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Context

• Proofs in proof assistant like Rocq are used to formalize mathematics and verify
programs using proof script.

• Many of these proof scripts are brittle and difficult to maintain and reuse.
• How can we improve some criteria such as modularity, automatisation and robustness

of Rocq proof ?
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State of the art: transformations on Rocq code

We found multiple examples of transformations on Rocq code, each with their own
implementation:

• Towards Automatic Transformations of Coq Proof Scripts [4]
• Designing Proof Deautomation in Rocq [5]
• Post-processing Coq Proof Scripts to Make Them More Robust [3]
• Code Generation via Meta-programming in Dependently Typed Proof Assistants [1]
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Rocq-ditto

• Rocq AST1 rewriting Ocaml library.
• source to source transformations.
• Use rocq-lsp [2] to get a Rocq AST from a file.
• Allows for easy Rocq-AST rewriting by automatically moving other AST nodes when

adding, removing or replacing a node.
• Compatible with Ocaml standard library functions such as filter, fold, map.
• Dual representation of proof: proof-tree and linear structure.
• Allow for speculative execution.
• Quoting and unquoting functions.
• Compatible with modern Rocq 9.0.0 and previous version back to 8.17.

1Abstract Syntax Tree
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How to define a transformation with Rocq-ditto

Definition
Transformation: A transformation is a function f that take a proof as input and return a
list of transformation steps drawn from the set

{Remove(id), Replace(id, new_node), Add(new_node),
Attach(new_node, attach_position, anchor_id)}

• Remove(id) : remove the node identified by id.
• Replace(id, new_node) : replace the node identified by id with new_node
• Add(new_node) : add a new node to the AST
• Attach(new_node,attach_position,anchor_id) : places new_node on a position

relative to the node with the id anchor_id.
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Some current transformations

• A transformation to replace auto by the tactics computed by auto .
• A transformation to replace multiple consecutive call to intro by a single intros call.
• A transformation to remove unnecessary tactics in a proof.
• A transformation to replace call to tactics creating fresh variables such as intros with

intros V1 V2 . . . Vn where each Vi corresponds to a variable automatically introduced
by the tactic.
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Zoom on a Transformation: Replacing tactics introducing
fresh variables automatically with a fixed version
Theorem fact_grow_weak :
forall n m : N,
n < m -> n! <= m!.

Proof.
induction m.
lia.
simpl.
intros.
inversion H.
lia.
lia.

Qed.

Theorem fact_grow_weak_ :
forall n m : N,
n < m -> n! <= m!.

Proof.
induction m as [|m IHm].
lia.
simpl.
intros H.
inversion H as [|m0 H1 H0].
lia.
lia.

Qed.
Automatically introduced variables Fixed variables names
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Using speculative execution to get the variables before
and after a tactic execution

Let r(State(S), tactic) be a pure function that take a state State(S) and returns a new
state State(S1) equal to the state after apply tactic to S.

Idea: For each tactic Li in a proof L = [L1, . . . , Ln], compute
• State(Li)
• State(Li+1)

Method:
• Take the proof state after L1, . . . , Li−1.
• Run Li on that proof state to get the new state.
• Extract variable names before/after.
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Zoom on a Transformation: Replacing intros with intros
V1 V2 . . . Vn

Identifying intros tactics:
• Quote each proof node and check if its string representation is “intros”.
• Intros automatically introduces variables into the context.

Extracting new variables:
• For each node, track proof states before and after execution.
• Vprev: variables before; Vintros: variables after.
• New variables = Vintros \ Vprev.

Constructing new steps:
• Concatenate names of new variables to “intros”.
• Quote into an AST node and wrap in a Replace step.
• Final result: list of Replace steps for each intros tactic.
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Conclusion

Summary
• Goal : Improve the maintenance and robustness of Rocq proof automatically.
• Our solution : Automated transformation of Rocq proof defined by the user.
• Results : A library allowing users to write transformations and some simple

transformations examples.

https://github.com/blackbird1128/coq-ditto

Thank you for your attention, do you have any
questions ?
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