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Context

® Proofs in proof assistant like Rocq are used to formalize mathematics and verify
programs using proof script.

® Many of these proof scripts are brittle and difficult to maintain and reuse.

® How can we improve some criteria such as modularity, automatisation and robustness
of Rocq proof ?



State of the art: transformations on Rocq code

We found multiple examples of transformations on Rocq code, each with their own
implementation:

e Towards Automatic Transformations of Coq Proof Scripts [4]

® Designing Proof Deautomation in Rocq [5]

® Post-processing Coq Proof Scripts to Make Them More Robust [3]

e Code Generation via Meta-programming in Dependently Typed Proof Assistants [1]



Rocg-ditto

® Rocq AST? rewriting Ocaml library.
® source to source transformations.
e Use rocg-Isp [2] to get a Rocq AST from a file.

e Allows for easy Rocq-AST rewriting by automatically moving other AST nodes when
adding, removing or replacing a node.

e Compatible with Ocaml standard library functions such as filter, fold, map.
® Dual representation of proof: proof-tree and linear structure.

e Allow for speculative execution.

e Quoting and unquoting functions.

e Compatible with modern Rocq 9.0.0 and previous version back to 8.17.

! Abstract Syntax Tree



How to define a transformation with Rocq-ditto

Definition
Transformation: A transformation is a function f that take a proof as input and return a
list of transformation steps drawn from the set

{Remove(id), Replace(id,new_node), Add(new_node),

Attach(new_node, attach_position, anchor_id)}

Remove(id) : remove the node identified by id.
Replace(id, new_node) : replace the node identified by id with new_node
Add(new_node) : add a new node to the AST

Attach(new_node,attach_position,anchor_id) : places new_node on a position
relative to the node with the id anchor_id.



Some current transformations

A transformation to replace auto by the tactics computed by auto .

A transformation to replace multiple consecutive call to intro by a single intros call.

A transformation to remove unnecessary tactics in a proof.

A transformation to replace call to tactics creating fresh variables such as intros with
intros V; Vo ...V, where each V; corresponds to a variable automatically introduced
by the tactic.



Zoom on a Transformation: Replacing tactics introducing

fresh variables automatically with a fixed version

Theorem fact_grow_weak :
forall nm : N,
n<m-> n! <=mnm!.

Proof.

induction m.
lia.
simpl.
intros.
inversion H.
lia.
lia.
Qed.
Automatically introduced variables

Theorem fact_grow_weak_ :
forall nm : N,
n<m-> n! <=mnm!.
Proof.
induction m as [|m IHm].
lia.
simpl.
intros H.
inversion H as [|mO H1 HOJ.
lia.
lia.
Qed.
Fixed variables names



Using speculative execution to get the variables before
and after a tactic execution

Let r(State(S), tactic) be a pure function that take a state State(S) and returns a new
state State(S1) equal to the state after apply tactic to S.
Idea: For each tactic L; in a proof L = [Ly,..., L], compute

e State(L;)

L4 State(LH_l)

Method:
® Take the proof state after Lq,...,L; 1.
® Run L; on that proof state to get the new state.

® Extract variable names before/after.



Zoom on a Transformation: Replacing intros with intros
ViV,...V,

Identifying intros tactics:
® Quote each proof node and check if its string representation is “intros”.
® Intros automatically introduces variables into the context.

Extracting new variables:
® For each node, track proof states before and after execution.
® Vorev: variables before; Vintros: variables after.
® New variables = Vintros \ Vprev-

Constructing new steps:
e Concatenate names of new variables to “intros”.
® Quote into an AST node and wrap in a Replace step.
® Final result: list of Replace steps for each intros tactic.



Conclusion

Summary
® Goal : Improve the maintenance and robustness of Rocq proof automatically.
® Qur solution : Automated transformation of Rocq proof defined by the user.

® Results : A library allowing users to write transformations and some simple
transformations examples.

https://github.com/blackbird1128/coq-ditto

Thank you for your attention, do you have any
questions ?


https://github.com/blackbird1128/coq-ditto
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