
Automation of alignments of HOL-Light
types and definitions in Rocq

Or the journey to prove that the length of a list is indeed
the length of a list without too much effort

Antoine Gontard, laboratoire méthodes formelles, Inria

Some context
hol2dk

We can translate HOL-Light proofs to Rocq using hol2dk

But to do so, everything (including definitions) is
translated to new objects.

1/22

Some context
HOL Light

Types :

- ind, bool, →

- subtypes: given a
predicate P : A → bool,
creates a type B and
axioms stating bijection
between B and{x ∈ A, P x}

2/22

Some context
HOL Light

Types :

- ind, bool, →

- subtypes: given a
predicate P : A → bool,
creates a type B and
axioms stating bijection
between B and{x ∈ A, P x}

2/22

Terms :
- new_definition ‘x = (…)’:
adds a new axiom x_def = ‘x
= (…)’
- ε P: if P : A → bool is
satisfiable then picks an x
satisfying it, otherwise a
default value.

Some context
HOL Light

Types :

- ind, bool, →

- subtypes: given a
predicate P : A → bool,
creates a type B and
axioms stating bijection
between B and{x ∈ A, P x}

2/22

Terms :
- new_definition ‘x = (…)’:
adds a new axiom x_def = ‘x
= (…)’
- ε P: if P : A → bool is
satisfiable then picks an x
satisfying it, otherwise a
default value.

Classical logic: proof irrelevance, funext, propext, EM

We would like to prove in Rocq that

The length (in HOL-Light) is equal to The length (in Rocq)

3/22

We would like to prove in Rocq that

The length (in HOL-Light)

of a list (in HOL-Light)

is equal to The length (in Rocq)

of a list (in Rocq)

3/22

We would like to prove in Rocq that

The length (in HOL-Light)

of a list (in HOL-Light)

which is an element of an
inductive type (in HOL-Light)

is equal to The length (in Rocq)

of a list (in Rocq)

which is an element of an
inductive type (in Rocq)

3/22

We would like to prove in Rocq that

The length (in HOL-Light)

of a list (in HOL-Light)

which is an element of an
inductive type (in HOL-Light)

(defined using inductive propositions)

is equal to The length (in Rocq)

of a list (in Rocq)

which is an element of an
inductive type (in Rocq)

3/22

Plan
● How to align inductive propositions
● How inductive types are defined in HOL-Light
● How to align inductive types
● How to align total recursive functions

How to align partial (sometimes recursive) functions

What more can be done

4/22

Plan
● How to align inductive propositions
● How inductive types are defined in HOL-Light
● How to align inductive types
● How to align total recursive functions

● How to align partial (sometimes recursive) functions
● What more can be done

4/22

How to align inductive propositions

Example :

5/22

How to align inductive propositions

Example :

In HOL-Light it is equal to its induction principle :

5/22

How to align inductive propositions

Alignment of finite sets :

6/22

How to align inductive propositions

Alignment of finite sets :

6/22

How to align inductive propositions

The tactic:

7/22

How to align inductive propositions

Use in practice :

8/22

How inductive types are defined in HOL-Light

Creates one complex inductive type by hand for any type A
which has two constructors :

9/22

How inductive types are defined in HOL-Light

Creates one complex inductive type by hand for any type A
which has two constructors :

Number of the
constructor

Non-recursive
arguments

« list » of
recursive arguments

9/22

How inductive types are defined in HOL-Light

How it is used

nil = CONSTR 0 dflt FNIL

cons a l = CONSTR 1 a (FCONS l FNIL)

10/22

How to align inductive types

dest : list A → recspace A

dest nil = CONSTR 0 dflt FNIL

dest (cons a l) = CONSTR 1 a (FCONS (dest l) FNIL)

mk : recspace A → list A

11/22

How to align inductive types

dest : list A → recspace A

dest nil = CONSTR 0 dflt FNIL

dest (cons a l) = CONSTR 1 a (FCONS (dest l) FNIL)

mk : recspace A → list A

We want mk to be
the inverse of dest…

So we define it as
the inverse of dest :

mk r = ε (dest x = r)

11/22

How to align inductive types

dest : list A → recspace A

dest nil = CONSTR 0 dflt FNIL

dest (cons a l) = CONSTR 1 a (FCONS (dest l) FNIL)

mk : recspace A → list A

We want mk to be
the inverse of dest…

So we define it as
the inverse of dest :

mk r = ε (dest x = r)

11/22

How to align inductive types

Two results to prove :

[∀x, mk (dest x) = x]

[∀r, P r ↔ dest (mk r) = r] where P defines the correct subset of
 recspace A

Thanks to the definition of mk, they simplify to injectivity and
surjectivity [P r ↔ ∃x, r = dest x] of dest.

12/22

How to align inductive types

13/22

How to align inductive types

14/22

How to align inductive types

The tactics:

15/22

How to align inductive types

16/22

How to align total recursive functions

17/22

How to align total recursive functions

17/22

How to align total recursive functions

17/22

How to align total recursive functions

The tactic:

18/22

How to align total recursive functions

19/22

Partial recursive functions

20/22

Partial recursive functions

20/22

Partial functions

21/22

Partial functions

21/22

We wanted to prove in Rocq that

And we can also align partial functions
22/22

is equal to The length (in Rocq)

of a list (in Rocq)

which is an element of an
inductive type (in Rocq)

The length (in HOL-Light)

of a list (in HOL-Light)

which is an element of an
inductive type (in HOL-Light)

(defined using inductive propositions)

Appendix 1: more complex type

Appendix 2: more complex functions

Appendix 3: the same but better

Appendix 4: generalized

Thank you for listening

The tactics are all located in https://github.com/Deducteam/coq-
hol-light-real-with-N/blob/main/mappings.v#L267

(l.267-1072)

Attempts and ideas for typeclasses are located in
https://github.com/agontard/rocq-hol-light-experimental

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43

