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Dealing with identity types in
Rocq



Example: transitivity lemma

x y z x z
p q trans(p,q)
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A direct definition of the transitivity proof term
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A more involved example: “whiskering”

x y z x z

p
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r

trans(p,r)

trans(q,r)

a
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Streamlining these arguments

▶ These arguments are purely structural
No transport, no interaction of identity with other structure

▶ The proof strategies are very similar:
Pattern match every equality against eq_refl, and the proof is eq_refl

▶ Yet, they are not trivial
See the Eckmann-Hilton example at the end of the talk

▶ Aim of the talk: streamline as much of these arguments as possible
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Identity types, weak ω-groupoids
and Catt



Weak ω-groupoids and identity types

▶ Weak ω-groupoids are the algebraic structure that describe identity types.
They describe exaclty the arguments we want to streamline

▶ They are a flavour of higher-dimensional categories.

▶ In this talk, we present the language Catt, a DSL to work with weak ω-categories.
We will not introduce formally the theory of weak ω-groupoids

▶ Weak ω-groupoids are a particular case of weak ω-categories.
We use a language for the latter, for historical reasons, but we will ignore the
difference in this talk
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Pasting diagrams

Pasting diagrams are equality schemes that can be completely pattern-matched away
against eq_refl1

Examples:

x y z
p q

⇝ (x(p)y(q)z)

x y z

p

q

r
a ⇝ (x(p(a)q)y(r)z)

1not all of them
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Obstructions to being a pasting diagram

Not all equality schemes can be completely pattern-matched away. The obstructions are
topological

Examples:

x

p

Pattern-matching the loop onto eq_refl requires the axiom K

x y

p

q

Pattern-matching q onto eq_refl creates loop
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The language Catt2

▶ types : ⋆, and a ∼ b, where a, b are terms of the same type
Intuition:a ∼ b are abstract equalities

▶ terms : generated by variables and coh(Γ,A) where Γ is a pasting diagram and A is
a type in Γ

Intuition: In a pasting diagram, every pair of terms of the same type are equal, by
pattern-matching the entire diagram away

▶ In the implemented language, additionnal conditions are put on the type A in a
coherence, to model categories.
I hope to implement the version presented here soon

2terms and conditions: groupoids vs categories
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Live demo
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Generating identity proof from
Catt terms



Principle

▶ Use terms in Catt to generate identity proofs in Rocq

▶ Boilerplate inductive mechanism for the structure of the theory

▶ Base case: coh(Γ,A) is handled by pattern-matching away all equalities described
by Γ and the proof is then eq_refl.

▶ Implicit arguments are managed automatically
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Live demo
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Building complex proofs



Proof automation in Catt

▶ Catt is a small and simple language, with a direct focus
Contrarily to Rocq, which is wide and general purpose

▶ We can algorithmically manipulate Catt as a language to generate proof-terms.
Several meta-operations are already implemented
Suspension, opposites, functoriality, naturality...

▶ Our export to Rocq allows to leverage these to build proofs on the structure of
identity
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The Eckmann-Hilton argument

▶ The Eckmann-Hilton argument is an important argument in topology
It is tightly connected to homotopy theory, and in Rocq, is proven by purely
structural manipulation on identity types

▶ It also provides a refutation axiom K
It allows one to construct an equality between a term and itself, which in some
models is not the reflexivity
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The Eckmann-Hilton argument: live demo
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Thank you!
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