
Extending SortPoly with Elimination Constraints in Rocq
The Rocqshop 2025, Reykjavik, Iceland

Tomás Díaz1 Kenji Maillard2 Johann Rosain3 Matthieu Sozeau2 Nicolas Tabareau2

Éric Tanter1 Théo Winterhalter4

September 27, 2025
1PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

2Galinette Project Team, LS2N & Inria de l’Université de Rennes, Nantes, France

3École Normale Supérieure de Lyon, Lyon, France

4LMF & Inria Saclay, Saclay, France

When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what? today’s talk: duplications.

1/13

When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what? today’s talk: duplications.

1/13

When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what? today’s talk: duplications.

1/13

When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what?

today’s talk: duplications.

1/13

When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what? today’s talk: duplications.

1/13

Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.

2/13

Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.

2/13

Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.

2/13

Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.

2/13

Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.

2/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B.

I Universe level polymorphism: Sozeau and Tabareau, 2014.

I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B. “Universe Levels”

I Universe level polymorphism: Sozeau and Tabareau, 2014.

I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B. “Sorts”

I Universe level polymorphism: Sozeau and Tabareau, 2014.
I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B.

“Universes”

I Universe level polymorphism: Sozeau and Tabareau, 2014.
I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B. “Sorts” “Universe Levels”

“Universes”

I Universe level polymorphism: Sozeau and Tabareau, 2014.
I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B. “Sorts” “Universe Levels”

“Universes”

I Universe level polymorphism: Sozeau and Tabareau, 2014.
I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:
Definition sum_elim@{sl sr s s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Otherwise, setting s := Prop and s′ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.

4/13

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:
Definition sum_elim@{sl sr Prop Type}
{A : U@{sl}} {B : U@{sr}} {C : U@{Type}} (u : sum@{sl sr Prop} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr Prop} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Otherwise, setting s := Prop and s′ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.

4/13

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:
Definition sum_elim@{sl sr Prop Type}
{A : U@{sl}} {B : U@{sr}} {C : U@{Type}} (u : sum@{sl sr Prop} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr Prop} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Otherwise, setting s := Prop and s′ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.

4/13

Shackling The Old Rooster

3 goals:

I use bounds to avoid duplication,
I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

Shackling The Old Rooster

3 goals:
I use bounds to avoid duplication,

I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

Shackling The Old Rooster

3 goals:
I use bounds to avoid duplication,
I preserve Rocq’s consistency

(otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

Shackling The Old Rooster

3 goals:
I use bounds to avoid duplication,
I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

Shackling The Old Rooster

3 goals:
I use bounds to avoid duplication,
I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

Shackling The Old Rooster

3 goals:
I use bounds to avoid duplication,
I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

No Regression

For s, s' two sorts:

s s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching).

Rocq’s system:

Type Type, Type Prop, Type SProp,
Prop Prop, Prop SProp, and
SProp SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.

6/13

No Regression

For s, s' two sorts:

s s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching). Rocq’s system:

Type Type, Type Prop, Type SProp,

Prop Prop, Prop SProp, and
SProp SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.

6/13

No Regression

For s, s' two sorts:

s s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching). Rocq’s system:

Type Type, Type Prop, Type SProp,
Prop Prop, Prop SProp, and

SProp SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.

6/13

No Regression

For s, s' two sorts:

s s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching). Rocq’s system:

Type Type, Type Prop, Type SProp,
Prop Prop, Prop SProp, and
SProp SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.

6/13

No Regression

For s, s' two sorts:

s s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching). Rocq’s system:

Type Type, Type Prop, Type SProp,
Prop Prop, Prop SProp, and
SProp SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.

6/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?
Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.

If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?
Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?

Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?
Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?
Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc s and SProp s)?
Dominant sort: unique minimal ground sort w.r.t. op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.

7/13

It’s Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type Prop, Prop SProp.

2: Catch inadvertently-introduced Prop Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.

8/13

It’s Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type Prop, Prop SProp.

2: Catch inadvertently-introduced Prop Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.

8/13

It’s Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type Prop, Prop SProp.

2: Catch inadvertently-introduced Prop Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.

8/13

It’s Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type Prop, Prop SProp.

2: Catch inadvertently-introduced Prop Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.

8/13

Good But Not Great

Can write the generic eliminator:
Definition sum_elim@{sl sr s s' | s s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.

9/13

Good But Not Great

Can write the generic eliminator:
Definition sum_elim@{sl sr s s' | s s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

My face after
annotating terms
for 15 minutes

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.

9/13

Good But Not Great

Can write the generic eliminator:
Definition sum_elim@{sl sr s s' | s s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

My face after
annotating terms
for 15 minutes

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.

9/13

But Here, There is a Catharsis

2 good news:

I SortPoly enjoys principality.
I Have an elaboration procedure yielding the most generic term.

Concretely, for the user:
Set Universe Polymorphism.
Definition sum_elim {A B C : Type}

(u : sum A B) (f : A → C) (g : B → C) : C :=
match u in sum A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

yields the principal term of the previous slide.

10/13

But Here, There is a Catharsis

2 good news:

I SortPoly enjoys principality.
I Have an elaboration procedure yielding the most generic term.

Concretely, for the user:
Set Universe Polymorphism.
Definition sum_elim {A B C : Type}
(u : sum A B) (f : A → C) (g : B → C) : C :=
match u in sum A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

yields the principal term of the previous slide.
10/13

But Here, There is a Catharsis

2 good news:

I SortPoly enjoys principality.
I Have an elaboration procedure yielding the most generic term.

Concretely, for the user:
Set Universe Polymorphism.
Definition sum_elim {A B C : Type}
(u : sum A B) (f : A → C) (g : B → C) : C :=
match u in sum A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

yields the principal term of the previous slide.

Phew, we won’t have to
go insane over that

10/13

There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

I reuse of the universe level graph for transitive closure,
I ad-hoc checks for dominant sorts (amortized constant complexity),
I ad-hoc checks to avoid introducing unwanted constraints,
I manual prohibition of SProp s.

Expect some performance regressions in the monomorphic case:

I eliminability check through a graph,
I bigger structures at elaboration.

11/13

There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

I reuse of the universe level graph for transitive closure,
I ad-hoc checks for dominant sorts (amortized constant complexity),
I ad-hoc checks to avoid introducing unwanted constraints,
I manual prohibition of SProp s.

Expect some performance regressions in the monomorphic case:

I eliminability check through a graph,
I bigger structures at elaboration.

11/13

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

I Develop the constraint graph, and plug it at the right places.
I Parsing with annotations.

Check out the RFC!

Next phase:

I Automatic elaboration if flag Set Universe Polymorphism.
I Relax restriction on primitive records.
I Automatic generation of generic induction scheme.

Near future:

I Make use of dominant sorts in conversion tests.

12/13

https://github.com/rocq-prover/rfcs/pull/111

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

I Develop the constraint graph, and plug it at the right places.
I Parsing with annotations.

Check out the RFC!
Next phase:

I Automatic elaboration if flag Set Universe Polymorphism.
I Relax restriction on primitive records.
I Automatic generation of generic induction scheme.

Near future:

I Make use of dominant sorts in conversion tests.

12/13

https://github.com/rocq-prover/rfcs/pull/111

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

I Develop the constraint graph, and plug it at the right places.
I Parsing with annotations.

Check out the RFC!
Next phase:

I Automatic elaboration if flag Set Universe Polymorphism.
I Relax restriction on primitive records.
I Automatic generation of generic induction scheme.

Near future:

I Make use of dominant sorts in conversion tests.

12/13

https://github.com/rocq-prover/rfcs/pull/111

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoly , it is painless for users.*

*Except for mad people annotating stuff.

Any question(s)?

13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoly , it is painless for users.*

*Except for mad people annotating stuff.

Any question(s)?

13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoly , it is painless for users.*

*Except for mad people annotating stuff.

Any question(s)? 13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

