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Or the journey to prove that the length of a list is indeed
the length of a list without too much effort
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Some context
hol2dk

We can translate HOL-Light proofs to Rocq using hol2dk

But to do so, everything (including definitions) is 
translated to new objects. 
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Terms :
- new_definition ‘x = (…)’: 
adds a new axiom x_def = ‘x 
= (…)’
- ε P: if P : A → bool is 
satisfiable then picks an x 
satisfying it, otherwise a 
default value.
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Classical logic: proof irrelevance, funext, propext, EM



  

We would like to prove in Rocq that

The length (in HOL-Light) is equal to The length (in Rocq)
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Plan
● How to align inductive propositions
● How inductive types are defined in HOL-Light
● How to align inductive types
● How to align total recursive functions

How to align partial (sometimes recursive) functions

What more can be done

4/22



  

Plan
● How to align inductive propositions
● How inductive types are defined in HOL-Light
● How to align inductive types
● How to align total recursive functions

● How to align partial (sometimes recursive) functions
● What more can be done

4/22



  

How to align inductive propositions

Example :
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How to align inductive propositions

Example :

In HOL-Light it is equal to its induction principle : 
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How to align inductive propositions

The tactic:
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How to align inductive propositions

Use in practice :
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How inductive types are defined in HOL-Light

Creates one complex inductive type by hand for any type A
which has two constructors : 
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How inductive types are defined in HOL-Light

Creates one complex inductive type by hand for any type A
which has two constructors : 

Number of the 
constructor 

Non-recursive
arguments

« list » of 
recursive arguments
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How inductive types are defined in HOL-Light

How it is used

 

nil = CONSTR 0 dflt FNIL

cons a l = CONSTR 1 a (FCONS l FNIL)
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How to align inductive types

dest : list A → recspace A

dest nil = CONSTR 0 dflt FNIL

dest (cons a l) = CONSTR 1 a (FCONS (dest l) FNIL)

mk : recspace A → list A
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How to align inductive types

Two results to prove :

[∀x, mk (dest x) = x]

[∀r, P r ↔ dest (mk r) = r] where P defines the correct subset of
    recspace A

Thanks to the definition of mk, they simplify to injectivity and 
surjectivity [P r ↔ ∃x, r = dest x] of dest. 
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How to align inductive types

The tactics:
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Partial recursive functions
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Partial functions
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We wanted to prove in Rocq that

And we can also align partial functions
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is equal to The length (in Rocq)

of a list (in Rocq)

which is an element of an 
inductive type (in Rocq)

The length (in HOL-Light)

of a list (in HOL-Light)

which is an element of an 
inductive type (in HOL-Light)

(defined using inductive propositions)



  

Appendix 1: more complex type



  

Appendix 2: more complex functions



  

Appendix 3: the same but better



  

Appendix 4: generalized



  

Thank you for listening

The tactics are all located in https://github.com/Deducteam/coq-
hol-light-real-with-N/blob/main/mappings.v#L267

(l.267-1072)

Attempts and ideas for typeclasses are located in 
https://github.com/agontard/rocq-hol-light-experimental
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