’ Université ‘ H ‘ ’
| H | de Strasbourg ‘

A library for the automated transformation of
Rocq AST

Alexandre JEAN

University of Strasbourg

27 september 2025

Context

® Proofs in proof assistant like Rocq are used to formalize mathematics and verify
programs using proof script.

® Many of these proof scripts are brittle and difficult to maintain and reuse.

® How can we improve some criteria such as modularity, automatisation and robustness
of Rocq proof ?

State of the art: transformations on Rocq code

We found multiple examples of transformations on Rocq code, each with their own
implementation:

e Towards Automatic Transformations of Coq Proof Scripts [4]

® Designing Proof Deautomation in Rocq [5]

® Post-processing Coq Proof Scripts to Make Them More Robust [3]

e Code Generation via Meta-programming in Dependently Typed Proof Assistants [1]

Rocg-ditto

® Rocq AST? rewriting Ocaml library.
® source to source transformations.
e Use rocg-Isp [2] to get a Rocq AST from a file.

e Allows for easy Rocq-AST rewriting by automatically moving other AST nodes when
adding, removing or replacing a node.

e Compatible with Ocaml standard library functions such as filter, fold, map.
® Dual representation of proof: proof-tree and linear structure.

e Allow for speculative execution.

e Quoting and unquoting functions.

e Compatible with modern Rocq 9.0.0 and previous version back to 8.17.

! Abstract Syntax Tree

How to define a transformation with Rocq-ditto

Definition
Transformation: A transformation is a function f that take a proof as input and return a
list of transformation steps drawn from the set

{Remove(id), Replace(id,new_node), Add(new_node),

Attach(new_node, attach_position, anchor_id)}

Remove(id) : remove the node identified by id.
Replace(id, new_node) : replace the node identified by id with new_node
Add(new_node) : add a new node to the AST

Attach(new_node,attach_position,anchor_id) : places new_node on a position
relative to the node with the id anchor_id.

Some current transformations

A transformation to replace auto by the tactics computed by auto .

A transformation to replace multiple consecutive call to intro by a single intros call.

A transformation to remove unnecessary tactics in a proof.

A transformation to replace call to tactics creating fresh variables such as intros with
intros V; Vo ...V, where each V; corresponds to a variable automatically introduced
by the tactic.

Zoom on a Transformation: Replacing tactics introducing

fresh variables automatically with a fixed version

Theorem fact_grow_weak :
forall nm : N,
n<m-> n! <=mnm!.

Proof.

induction m.
lia.
simpl.
intros.
inversion H.
lia.
lia.
Qed.
Automatically introduced variables

Theorem fact_grow_weak_ :
forall nm : N,
n<m-> n! <=mnm!.
Proof.
induction m as [|m IHm].
lia.
simpl.
intros H.
inversion H as [|mO H1 HOJ.
lia.
lia.
Qed.
Fixed variables names

Using speculative execution to get the variables before
and after a tactic execution

Let r(State(S), tactic) be a pure function that take a state State(S) and returns a new
state State(S1) equal to the state after apply tactic to S.
Idea: For each tactic L; in a proof L = [Ly,..., L], compute

e State(L;)

L4 State(LH_l)

Method:
® Take the proof state after Lq,...,L; 1.
® Run L; on that proof state to get the new state.

® Extract variable names before/after.

Zoom on a Transformation: Replacing intros with intros
ViV,...V,

Identifying intros tactics:
® Quote each proof node and check if its string representation is “intros”.
® Intros automatically introduces variables into the context.

Extracting new variables:
® For each node, track proof states before and after execution.
® Vorev: variables before; Vintros: variables after.
® New variables = Vintros \ Vprev-

Constructing new steps:
e Concatenate names of new variables to “intros”.
® Quote into an AST node and wrap in a Replace step.
® Final result: list of Replace steps for each intros tactic.

Conclusion

Summary
® Goal : Improve the maintenance and robustness of Rocq proof automatically.
® Qur solution : Automated transformation of Rocq proof defined by the user.

® Results : A library allowing users to write transformations and some simple
transformations examples.

https://github.com/blackbird1128/coq-ditto

Thank you for your attention, do you have any
questions ?

https://github.com/blackbird1128/coq-ditto

References

B
B
B

Mathis Bouverot-Dupuis and Yannick Forster.
Code Generation via Meta-programming in Dependently Typed Proof Assistants.

Emilio Jests Gallego Arias, Ali Caglayan, Shachar ltzhaky, Fréderic Blanqui, Rodolphe Lepigre, et al.
rocq-Isp: a Language Server for the Rocq Prover, 2025.

Titouan Lozac’h and Nicolas Magaud.
Post-processing Coq Proof Scripts to Make Them More Robust.

In 2nd Workshop on the development, maintenance, refactoring and search of large libraries of proofs ,
September 13-14, 2024, Thilissi, Georgia, 2024.

Nicolas Magaud.
Towards Automatic Transformations of Coq Proof Scripts.

In Automated Deduction in Geometry (ADG 2023), Belgrade, Serbia, November 2023. Pedro
Quaresma et Kovacs Zoltan.

Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin Pierce.
Designing Proof Deautomation in Rocq.

In Proceedings of the 15th Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU), 2025.

