Formalization of matching numbers with

mathcomp-finmap and -classical

Kazunori Matsuda! Takafumi Saikawa? Yosuke Tsuji?

1Kitami Institute of Technology

2Nagoya University

Rocgshop 2025

1/28

Table of contents

@ Motivation

© Rocq definitions of graphs

© Rocq definitions of matching sets
@ Concluding remarks

The code is available at https://github.com/t6s/graphalg .

2/28

https://github.com/t6s/graphalg

Motivation

3/28

Graphs we talk about consist of vertices and edges, and are undirected:

V . type of vertices

E : type of edges

e d : mapping from edges to sets of vertices

axiom : |d(x)] =2

o—090

L] e,

o—eo o

4/28

Motivation: relation to commutative algebra

From a graph G = (V, E, d), algebraic objects can be constructed:

e a commutative polynomial ring S, by regarding vertices as
variables
e an edge ideal I, by reading each edge {x,y} as a monomial zy
It is known that some invariants of the quotient ring S/I are bounded
by the graph invariants we formalized.
Towards this goal, we have managed to finish the graph theory side,
leaving formalization of ideals almost untouched.

5/28

Graph invariants — Matching numbers

For a graph (V, E,d), a subset of edges S C F is called a
matching set if no two edges share a vertex, and an
induced matching set if no two edges are connected by an edge

From these sets, the following graph invariants are defined:
matching number Maximum size of a matching set
induced matching number Maximum size of an induced matching set
minimal matching number Minimum size of a maximal matching set

6/28

Graph invariants — Matching numbers (contd.)

{el,e5}, {e2,e4} and singletons are matching sets for the first graph,
but only the singletons are induced matching sets.

Similarly, {f1, f3}, {f2, f4}, {f1, f4}, and singletons are matching
sets for the second graph, but in this case {f1, f4} is also an induced

matching.
7/28

Graph invariants — independence number

For a graph (V, E,d), a subset of vertices S C V is called an

independent set, if no two points in it do not have an edge between
them.

The independence number nindep is the maximum size of an
independent set.

8/28

In our formalization

We formalized inequalities between these invariants, which all appear
not only in graph theory, but in the context of commutative algebra:

nindmatch < nminmatch < nmatch < 2nminmatch
nindmatch < nindep

2(nmatch — nminmatch) < nindep

9/28

Rocq definitions of graphs

10/ 28

Graph as a module

In the first attempt, we formalized graphs as a module:

Module LooplessUndirectedGraph.
Section def.
Record t := mk {

V : finType;

E : finType;

boundary : E -> {fset V};

_ ¢ forall e : E, #| boundary e | = 2;
}.
End def.

Module Exports.

Notation llugraph := t. ©Notation "“4d"
Notation "“E" := E. Notation "“V"
End Exports.

End LooplessUndirectedGraph.

Import LooplessUndirectedGraph.Exports.

boundary.
V.

11/28

Graph as an HB structure

We rewrote the definition using HB for future extensions:

HB.mixin Record isLooplessUndirectedGraph T := {
vertex : finType;
edge : finType;
boundary : edge -> {fset vertex};
size_boundary : forall e : edge, size (boundary e) = 2;

+.

[short (type=1lugraph)]
HB.structure Definition LooplessUndirectedGraph :=
{T of isLooplessUndirectedGraph TJ}.

Notation "“V" := vertex.
Notation ""E" := edge.
Notation "“d" := boundary.

12/ 28

Transition to =B

To move from Module to HB, changes were needed
only in concrete examples .

First, applications of the record constructor mk

Record t := mk { V:finType; E:finType; boundary:E->{fset V};
: forall e : E, #| boundary e | = 2; }.

had to be replaced by HB.instance:

Definition V := 'I_2.

Definition E := 'I_2.

Definition d (_ : E) : {fset V} := fsetT.

Lemma axiom (e : E) : #| de | = 2.

Proof. by rewrite cardfsT card_ord. Qed.

- Definition G := LooplessUndirectedGraph.mk axiom.

+ HB.instance Definition _ :=
+ isLooplessUndirectedGraph.Build unit axiom.
+ Notation G := unit.

13/28

Transition to us (contd.)

Second, we had to insert a trivial rewrite when doing a case analysis:
Definition V := 'I_3. (* w0, vl, v2 *)
Definition E := 'I_2. (* e0, el *)
Definition d (e : E) : {fset V} :=
if e == e0 then [fset v0; v1l] else [fset vl; v2].

Example inj_boundary_is_not_necessarily_matching :

exists 8 : {fset "E G}, inj_boundary S /\ ~ @is_matching G S.
Proof.
exists [fset: "E GJ]; split.

move => e f _ _ /=.

- rewrite /4.

+ rewrite (_ : "d=4d) // /d. (* NB: “d is a mizin field *)
by case: ifPn; (* ... *)

14 /28

Context {V E : finType} {d : E -> {fset V}}.
(proof : forall e : E, #|> d e | = 2).
HB.instance Definition _ :=

isLooplessUndirectedGraph.Build unit axiom.
Notation G := unit

The key type unit can however be anything:

Context (* ... *) (any_type : Type).
HB.instance Definition _ :=

isLooplessUndirectedGraph.Build any_type axiom.
Notation G := any_type

I might have abused HB
(by not relating the mixin to its parameter)

15 /28

Rocq definitions of matching sets

16 /28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:
set in MathComp finite sets in a finite type;

list representation by enumerating T
fset in Finmap finite sets in a type with a choice function;

list represetantion by linear-ordering T by the choice
set in Classical arbitrary sets in an arbitrary type;

wrapper for Prop-valued predicates

17 /28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:
set in MathComp finite sets in a finite type;

list representation by enumerating T
fset in Finmap finite sets in a type with a choice function;

list represetantion by linear-ordering T by the choice
set in Classical arbitrary sets in an arbitrary type;

wrapper for Prop-valued predicates

@ We need the cardinality of each matching set, so it has to be finite.

17 /28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:
set in MathComp finite sets in a finite type;

list representation by enumerating T
fset in Finmap finite sets in a type with a choice function;

list represetantion by linear-ordering T by the choice
set in Classical arbitrary sets in an arbitrary type;

wrapper for Prop-valued predicates

@ We need the cardinality of each matching set, so it has to be finite.

e Finmap fsets are better than MathComp sets for compatibility
with the others.

17 /28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:
set in MathComp finite sets in a finite type;

list representation by enumerating T
fset in Finmap finite sets in a type with a choice function;

list represetantion by linear-ordering T by the choice
set in Classical arbitrary sets in an arbitrary type;

wrapper for Prop-valued predicates

@ We need the cardinality of each matching set, so it has to be finite.

e Finmap fsets are better than MathComp sets for compatibility
with the others.

@ There can be a few design options for the set of all matching sets.

17 /28

matching as Finmap and Classical sets

Here are two definitions of matching, the set of all matching sets.
With Finmap, we need to prepare a bool-valued (bracketed) predicate:
Definition is_matching (S : {fset "E G}) :=

[Veins, [Vfin 8, (e !=f) ==> ["de L “d f]]].

(» [X L Y] =Xand?Y are disjoint *)
Definition matching : {fset {fset "E G}} :=

[fset S : {fset "E G} | is_matching S].

18/28

matching as Finmap and Classical sets

Here are two definitions of matching, the set of all matching sets.
With Finmap, we need to prepare a bool-valued (bracketed) predicate:
Definition is_matching (S : {fset "E G}) :=

[Veins, [Vfin 8, (e !=f) ==> ["de L “d f]]].

(» [X L Y] =Xand?Y are disjoint *)
Definition matching : {fset {fset "E G}} :=

[fset S : {fset "E G} | is_matching S].

Doing classically, the predicate can be Prop-valued:
Definition is_matching (S : {fset "E G}) :=
Vef,ecsS>feS->e!=f->[dle L df)].
Definition matching : set {fset "E G} :=
[set S : {fset "E G} | is_matching S].

18 /28

hing numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \maX@Em“Cmn@ #1° 8 |.

19/28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \maX@Em“cmn@ #1° 8 |.

@ The operator \max demands matching to be coercible to a finite

type.

19/ 28

hing numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \maX@Em“cmn@ #1° 8 |.

@ The operator \max demands matching to be coercible to a finite
type.
e Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType
Record fset_sub_type K A : predArgType :=
{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

19/ 28

hing numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \maX@Em“cmn@ #1° 8 |.

@ The operator \max demands matching to be coercible to a finite
type.
e Finmap fset is a finite type by the coercion fset_sub_type
fset_sub_type (K : choiceType) : {fset K} -> finType
Record fset_sub_type K A : predArgType :=
{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.
o Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type
Definition set_type T A := {x : T | x \in A}

19/ 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \maX@Em“can #1° 8 |.

@ The operator \max demands matching to be coercible to a finite
type.
e Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType
Record fset_sub_type K A : predArgType :=
{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

o Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type
Definition set_type T A := {x : T | x \in A}

e If T is finite, then set_type T A also becomes finite by subtyping.

19/ 28

Other invariants

The first definition of the set of all matching sets, matching, is as
follows:
Definition is_induced_matching :=
Vef,eecS->feS->e!l=f->
[Fd(e) L “d(g)] Il [FdE) L “d(g)].
Definition is_maximal_matching :=
(8 € matching) /\ V T : {fset "E}, (S C T) -> (T ¢ matching).
Definition induced_matching : set {fset "E G} :=
[fset S : {fset "E G} | is_induced_matching S].
Definition maximal_matching : set {fset "E G} :=
[fset S : {fset "E G} | is_maximal_matching S].

20 /28

Comparing the two matchings

pros of Finmap
@ coherence of the proof script by sticking to one library
@ boolean rewriting is well-supported by MathComp
cons of Finmap
Need many reflections between bool and Prop:

Lemma matchingP G (S : {fset "E G})
reflect

{in S & S, forall e f, e != f -> [disjoint (Cd e) & (d £)]}
(8 \in matching G).
pros of Classical
No need to prepare or use the reflection; mostly just rewrite inE.
cons of Classical
o Insertions of mem_set and set_mem are often necessary:
mem_set (T : Type) (A : set T) (u : T) : Au > u \in A
set_mem (T : Type) (A : set T) (u : T) : u\in A -> A u
@ S \notin matching cannot be simplified by rewrite inE

21 /28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.

22/28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.

What a boring statement.

22/28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.

What a boring statement.

Moreover, both have issues when formalizing subsets of matching:

Lemma induced_sub_matching G : induced_matching G “<=" matching G.
Lemma maximal_sub_matching G : maximal_matching G ~<=" matching G.

We need to manually apply these subset lemmas, yet they look
automatable.

22 /28

Using HB to define a type of matching sets will solve the subset issues,
and may provide better reasoning than using sets

HB.mixin Record isMatching (G : llugraph) (S : {fset "E G}) :=
{ ismatching : is_matching S }.

#[short (type=matching)]
HB.structure Definition Matching (G : llugraph) :=
{ S of isMatching G S }.

Definition mmatch := \max_(S in matching) #|~ \val S |.

However, the last line fails because matching is not immediately a finite
type.

23 /28

Other invariants (contd.)

For a graph (V, E,d) and S C V, S is said to be an independent set if
it does not contain both of the boundary vertices of any edge.
Definition is_independent_set :=

[forall e : "E, ~ ("d(e) C S)].
Definition independent_set :=

[fset S : {fset "V} | is_independent_set S].

(* independence number;

often denoted by o in the literature *)
Definition nindep := \maX(scindependent.set) #| S |-

24 /28

Formalizing lemmas from [Hirano-Matsuda

https://arxiv.org/abs/2001.10704]

Lemma nindmatch_leq_nindep (G : llugraph)
nindmatch G <= nindep G.

Lemma nmatch_minmatch_leq_nindep G :
(nmatch G - nminmatch G).*2 <= nindep G.

25/ 28

https://arxiv.org/abs/2001.10704

Formalizing lemmas from [Hirano-Matsuda

https://arxiv.org/abs/2001.10704]

Lemma nindmatch_leq_nindep (G : llugraph)
nindmatch G <= nindep G.

Lemma nmatch_minmatch_leq_nindep G :
(nmatch G - nminmatch G).*2 <= nindep G.

e Pen-paper proof: 444 lines
e Coq proof: 647 lines

25 /28

https://arxiv.org/abs/2001.10704

Concluding remarks

26 /28

Why not Coq-Graph?

The Coq-Graph library by Doczkal et al. was present when we started
this formalization, and we assessed if we could start using it:

e Our aim was to reason about sets of edges, and the definition of
edges in terms of relations as in Coq-Graph seemed like a detour
for us.

e We were about to deal only with undirected graphs, and
Coq-Graph’s formalization did not look direct in this respect.

A bit more of our expertize on MathComp at that time might have
changed the decision to go with a new definition.

27 /28

Conclusion

MathComp, -Finmap, and -Classical together work as a practical
basis for working with graph theory

Subsets and invariants of a graph can be formalized without an
extreme frustration.

They could be however more smooth.
e TODO:

e Connection to ring theory
o Use Hierarchy-Builder more effectively
e Bridge to Coq-Graph

28 /28

	Motivation
	Rocq definitions of graphs
	Rocq definitions of matching sets
	Concluding remarks

