
Certified programming
with dependent types

made simple with
proxy-based small inversions

Pierre Corbineau Basile Gros Jean-François Monin

VERIMAG, Univ. Grenoble Alpes, CNRS, Grenoble INP1

27 September, 2025

1Institute of Engineering Univ. Grenoble Alpes

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 1



Motivation

Proxy-based small inversions
allow for dependent programming
with simplified and readable code.

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 2



Examples

■ Definition of transposition of size-indexed matrices (vectors of
vectors) and proof that this transposition is involutive.

■ Manipulation of finite sets Fin.t, following a challenging
use-case proposed by Clément Pit-Claudel

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 3



Small inversion

■ The conclusion of the elimination scheme for Fin.t is
∀ n, ∀ (x:Fin.t n), P n x

■ Objective: constrain n to be 3 : ∀(x:Fin.t 3), P x

■ Historical methods change the conclusion:
∀ n, ∀ (x:Fin.t n), n = 3 => P n x.

■ Proxy-based small inversions change the matched objet.
▶ Create a proxy inductive type that mimics Fin.t 3, and can

be eliminated without loss of information.
▶ We go from (x:Fin.t 3) −→ P x

to (x:Fin.t 3) −→ proxy (Fin.t (S 2)) −→ P x

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 4



Partial inductive types

■ First, partial inductive types mimic the comportment of the
inductive type when specialised to a given pattern of the
index.

■ We work with inductive indices, the possible primitive patterns
for the index are built from the constructors of its type.

Inductive Fin.t : nat → Set :=
| F1 : ∀ n : nat, Fin.t (S n)
| FS : ∀ n : nat, Fin.t n → Fin.t (S n).

Inductive Fin_O : Set :=.
Inductive Fin_S (n : nat) : Set :=
| is_F1 : Fin_S n

| is_FS (r:Fin.t n) : Fin_S n.

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 5



Partial inductive types for dependent inversion

For dependent inversion, we also keep trace of the structure of the
object we invert.

Inductive Fin_O : Fin.t 0 -> Set :=.
Inductive Fin_S (n : nat) : Fin.t (S n) -> Set :=
| is_F1 : Fin_S n F1

| is_FS (r:Fin.t n) : Fin_S n (FS r).

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 6



Selecting the inductive type

■ Then, two translation functions translate the original object
into an object of the corresponding partial inductive type.

■ The first maps index values to the partial inductive types.

Definition Fin_proxy_type (n:nat) : Fin.t n → Set :=
match n with

| 0 ⇒ Fin_O

| S m ⇒ Fin_S m

end.

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 7



Translating the inductive type

The second maps constructors to their proxy counterpart.

Definition Fin_proxy{n} (r : Fin.t n) : Fin_proxy_type n r :=
match r as r’ in Fin.t n’ return Fin_proxy_type n’ r’ with
| F1 n ⇒ is_F1 n

| FS n t’ ⇒ is_FS n t’
end.

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 8



Using the proxy

■ These objects only need to be created once.

■ To use them, we then perform an elimination of the translated
proxy object:

match Fin_proxy x with

| is_F1 _ ⇒ p1

| is_FS _ x’ ⇒
match Fin_proxy x’ with
| is_F1 _ ⇒ p2

| is_FS _ x’’ ⇒ ...

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 9



Using the proxy : typeclass

It is possible to wrap the proxy in a typeclass so that remembering
the proxy name is not necessary.

Class Proxy (T:Type) :=
{ proxy_type: Type;

proxy: T → proxy_type }.

Class dProxy (T:Type) :=
{ dproxy_type: T → Type;
dproxy: ∀ t:T, dproxy_type t }.

match dProxy/proxy (x : Fin.t 3) with ...

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 10



Systematic creation

Partial inductive types and proxies are systematically derived by
successive refinements of the inductive type through different
transformations:

■ Derecursivation: removing recursive references to the
inductive type.

■ Deparameterisation: transforming parameters into indices.

■ Transformation into dependent inversion if needed.

■ Specialisation: creating partial inductives for a given
inductively typed index;
can be iterated for deep or multiple patterns.

■ Parameterisation: transforming as many indices as possible
into parameters.

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 11



Current and future work

Ongoing work:

■ MetaRocq plugin that automates the definition of proxies.

■ Exploration of edge cases in the transformations.

■ Case studies (CompCert...)

Future objectives:

■ Support for inversion with dependently typed indices.

■ Support for inversion with non-linear patterns.

■ Eventually: integration of proxy-based small inversions into
the Equations plugin?

Corbineau,Gros,Monin Proxy-based small inversions for certified programming 12


