
A library for the automated transformation of
Rocq AST

Alexandre Jean
University of Strasbourg

27 september 2025



Context

• Proofs in proof assistant like Rocq are used to formalize mathematics and verify
programs using proof script.

• Many of these proof scripts are brittle and difficult to maintain and reuse.
• How can we improve some criteria such as modularity, automatisation and robustness

of Rocq proof ?

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 2/11



State of the art: transformations on Rocq code

We found multiple examples of transformations on Rocq code, each with their own
implementation:

• Towards Automatic Transformations of Coq Proof Scripts [4]
• Designing Proof Deautomation in Rocq [5]
• Post-processing Coq Proof Scripts to Make Them More Robust [3]
• Code Generation via Meta-programming in Dependently Typed Proof Assistants [1]

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 3/11



Rocq-ditto

• Rocq AST1 rewriting Ocaml library.
• source to source transformations.
• Use rocq-lsp [2] to get a Rocq AST from a file.
• Allows for easy Rocq-AST rewriting by automatically moving other AST nodes when

adding, removing or replacing a node.
• Compatible with Ocaml standard library functions such as filter, fold, map.
• Dual representation of proof: proof-tree and linear structure.
• Allow for speculative execution.
• Quoting and unquoting functions.
• Compatible with modern Rocq 9.0.0 and previous version back to 8.17.

1Abstract Syntax Tree
Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 4/11



How to define a transformation with Rocq-ditto

Definition
Transformation: A transformation is a function f that take a proof as input and return a
list of transformation steps drawn from the set

{Remove(id), Replace(id, new_node), Add(new_node),
Attach(new_node, attach_position, anchor_id)}

• Remove(id) : remove the node identified by id.
• Replace(id, new_node) : replace the node identified by id with new_node
• Add(new_node) : add a new node to the AST
• Attach(new_node,attach_position,anchor_id) : places new_node on a position

relative to the node with the id anchor_id.

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 5/11



Some current transformations

• A transformation to replace auto by the tactics computed by auto .
• A transformation to replace multiple consecutive call to intro by a single intros call.
• A transformation to remove unnecessary tactics in a proof.
• A transformation to replace call to tactics creating fresh variables such as intros with

intros V1 V2 . . . Vn where each Vi corresponds to a variable automatically introduced
by the tactic.

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 6/11



Zoom on a Transformation: Replacing tactics introducing
fresh variables automatically with a fixed version
Theorem fact_grow_weak :
forall n m : N,
n < m -> n! <= m!.

Proof.
induction m.
lia.
simpl.
intros.
inversion H.
lia.
lia.

Qed.

Theorem fact_grow_weak_ :
forall n m : N,
n < m -> n! <= m!.

Proof.
induction m as [|m IHm].
lia.
simpl.
intros H.
inversion H as [|m0 H1 H0].
lia.
lia.

Qed.
Automatically introduced variables Fixed variables names

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 7/11



Using speculative execution to get the variables before
and after a tactic execution

Let r(State(S), tactic) be a pure function that take a state State(S) and returns a new
state State(S1) equal to the state after apply tactic to S.

Idea: For each tactic Li in a proof L = [L1, . . . , Ln], compute
• State(Li)
• State(Li+1)

Method:
• Take the proof state after L1, . . . , Li−1.
• Run Li on that proof state to get the new state.
• Extract variable names before/after.

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 8/11



Zoom on a Transformation: Replacing intros with intros
V1 V2 . . . Vn

Identifying intros tactics:
• Quote each proof node and check if its string representation is “intros”.
• Intros automatically introduces variables into the context.

Extracting new variables:
• For each node, track proof states before and after execution.
• Vprev: variables before; Vintros: variables after.
• New variables = Vintros \ Vprev.

Constructing new steps:
• Concatenate names of new variables to “intros”.
• Quote into an AST node and wrap in a Replace step.
• Final result: list of Replace steps for each intros tactic.

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 9/11



Conclusion

Summary
• Goal : Improve the maintenance and robustness of Rocq proof automatically.
• Our solution : Automated transformation of Rocq proof defined by the user.
• Results : A library allowing users to write transformations and some simple

transformations examples.

https://github.com/blackbird1128/coq-ditto

Thank you for your attention, do you have any
questions ?

Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 10/11

https://github.com/blackbird1128/coq-ditto


References
Mathis Bouverot-Dupuis and Yannick Forster.
Code Generation via Meta-programming in Dependently Typed Proof Assistants.

Emilio Jesús Gallego Arias, Ali Caglayan, Shachar Itzhaky, Fréderic Blanqui, Rodolphe Lepigre, et al.
rocq-lsp: a Language Server for the Rocq Prover, 2025.

Titouan Lozac’h and Nicolas Magaud.
Post-processing Coq Proof Scripts to Make Them More Robust.
In 2nd Workshop on the development, maintenance, refactoring and search of large libraries of proofs ,
September 13-14, 2024, Tbilissi, Georgia, 2024.

Nicolas Magaud.
Towards Automatic Transformations of Coq Proof Scripts.
In Automated Deduction in Geometry (ADG 2023), Belgrade, Serbia, November 2023. Pedro
Quaresma et Kovács Zoltán.

Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin Pierce.
Designing Proof Deautomation in Rocq.
In Proceedings of the 15th Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU), 2025.Alexandre Jean A library for the automated transformation of Rocq AST 27 september 2025 11/11


