F(x) — F(a) and
r—a

F(x) —= F(b), we have:
z—b—

[ f@du=rF) - Fo).
z€la,b]

» From the FTC, follow

» integration by parts
> integration by substitution (a.k.a. change of variables)
» continuity/differentiation under the integral sign

over bounded and unbounded intervals [Affeldt et al., 2025¢]
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Available probability distributions

probability.v

)
L — o
=1
Y a b

Uniform

o pa
2o
((( “\\%%
B

Poisson

(Pictures are taken from Wikipedia)



Example: the Beta distribution



Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l

At — =
fue[o,l] w1 —wu)t~tdp B(a,b)




Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l
fue[o,u ua_l(l - u)b_ldﬂ ,B(a, b)

At —

Formalization of the Beta probability density function beta_pdf:
> At (1 — )71 (9,1) encoded as
XMonemX01 a b = (fun ¢t =>t "+ a.-1 * (1 - t) "+ b.-1 \_ “[0, 11)
> ((a,b) encoded as [ XMonemX01labz dpu

» Definition beta_pdf a b ¢t := XMonemX01 a b ¢ / B ab.



Example: the Beta distribution
The Beta probability density function (a,b > 0 and t € [0,1]):

ta—l(l _ t)b_l B ta_l(l _ t)b—l

At — =
fue[o,l] w1 — )b~ tdp B(a,b)

Formalization of the Beta probability density function beta_pdf:
> At (1 — )71 (9,1) encoded as
XMonemX01 a b = (fun ¢t =>t "+ a.-1 * (1 - t) "+ b.-1 \_ “[0, 11)
> ((a,b) encoded as [ XMonemX01labz dpu

» Definition beta_pdf a b ¢t := XMonemX01 a b ¢ / B ab.

Formalization of the probability measure beta_prob a b:

Uw— beta_pdfabtdpu
teU



Properties of the Beta distribution and of the § function

» Integration w.r.t. probability measure:
Lemma integral_beta_prob a b f U :
measurable U -> measurable_fun U f ->
\int [beta_prob a b]_(x in U) ~|f x| < +oo ->
\int [beta_prob a b]_(x in U) f x =
\int[mu] _(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodym’s change of variables
[Ishiguro and Affeldt, 2024])
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Properties of the Beta distribution and of the § function

» Integration w.r.t. probability measure:

Lemma integral_beta_prob a b £ U :
measurable U -> measurable_fun U f ->
\int [beta_prob a b]_(x in U) ~|f x| < +oo ->
\int [beta_prob a b]_(x in U) f x =
\int[mu] _(x in U) (f x * (beta_pdf a b x)%:E).

(using Radon-Nikodym’s change of variables
[Ishiguro and Affeldt, 2024])

» Symmetry of the 8 function:
Lemma betafun_sym (a b : nat) : S ab=/Db a.

(using integration by substitution)

» Relation with the factorial (a,b > 0):

(@ — 1)I(b—1)!

pab= (@ +b)—1)!

(by induction, symmetry of 3, and integration by parts)
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Motivation: Eddy’s table game [Eddy, 2004]

>

game with two players (Alice and Bob) in a casino
the casino rolls a ball to determine p (and hides it)

Alice has won 5 out of 8 games

vvyYyvyy

the casino repeatedly rolls balls until a player has 6 points
Alice bets she will win

what is her probability to win?

Encoding as a probabilistic program [Shan, 2018b]:

(
let p := sample (uniform(0,1)) in
let 2 := sample (binomial(8, p)) in
let _:= guard(z = 5) in
let y := sample (binomial(3,p)) in
return(1 < y))



Intuitive semantics

» Intuitively, each instruction is an s-finite kernel:
» sample (...) is a probability kernel
> (...) is a probability kernel
» score (f k) is an s-finite kernel
P its meaning: we observe £ from the distribution with
density f
> for example, we observe k = 4 with the density
fr(k) = ’"k—fefr (probability mass function of the Poisson
distribution)
> guard(x = n) 4" if 2 = n then tt else score (0).
» the semantics of let x := ey in ey is kernel composition

» because it is stable for s-finite kernels (as we saw Slide 18)



Shan’s proof of Eddy’s table game

Proof represented by a sequence of program transformations
[Shan, 2018b, Shan, 2018a]:

( 0 ( 1
let p := sample (uf)iforr'n(O, 1)) i'" let p := sample (uniform(0, 1)) in
let  := sample (bmon'ual(S, p)) in — let  := sample (binomial(8, p)) in
let _ := guard(z = 5) n . let - := guard(z = 5) in
ieettgr;jlsi";f;l)e (binomial(3, p)) in sample (bernoulli (1 - (1 - p)g)))
4
( 3 ( 2
let _ := score (é) in Slide 40 let p := sample (uniform(0, 1)) in
5 3 s
let p := sample (beta(6,4)) in = let _:= score (56P (1-p) ) in
sample (bernoulli (1 —(1-— p)d))) sample (bernoulli (1 - (1 - p)‘j)))
1
( 4 (sample (bernoulli (%)))
let _ := score (é) in —
(10 5
sample (bernoulh ( i1 ) ) )
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sfPPL: a first-order probabilistic language

> Types:
A == U|B|N|R|P(A)|A: xA;

» Expressions (f is a measurable function?):

e == tt|b|n|r]|fler,...,en) | (e1,e2) | mi(e) | m2(e)
ifethene; elsees | z | return(e) | let « := ey in eq |
sample (e) | score (e) | (e)

> Type contexts:
Dio=(z1:Ar;.. 5200 Ap)
» Type judgments:

» deterministic expressions: I'Fp e: A
» probabilistic expressions: I'Fp e : A

Examples:
T'hoe: P(A) I'toe:R
I'p sample(e) : A T'bpscore(e) : U
I'Fpe: A
I'tp (e) : P(A)

2MeasulraLbility is not always easy to establish, e.g., m+> normal_probms



Formal syntax for sfPPL (excerpt)
Intrinsically-typed syntax: dependent inductive type with 3 indices
1. flag: deterministic or probabilistic
2. typ: the type of the expression
3. ctx: association list variable<>type

Inductive exp : flag -> ctx -> typ —> Type :=



Formal syntax for sfPPL (excerpt)
Intrinsically-typed syntax: dependent inductive type with 3 indices
1. flag: deterministic or probabilistic
2. typ: the type of the expression
3. ctx: association list variable<>type
Inductive exp : flag -> ctx -> typ —> Type :=

(* real constants are deterministic *)

| exp_real g : R -> exp D g Real

(* addition of real numbers *)

| exp_add g : exp D g Real -> exp D g Real -> exp D g Real

(* a Bernoulli measure of some real parameter *)

| exp_bernoulli g : exp D g Real -> exp D g (Prob Bool)

(* Poisson pmf *)

| exp_poisson g : nat -> exp D g Real -> exp D g Real

(* the type of a wvariable depends on the context *)

| exp_var g str t : t = lookup Unit g str -> exp D g t

(* the context is extended inside a let expression *)

| exp_letin g t1 t2 str : exp P g t1 -> exp P ((str, t1) :: g) t2 ->
exp P g t2

(* sampling from a probability distribution *)

| exp_sample gt : exp D g (Prob t) -> expP g t

(* normalization *)

| exp_normalize gt : exp P gt -> exp D g (Prob t)

(* scoring *)

| exp_score g : exp D g Real -> exp P g Unit



Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
:exp [::] _ :=
exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

[erer1)

(exp_var "y"

[eref1])).



Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add
cexp [::] _ :=
exp_letin "x" (exp_real 1)

(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"

foreri)
(exp_var "y"

[eref1])).
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"exp 7gl (lookup Unit ?gl "x")" while it is expected to
have type "exp 7gl Real".




Issue #1: unification order

Let us encode: let x := 1 in let y := 2 in x + y
using “concrete strings” for variable identifiers ("x", "y")

Fail Example letin_add (* same program with explicit variables *)

cexp [::] _ :=

exp_letin "x" (exp_real 1)
(exp_letin "y" (exp_real 2)

(exp_add

(exp_var "x"
fereis)

(exp_var "y"

[eref1]))).

Qexp_letin [::]

_ "x" (exp_real 1)

(Gexp_letin 7g0 _ "y" (exp_real 2)

(Gexp_add 7gl Real

(Gexp_var 7gl _ "x
‘@erefl (Lookup Unit 7gl "x") ‘)

(Gexp_var 7gl _ "y"
‘@erefl (lookup Unit ?gi

) \))).

have type "exp ?gl Real".

"exp_var "x" (erefl (lookup Unit 7gl "x"))" has type
"exp ?7gl (lookup Unit ?gl "x")" while it is expected to




Solution #1: bidirectional
hints [The Rocq Development Team, 2025a]

Special annotation & to direct unification:

Arguments exp_add {g} &. (* unify preferentially g first *)
Arguments exp_letin {g} & {A B}.

As a result:
1. gl unifies to [:: ("y", Real), ("x", Real)l
2. lookup Unit gl "x" evaluates to Real

Example letin_add : exp [::] _ :=
exp_letin "x" (exp_real 1)
(exp_letin "y" (exp_real 2)

(exp_add
(exp_var "x" erefl)
(exp_var "y" erefl))).

let x := 1 in let y := 2 in x + y =



[ssue #2: universally quantified strings

Encoding
let x := 1 in let y := 2 inx +y

with universally quantified strings for variable identifiers fails:

Fail Example
letin_add (x y : string) (xy : x !=y) (yx : y !=x) : exp [::] =
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add
(exp_var x erefl)
(exp_var y erefl))).

cannot unify "lookup Unit [:: (y, Real); (x, Real)] x"
and "Real".




Solution # 2: unification using canonical structures

Overview

Direct application of [Gonthier et al., 2013b]
Goal: a proof of

‘R = lookup ((y,R) :: (2, R) :: []) x‘

1. We introduce the following structure:
Record find z ¢ := Find I' (¢t = Lookup I )
[ ——

ctx_prf
2. We look for an instance P, : find 2 R such that

> the 1st projection is I'(Fy) = (y,R) = (2, R) = ],
» the 2nd projection ctx_prf provides the desired proof



Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) :c‘

Unification using canonical structures:

1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y
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Solution # 2: unification using canonical structures
Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) x‘

Unification using canonical structures:

1. We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y

2. A structure P; : find z R is simply such that

> I'(P) = (x,R) == ]
3. There is a canonical way to construct /7

» The instance that puts (z,R) at the head

(say, “found z R []”)

4. Given P, there is a canonical way to build P

» The instance that puts (y,R) at the head providing x # y
(say, “recurse z Ry R {H : infer (y = x)} (f : find z ¢)”)



Solution # 2: unification using canonical structures

Details

Goal: a proof of’]R = lookup ((y,R) = (z,R) = []) x‘

Unification using canonical structures:

1.

We look for Py : find z R such that
I'(FRy) = (y,R) :: T' () for some P : find x R with x # y

. A structure P; : find x R is simply such that

> I'(P) = (x,R) == ]
There is a canonical way to construct P

» The instance that puts (z,R) at the head
(say, “found z R []”)

. Given Py, there is a canonical way to build Py

» The instance that puts (y,R) at the head providing x # y
(say, “recurse z Ry R {H : infer (y = x)} (f : find z ¢)”)

To control the order, there are “tags” that Rocq unfolds
when unification fails



Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:

Definition exp_var' str {t : typ} (f : find str t) :=
Qexp_var L(f) t str (ctx_prf f).
~—~— | —

1st projection 2nd projection



Solution # 2: unification using canonical structures

To cover the case of universally quantified strings, we ask Rocq
to look for find structures using:
Definition exp_var' str {t : typ} (f : find str t) :=
Qexp_var L(f) t str (ctx_prf f).
~—~—~ | S —

1st projection 2nd projection

let x := 1 in let y := 2 inx +y

Example letin_add (x y : string)
(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=
exp_letin x (exp_real 1)
(exp_letin y (exp_real 2)
(exp_add (exp_var' x _) (exp_var' y _))).



Formal syntax of sfPPL applied to Eddy’s table game

Using ROcQ’s custom entries [The Rocq Development Team, 2025b]:

Definition guard {g} str n
: @exp R P [:: (str, ) ; gl _ :=
[if #{str} == {n}:N then return TT
else Score {0}:R].

Definition tableO : @exp R _ [::] _ :=
normalize( [Normalize
let p := sample (uniform(0, 1)) in let "p" :
let z := sample (binomial(8,p)) in  let "x"
let _ := guard(z = 5) in let "_" {guard "x" 5} in
let y := sample (binomial(3,p)) in  let "y" := Sample Binomial {3} #{"p"} in
return(y > 1)) return {1}:N <= #{"y"}].

Sample Uniform {0} {1} {1trOi} in
Sample Binomial {8} #{"p"} in



Formal semantics of sfPPL [Saito and Affeldt, 2023]

Basic idea of the semantics [Staton, 2017]:

» deterministic expressions compile to measurable functions:
[TFoe:A]:[I] — [A]
» probabilistic expressions compile to s-finite kernel:

[T ke e: A] : [T]<25]A]

Formally, we provide two functions execD and execP so that semantics can
be computed by syntax-directed rewrites

» Example: semantics of let expressions is composition of s-finite kernels
(see Slide 18)

Lemma execP_letin g x t1 t2
(el : exp P g t1) (e2 : exp P ((x, t1) :: g) t2) :

execP [let x := el in e2] =
kcomp' (execP el) (execP e2).



normalize( 0

let p := sample (uniform(0, 1)) in
:= sample (binomial(8, p)) in

guard(z = 5) in

let y := sample (binomial(3, p)) in

return(l < y))

normalize( 3
let - := score (% in

let p := sample (beta(6,4)) in
sample (bernoulli (1 —(1-— p)3)))

1
normalize( 4
let _ := score (é) in
sample (bernoulli (%)))

Slide 40
«—

Reminder: Shan’s proof of Eddy’s table game

normalize( 1
:= sample (uniform(0, 1)) in
sample (binomial(8, p)) in

let _:= guard(z = 5) in

sample (bernoulli (1 - (1 - p)a)))
N

normalize( 2

let p := sample (uniform(0, 1)) in

let _ := score (56p5(1 - p)s) in

sample (bernoulli (1 - (1 - p)3)))

normalize (sample (bernoulli (%)))

5




Sample transformation: 3 — 4

(
let _ := score (%) in
let p := sample (beta(6,4)) in
sample (bernoulli (1 — (1 — p)?)))

J collapses samplings

let _ := score (l) in
sample (bernoulli (12)))




The heart of transformation 3 — 4

let p := sample (beta(6,4)) in
sample (bernoulli (1 — (1 — p)?))

I

10
sample (bernoulli <11>>

Semantically, for all U:

10
/M<l—<1—z>3>dWU=mwm<u>U

z



Proving transformation 3 — 4
Goal:

1
| bemontt (1 = (1 = 2)°) dteta(6.4) U = beruouti (17 ) U

z

This can be derived from:

1
/lmcmlli((l—z)3)dbcw(6,4)U=lm<mlli<n>U

This is an instance of (for all a, b, ¢, d):

fze[O 1) bernoulli (z¢(1 — 2)?) dbeta(a,b) =

bernoully <W>

Which is proved using the relation probability measure/density function and the

relation between the 3 function and factorial (see Slide 24)—and the 1ra tactic
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Other applications

» Observing a noisy draw from a normal distribution
[Affeldt et al., 2025c¢]

» Quantum programming [Zhou et al., 2023)
» Study of fuzzy logics by Natalia Slusarz [Affeldt et al., 2024b)

» Truth values are not boolean values but ranges of real
numbers/extended real numbers

» The semantics of formulas becomes real-valued function
whose differentiation properties are a topic of interest (e.g.,
shadow-lifting [Varnai and Dimarogonas, 2020])



The papers used for this talk

To check the related work

About MATHCOMP-ANALYSIS:
> asymptotic reasoning [Affeldt et al., 2018]
» formalization of hierarchies [Affeldt et al., 2020]
» measure theory [Affeldt and Cohen, 2023, Ishiguro and Affeldt, 2024]
> first fundamental theorem of calculus [Affeldt and Stone, 2024]
»

probability theory (see Alessandro Bruni’s talk at ITP
[Affeldt et al., 2025a))

About probabilistic programming using MATHCOMP- ANALYSIS:

> kernels [Affeldt et al., 2023], probabilistic termination
[Affeldt et al., 2025b]

» Syntax and semantics [Saito and Affeldt, 2023]

» Lebesgue integration toolbox and probability distribution
[Affeldt et al., 2025¢]



Summary

We have explained several aspects of MATHCOMP-ANALYSIS:
» basic theories and their relation with MATHCOMP
» measure theory and its pervasive use of hierarchies
» the toolbox of Lebesgue integration and probability distributions

» omitted aspect: topology

We focused in particular on one application:
» sfPPL: a first-order probabilistic programming language

» intrinsically-typed encoding using Rocq features (bidirectional
hints, canonical structures, custom entries)

» the mechanization of Shan’s proof of Eddy’s table game by
rewriting

https://github.com/math-comp/analysis
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