Interaction Trees and Verified Compilation

Paolo Torrini and Benjamin Gregoire

INRIA Sophia-Antipolis

Rocgshop'25, Reykjavik 27.09.2025

1/14

Semantics

Well-established: operational semantics (CompCert, CakeML)
— weak wrt compositionality
— small-step (CompCert): not directly executable
— big-step (CakeML): need clocks to deal with divergence

Newer: Interaction Trees (ITrees)

denotational: compositional wrt the language syntax, executable
— coinductive (OK with divergence)

— computations represented as trees, interpreted as monads

— ITrees as free monads: side effects, modularly

— facilitate coinductive reasoning:
— relying on PACO (parameterized coinduction)
— supporting effectively equational reasoning

2/14

Interaction Trees (simplified)

CoInductive itree (E: Type — Type) (V: Type) :=
Ret (v: V) | Tau (t: itree E V)
| Vis (A: Type) (e: E A) (k: A — itree E V).

Event handler (basic one, no dependencies, no transfomers):
hi © Y{E}Y V, E; V — itree E V
Monadic interpreter (folding the handler on the tree):
Intrp, : V{E} V, itree (E;+' E) V — itree E V
Layered interpretation:

t:itree (B +' E1 +' Eg) V. = Intry, olntrp, t : itree Eg V

3/14

https://github.com/jasmin-lang/jasmin

Low-level language for criptographic applications

formalized in Rocq: semantics and verified compiler

old verification using unclocked inductive big-step semantics:
terminating programs only

lifting the restriction using | Trees

— front-end made of ca 20 passes (incl. constant propagation, dead code
elimination, inlining, stack allocation)

— concrete memory model

4/14

Compiler verification

— p1, p2 programs (resp. source and target), with p, := Comp p;
— [p]s : itree E S executable semantic interpretation of pins: S

— R: here a relation between source and target states
(?R between optional ones, to take divergence into account)

51 Cy)
lfpﬂ l(pﬂ Vsiso, s1 R s2 = [pils =r [P2]s,
75 R 2g)

— Determistic semantics: no substantial difference between forward and
backward simulation

— yet difference between forward and backward reasoning (resp.
inductively on the source or on the target)

5/14

Equivalence up-to-tau

R: in general, relation between values (possibly of different types)

€ ~R € assuming :
— v !
N N “uRu
e, fail T T VSRV
/N |
T w9 e VvV
| /N
€2 e V{
AN

6/14

Relaxing equivalence: heterogeneous events and cutoffs

®: precondition between events (possibly of different types)
W: postcondition between event answers

€o oF: & assuming :
N\ /\ —viRv
-6 del

; ?
e fail T -Yv v/, (e, v) V (e, V)
‘ — ki v gkl
— fail is a left cutoff

7/14

Equivalence up-to-cutoff

Coinductive-inductive definition, with cutoff Boolean predicates (C/, C").

vi Rw t1 At
= Ret = Tau
Ret(vi) ~ Ret(w) Tau(ty) =~ Tau(tz)
€1 O] €2 Vvl Va. (el, Vl) s (62, V2) — kl(Vl) é kz(V2) Vi
IS
Vis(el, kl) é ViS(ez7 kz)
Cl(e C'(e
%)u Cut/ % Cut’,
Vis(el, kl) ~ b t1 ~ ViS(GQ, k2)
t1 = b 1 = b
Tau, — Tau,
Tau(tl) é to t1 é Tau(tg)

8/14

Jasmin semantics

Failure interpreter (using ExecT as error monad transformer):
Intrp. : V{E} V, itree (F+' E) V — ExecT (itree E) V
Recursive call interpreter (depending on F):
Intrp.. : V{E} {FC E} V, itree (Rec+' E) V — itree E V
Modular interpretation:

t:itree (Rec+' F+' E) V. = Intrp. olntry,_t : itree E (Exec V)

9/14

Semantics excerpts

Definition while_round IS (cl c2: list instr) (e : expr) (s : S)
itree E (S + 8) := ...

Definition while_loop IS (cl c2: list instr) (e: expr) (s : S)
itree E S := ITree.iter (while_round cl c2 e) s.

Fixpoint instr_sem (p : prog) (i : instr) (s : S)

itree E S := match i with ...

| Cwhile cl e c2 =
while_loop instr_sem cl c2 e s

| Ccall xs fn args =
vargs <- eval_exprs args s;;
fs <- trigger (fun_call fn (mk_fun_state vargs s)) ;;
opt_update_state xs fs s

end.

10/14

Modular verification

Compiler correctness:

Vsisj, si R sj = [pils ®rovcyc, [Pils;

In general:

— correctness of individual compiler passes proved inductively on the
syntax of the source program

— single-pass proofs composed together by transitivity

Fr (po-‘so %%1¢1\V1CFC@ ’Vp]-—‘sl Iﬁl_ ’Vp]-—lsl %%2¢2W2C[:C@ ’Vp2—|52

Fr [polso %élRloRz)(leod)Q)(\Ulo\Uz)CFC(A [p21s

— use of relational Hoare logic

11/14

Further work: generalized transitivity

€ (Cbl O¢2) e = 3{\/1} (e1 = Vl)7 e PrerN e e

(€0, v0) (W10WV2) (&2, v2) = V{V1} (&1 : E1 V1),
e PregNep P &0 —
Jvi, (eo,vo) V1 (e1,v1i) A (e1,v1) V2 (02, v2)

Fr Ve, =(Cl eAC)e)
Fr Vee', e &1 &' A C2’ e — C1/ e
l—rVee’ ed, e NCl[e—C €

/ / U /!
Frt~ Rlcbl\IJlC’C’ t Frt ~Ra®,W,CLCh t
|—|— t~ t”

(RloRz)(d>1o¢2)(\Ulo\U2)C’C’

12/14

Generalized layering with monad transformers (MT):

hi : Y{E} V, E; V — MT; (itree E) V
Intrp, © V{F} {E} V, F (itree (E;+' E)) V — F (MT; (itree E)) V
t:itree (E2 + E +/ Eo) R = Intrhlolntrh2 t . MT, (MTl (itree Eo)) R

Some problems (in our experience):
— disjoint union modulo AC (minor snags)
— matching interpreters with MT (not generalized)

— universe inconsistencies popping up (panic)

13/14

Conclusions and future work

— Done: verified the Jasmin compiler front-end
— probabilistic semantics

— To do: verify the backend
Jasmin FE = Linear = ASM
Various backends: x86, ARM, RISC5

— compare with fuel-based inductive techniques and step-indexing

— integration with safety analysis

https://github.com/jasmin-lang/jasmin

14/14

