
Formalization of matching numbers with
mathcomp-finmap and -classical

Kazunori Matsuda1 Takafumi Saikawa2 Yosuke Tsuji2

1Kitami Institute of Technology

2Nagoya University

Rocqshop 2025

1 / 28

Table of contents

1 Motivation

2 Rocq definitions of graphs

3 Rocq definitions of matching sets

4 Concluding remarks

The code is available at https://github.com/t6s/graphalg .

2 / 28

https://github.com/t6s/graphalg

Motivation

3 / 28

Graphs

Graphs we talk about consist of vertices and edges, and are undirected:

V : type of vertices

E : type of edges

d : mapping from edges to sets of vertices

axiom : |d(x)| = 2

4 / 28

Motivation: relation to commutative algebra

From a graph G = (V,E, d), algebraic objects can be constructed:

a commutative polynomial ring S, by regarding vertices as
variables

an edge ideal I, by reading each edge {x, y} as a monomial xy

It is known that some invariants of the quotient ring S/I are bounded
by the graph invariants we formalized.
Towards this goal, we have managed to finish the graph theory side,
leaving formalization of ideals almost untouched.

5 / 28

Graph invariants – Matching numbers

For a graph (V,E, d), a subset of edges S ⊂ E is called a
matching set if no two edges share a vertex, and an
induced matching set if no two edges are connected by an edge

From these sets, the following graph invariants are defined:
matching number Maximum size of a matching set
induced matching number Maximum size of an induced matching set
minimal matching number Minimum size of a maximal matching set

6 / 28

Graph invariants – Matching numbers (contd.)

{e1, e5}, {e2, e4} and singletons are matching sets for the first graph,
but only the singletons are induced matching sets.
Similarly, {f1, f3}, {f2, f4}, {f1, f4}, and singletons are matching
sets for the second graph, but in this case {f1, f4} is also an induced
matching.

7 / 28

Graph invariants – independence number

For a graph (V,E, d), a subset of vertices S ⊂ V is called an
independent set, if no two points in it do not have an edge between
them.
The independence number nindep is the maximum size of an
independent set.

8 / 28

In our formalization

We formalized inequalities between these invariants, which all appear
not only in graph theory, but in the context of commutative algebra:

nindmatch ≤ nminmatch ≤ nmatch ≤ 2nminmatch

nindmatch ≤ nindep

2(nmatch− nminmatch) ≤ nindep

9 / 28

Rocq definitions of graphs

10 / 28

Graph as a module

In the first attempt, we formalized graphs as a module:

Module LooplessUndirectedGraph.

Section def.

Record t := mk {

V : finType;

E : finType;

boundary : E -> {fset V};

_ : forall e : E, #|` boundary e | = 2;

}.

End def.

Module Exports.

Notation llugraph := t. Notation "`d" := boundary.

Notation "`E" := E. Notation "`V" := V.

End Exports.

End LooplessUndirectedGraph.

Import LooplessUndirectedGraph.Exports.

11 / 28

Graph as an HB structure

We rewrote the definition using HB for future extensions:

HB.mixin Record isLooplessUndirectedGraph T := {

vertex : finType;

edge : finType;

boundary : edge -> {fset vertex};

size_boundary : forall e : edge, size (boundary e) = 2;

}.

#[short(type=llugraph)]

HB.structure Definition LooplessUndirectedGraph :=

{T of isLooplessUndirectedGraph T}.

Notation "`V" := vertex.

Notation "`E" := edge.

Notation "`d" := boundary.

12 / 28

Transition to HB

To move from Module to HB, changes were needed
only in concrete examples .

First, applications of the record constructor mk

Record t := mk { V:finType; E:finType; boundary:E->{fset V};

_ : forall e : E, #|` boundary e | = 2; }.

had to be replaced by HB.instance:

Definition V := 'I_2.

Definition E := 'I_2.

Definition d (_ : E) : {fset V} := fsetT.

Lemma axiom (e : E) : #|` d e | = 2.

Proof. by rewrite cardfsT card_ord. Qed.

- Definition G := LooplessUndirectedGraph.mk axiom.

+ HB.instance Definition _ :=

+ isLooplessUndirectedGraph.Build unit axiom.

+ Notation G := unit.

13 / 28

Transition to HB (contd.)

Second, we had to insert a trivial rewrite when doing a case analysis:

Definition V := 'I_3. (* v0, v1, v2 *)

Definition E := 'I_2. (* e0, e1 *)

Definition d (e : E) : {fset V} :=

if e == e0 then [fset v0; v1] else [fset v1; v2].

Example inj_boundary_is_not_necessarily_matching :

exists S : {fset `E G}, inj_boundary S /\ ~ @is_matching G S.

Proof.

exists [fset: `E G]; split.

move => e f _ _ /=.

- rewrite /d.

+ rewrite (_ : `d = d) // /d. (* NB: `d is a mixin field *)

by case: ifPn; (* ... *)

14 / 28

A glitch?

Context {V E : finType} {d : E -> {fset V}}.

(proof : forall e : E, #|` d e | = 2).

HB.instance Definition _ :=

isLooplessUndirectedGraph.Build unit axiom.

Notation G := unit

The key type unit can however be anything:

Context (* ... *) (any_type : Type).

HB.instance Definition _ :=

isLooplessUndirectedGraph.Build any_type axiom.

Notation G := any_type

I might have abused HB

(by not relating the mixin to its parameter)

15 / 28

Rocq definitions of matching sets

16 / 28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:

set in MathComp finite sets in a finite type;
list representation by enumerating T

fset in Finmap finite sets in a type with a choice function;
list represetantion by linear-ordering T by the choice

set in Classical arbitrary sets in an arbitrary type;
wrapper for Prop-valued predicates

We need the cardinality of each matching set, so it has to be finite.

Finmap fsets are better than MathComp sets for compatibility
with the others.

There can be a few design options for the set of all matching sets.

17 / 28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:

set in MathComp finite sets in a finite type;
list representation by enumerating T

fset in Finmap finite sets in a type with a choice function;
list represetantion by linear-ordering T by the choice

set in Classical arbitrary sets in an arbitrary type;
wrapper for Prop-valued predicates

We need the cardinality of each matching set, so it has to be finite.

Finmap fsets are better than MathComp sets for compatibility
with the others.

There can be a few design options for the set of all matching sets.

17 / 28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:

set in MathComp finite sets in a finite type;
list representation by enumerating T

fset in Finmap finite sets in a type with a choice function;
list represetantion by linear-ordering T by the choice

set in Classical arbitrary sets in an arbitrary type;
wrapper for Prop-valued predicates

We need the cardinality of each matching set, so it has to be finite.

Finmap fsets are better than MathComp sets for compatibility
with the others.

There can be a few design options for the set of all matching sets.

17 / 28

Finite sets and classical sets

MathComp, -Finmap and -Classical each provide a library for sets:

set in MathComp finite sets in a finite type;
list representation by enumerating T

fset in Finmap finite sets in a type with a choice function;
list represetantion by linear-ordering T by the choice

set in Classical arbitrary sets in an arbitrary type;
wrapper for Prop-valued predicates

We need the cardinality of each matching set, so it has to be finite.

Finmap fsets are better than MathComp sets for compatibility
with the others.

There can be a few design options for the set of all matching sets.

17 / 28

matching as Finmap and Classical sets

Here are two definitions of matching, the set of all matching sets.
With Finmap, we need to prepare a bool-valued (bracketed) predicate:

Definition is_matching (S : {fset `E G}) :=

[∀ e in S, [∀ f in S, (e != f) ==> [`d e ⊥ `d f]]].

(* [X ⊥ Y] = X and Y are disjoint *)

Definition matching : {fset {fset `E G}} :=

[fset S : {fset `E G} | is_matching S].

Doing classically, the predicate can be Prop-valued:

Definition is_matching (S : {fset `E G}) :=

∀ e f, e ∈ S -> f ∈ S -> e != f -> [`d(e) ⊥ `d(f)].

Definition matching : set {fset `E G} :=

[set S : {fset `E G} | is_matching S].

18 / 28

matching as Finmap and Classical sets

Here are two definitions of matching, the set of all matching sets.
With Finmap, we need to prepare a bool-valued (bracketed) predicate:

Definition is_matching (S : {fset `E G}) :=

[∀ e in S, [∀ f in S, (e != f) ==> [`d e ⊥ `d f]]].

(* [X ⊥ Y] = X and Y are disjoint *)

Definition matching : {fset {fset `E G}} :=

[fset S : {fset `E G} | is_matching S].

Doing classically, the predicate can be Prop-valued:

Definition is_matching (S : {fset `E G}) :=

∀ e f, e ∈ S -> f ∈ S -> e != f -> [`d(e) ⊥ `d(f)].

Definition matching : set {fset `E G} :=

[set S : {fset `E G} | is_matching S].

18 / 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \max(S∈matching) #|` S |.

The operator \max demands matching to be coercible to a finite
type.

Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType

Record fset_sub_type K A : predArgType :=

{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type

Definition set_type T A := {x : T | x \in A}

If T is finite, then set_type T A also becomes finite by subtyping.

19 / 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \max(S∈matching) #|` S |.

The operator \max demands matching to be coercible to a finite
type.

Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType

Record fset_sub_type K A : predArgType :=

{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type

Definition set_type T A := {x : T | x \in A}

If T is finite, then set_type T A also becomes finite by subtyping.

19 / 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \max(S∈matching) #|` S |.

The operator \max demands matching to be coercible to a finite
type.

Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType

Record fset_sub_type K A : predArgType :=

{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type

Definition set_type T A := {x : T | x \in A}

If T is finite, then set_type T A also becomes finite by subtyping.

19 / 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \max(S∈matching) #|` S |.

The operator \max demands matching to be coercible to a finite
type.

Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType

Record fset_sub_type K A : predArgType :=

{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type

Definition set_type T A := {x : T | x \in A}

If T is finite, then set_type T A also becomes finite by subtyping.

19 / 28

Matching numbers

The following definition of the matching number works with both
Finmap or classical matching:

Definition nmatch := \max(S∈matching) #|` S |.

The operator \max demands matching to be coercible to a finite
type.

Finmap fset is a finite type by the coercion fset_sub_type

fset_sub_type (K : choiceType) : {fset K} -> finType

Record fset_sub_type K A : predArgType :=

{ fsval : Choice.sort K; fsvalP : is_true (fsval \in A) }.

Classical set is coerced to a type by set_type

set_type (T : Type) : set T -> Type

Definition set_type T A := {x : T | x \in A}

If T is finite, then set_type T A also becomes finite by subtyping.

19 / 28

Other invariants

The first definition of the set of all matching sets, matching, is as
follows:

Definition is_induced_matching :=

∀ e f, e ∈ S -> f ∈ S -> e != f ->

[`d(e) ⊥ `d(g)] || [`d(f) ⊥ `d(g)].

Definition is_maximal_matching :=

(S ∈ matching) /\ ∀ T : {fset `E}, (S ⊂ T) -> (T /∈ matching).

Definition induced_matching : set {fset `E G} :=

[fset S : {fset `E G} | is_induced_matching S].

Definition maximal_matching : set {fset `E G} :=

[fset S : {fset `E G} | is_maximal_matching S].

20 / 28

Comparing the two matchings

pros of Finmap

coherence of the proof script by sticking to one library

boolean rewriting is well-supported by MathComp

cons of Finmap
Need many reflections between bool and Prop:

Lemma matchingP G (S : {fset `E G}) :

reflect

{in S & S, forall e f, e != f -> [disjoint (`d e) & (`d f)]}

(S \in matching G).

pros of Classical
No need to prepare or use the reflection; mostly just rewrite inE.
cons of Classical

Insertions of mem_set and set_mem are often necessary:
mem_set (T : Type) (A : set T) (u : T) : A u -> u \in A

set_mem (T : Type) (A : set T) (u : T) : u \in A -> A u

S \notin matching cannot be simplified by rewrite inE

21 / 28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.

What a boring statement.

Moreover, both have issues when formalizing subsets of matching:

Lemma induced_sub_matching G : induced_matching G `<=` matching G.

Lemma maximal_sub_matching G : maximal_matching G `<=` matching G.

We need to manually apply these subset lemmas, yet they look
automatable.

22 / 28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.
What a boring statement.

Moreover, both have issues when formalizing subsets of matching:

Lemma induced_sub_matching G : induced_matching G `<=` matching G.

Lemma maximal_sub_matching G : maximal_matching G `<=` matching G.

We need to manually apply these subset lemmas, yet they look
automatable.

22 / 28

Comparing the two matchings (contd.)

There was no big difference in the usability of the two.
What a boring statement.

Moreover, both have issues when formalizing subsets of matching:

Lemma induced_sub_matching G : induced_matching G `<=` matching G.

Lemma maximal_sub_matching G : maximal_matching G `<=` matching G.

We need to manually apply these subset lemmas, yet they look
automatable.

22 / 28

Use HB?

Using HB to define a type of matching sets will solve the subset issues,
and may provide better reasoning than using sets

HB.mixin Record isMatching (G : llugraph) (S : {fset `E G}) :=

{ ismatching : is_matching S }.

#[short(type=matching)]

HB.structure Definition Matching (G : llugraph) :=

{ S of isMatching G S }.

Definition nmatch := \max_(S in matching) #|` \val S |.

However, the last line fails because matching is not immediately a finite
type.

23 / 28

Other invariants (contd.)

For a graph (V,E, d) and S ⊂ V , S is said to be an independent set if
it does not contain both of the boundary vertices of any edge.

Definition is_independent_set :=

[forall e : `E, ~~ (`d(e) ⊂ S)].

Definition independent_set :=

[fset S : {fset `V} | is_independent_set S].

(* independence number;

often denoted by α in the literature *)

Definition nindep := \max(S∈independent set) #|` S |.

24 / 28

Formalizing lemmas from [Hirano-Matsuda
https://arxiv.org/abs/2001.10704]

Lemma nindmatch_leq_nindep (G : llugraph) :

nindmatch G <= nindep G.

Lemma nmatch_minmatch_leq_nindep G :

(nmatch G - nminmatch G).*2 <= nindep G.

Pen-paper proof: 4+4 lines

Coq proof: 6+7 lines

25 / 28

https://arxiv.org/abs/2001.10704

Formalizing lemmas from [Hirano-Matsuda
https://arxiv.org/abs/2001.10704]

Lemma nindmatch_leq_nindep (G : llugraph) :

nindmatch G <= nindep G.

Lemma nmatch_minmatch_leq_nindep G :

(nmatch G - nminmatch G).*2 <= nindep G.

Pen-paper proof: 4+4 lines

Coq proof: 6+7 lines

25 / 28

https://arxiv.org/abs/2001.10704

Concluding remarks

26 / 28

Why not Coq-Graph?

The Coq-Graph library by Doczkal et al. was present when we started
this formalization, and we assessed if we could start using it:

Our aim was to reason about sets of edges, and the definition of
edges in terms of relations as in Coq-Graph seemed like a detour
for us.

We were about to deal only with undirected graphs, and
Coq-Graph’s formalization did not look direct in this respect.

A bit more of our expertize on MathComp at that time might have
changed the decision to go with a new definition.

27 / 28

Conclusion

MathComp, -Finmap, and -Classical together work as a practical
basis for working with graph theory

Subsets and invariants of a graph can be formalized without an
extreme frustration.

They could be however more smooth.

TODO:

Connection to ring theory
Use Hierarchy-Builder more effectively
Bridge to Coq-Graph

28 / 28

	Motivation
	Rocq definitions of graphs
	Rocq definitions of matching sets
	Concluding remarks

