Extending SortPoly with Elimination Constraints in Rocq

The Rocgshop 2025, Reykjavik, Iceland

Tomas Diaz' Kenji Maillard?> Johann Rosain® Matthieu Sozeau? Nicolas Tabareau?
Eric Tanter' Théo Winterhalter*

September 27, 2025

TPLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile
2Galinette Project Team, LS2N & Inria de 'Université de Rennes, Nantes, France
3Ecole Normale Supérieure de Lyon, Lyon, France

“LMF & Inria Saclay, Saclay, France

When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code

Simple and Practical Techniques for Writing Better Code

O'REILLY*

1/13

When You Stare Into The Code, it Stares Back At You

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

The Art of
Readable Code

Simple and Practical Techniques for Writing Better Code

Dustin Boswell
Trevor Foucher

O'REILLY*
Figure 1. Book Rocq's develop-

ers forgot to read. 113

When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

; Dustin Boswell
OREILLY* e Trevor Foucher

Figure 1. Book Rocq's develop-

ers forgot to read. e

When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

One of the big principles:

N Don’t repeat yourself.

Dustin B\ Guess what?

OREILLY* e Trevor Foucher
Figure 1. Book Rocq's develop-

ers forgot to read. e

When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

One of the big principles:

N Don’t repeat yourself.

Dus..naoswer\ Guess what? today’s talk: duplications.

OREILLY* e Trevor Foucher
Figure 1. Book Rocq's develop-

ers forgot to read. e

Inductive sum (A B : Type) : Type :=
| inl : A — sum A B
| inr : B — sum A B.

2/13

Inductive sum (A B : Type) : Type :=
| inl : A — sum A B
| inr : B — sum A B.

Inductive or (A B : Prop) : Prop :=

| or_introl : A — or A B
| or_intror : B — or A B.

2/13

Déja Vu
Inductive sum (A B : Type) : Type :=

| inl : A — sum A B
| inr : B — sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A — or A B
| or_intror : B — or A B.

Inductive sumbool (A B : Prop) : Type :=

| left : A — sumbool A B
| right : B — sumbool A B.

2/13

Inductive sum (A B : Type) : Type :=
| inl : A — sum A B
| inr : B — sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A — or A B
| or_intror : B — or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A — sumbool A B
| right : B — sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=
| inleft : A — sumor A B

| inright : B — sumor A B.
2/13

Inductive sum (A B : Type) : Type :=
| inl : A — sum A B
| inr : B — sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A — or A B
| or_intror : B — or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A — sumbool A B
| right : B — sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=
| inleft : A — sumor A B

| inright : B — sumor A B.
2/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive suma{sl sr s ; ul ur}

(A : ye{sl ; ul}) (B : u@{sr ; ur}) : u@{s ; max(ul, ur)} :=
| inl : A — sum A B
| inr : B — sum A B.

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive sumd{sl sr s ;

(A : Ue{sl ;) (B : U @ : UO{s ;} =
BN

| inl : A — sum A B)
| inr : B — sum A B. “Universe Levels”

» Universe level polymorphism: Sozeau and Tabareau, 2014.

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductlve suma), ul ur}
g ul} 4@ ; ur}) ﬁ, max(ul, ur)} :
[1n1 g A — sum

| inr : B — sum A B. “Sorts”

» Universe level polymorphism: Sozeau and Tabareau, 2014.
» In 2025, Poiret et al. bring sort polymorphism to Rocq.

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive sum@{sl sr s ; ul ur}

(A : ye{st ; uld) (B : ue{sr ; urp) : uefs ; max(ul, ur)} :=
| inl : A — sum A

| inr : B — sum A B.

» Universe level polymorphism: Sozeau and Tabareau, 2014.
» In 2025, Poiret et al. bring sort polymorphism to Rocq.

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive sumq sl ;

(A : uedsy) ; @lpy (6 : U@%;@)}) : uefs); @ax(ul, ud} :=

|1n1:A%sumAB)
| inr : B — sum A B. “Sorts” “Universe Levels”

" n

» Universe level polymorphism: Sozeau and Tabareau, 2014.
» In 2025, Poiret et al. bring sort polymorphism to Rocq.

3/13

Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive suma{gb

, ; @}
(A = uedsD) ; (uLp) (8 :@%@;@)}) : ues); @ax(ul, uDi} :-
| inl : A — sum A B
| inr : B — sum A B. “Sorts” “Universe Levels”

" n

» Universe level polymorphism: Sozeau and Tabareau, 2014.
» In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!

3/13

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:

Definition sum_elim@{sl sr s s'}
{A : yo{si}t}t {B : ue{sr}t}t {Cc : ue{s'}t}t (u : sump{sl sr s} A B)
(f: A - C)(g:B — C):C:=
match u in sum@{sl sr s} A B return C with
| inl a = f a
| intr b = g b
end.

413

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:

Definition sum_elim@{sl sr Prop Type}
{A : Ue{sl}} {B : ue{sr}t} {Cc : ue{Type}t} (u : suma{sl sr Prop} A B)
(f: A - C)(g:B — C):C:=
match u in sum@{sl sr Prop} A B return C with
| inl a = f a
| intr b = g b
end.

Otherwise, setting s := Prop and s’ := Type makes Rocq inconsistent.

413

Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:

Definition sum_elim@{sl sr Prop Type}
{A : Ue{sl}} {B : ue{sr}t} {Cc : ue{Type}t} (u : suma{sl sr Prop} A B)
(f: A - C)(g:B — C):C:=
match u in sum@{sl sr Prop} A B return C with
| inl a = f a
| intr b = g b
end.

Otherwise, setting s := Prop and s’ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.

413

Shackling The Old Rooster

3 goals:

5/13

Shackling The Old Rooster

3 goals:
» use bounds to avoid duplication,

5/13

Shackling The Old Rooster

3 goals:
» use bounds to avoid duplication,

» preserve Rocq’s consistency

5/13

Shackling The Old Rooster

BEWARE
#CHICKENS

e ¥

3 goals:
» use bounds to avoid duplication,

» preserve Rocq’s consistency (otherwise the
chicken is angry), and

5/13

Shackling The Old Rooster

SchaNs| e

e ¥

» use bounds to avoid duplication,

» preserve Rocq’s consistency (otherwise the
chicken is angry), and

» remove need of annotations.

5/13

Shackling The Old Rooster

BEWARE

3 goals:
» use bounds to avoid duplication,

» preserve Rocq’s consistency (otherwise the
chicken is angry), and

» remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13

No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s

(via pattern-matching).

6/13

No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,

6/13

No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and

6/13

No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and
SProp ~» SProp.

6/13

No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and
SProp ~» SProp.

Study of the metatheory gives:

» consistency (under small condition), and

» transitivity.

6/13

Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

7/13

Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.

7/13

Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc ~ s and SProp ~» s)?

7/13

Everything You Never Wanted To Know About Domination

Definition food{s | SProp ~ s} {A : uU@{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.

If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc ~ s and SProp ~» s)?

Dominant sort: unique minimal ground sort w.r.t. ~ °P,

7/13

Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.

If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc ~ s and SProp ~» s)?

Dominant sort: unique minimal ground sort w.r.t. ~ °P,

oF WoREY
NATION

initial sort + all sorts dominated = consistency.

7/13

Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.
If unrestricted, undecidability is close (Exc exceptional sort, ek

what happens with Exc ~ s and SProp ~ s)? NATION
Dominant sort: unique minimal ground sort w.r.t. ~ °P,

initial sort + all sorts dominated = consistency.

Good news: in Rocq, Type is initial.
— only need to ensure domination.

7/13

It's Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

8/13

It's Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

8/13

It's Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type ~~ Prop, Prop ~ SProp.

2: Catch inadvertently-introduced Prop ~+ Type or non-dominated sort.

8/13

It's Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type ~~ Prop, Prop ~ SProp.

2: Catch inadvertently-introduced Prop ~+ Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.

8/13

Good But Not Great

Can write the generic eliminator:

Definition sum_elim@{sl sr s s' | s ~ s'}
{A : ye{si}}t {B : ue{sr}}t {c : ue{s'}}t (u
(f : A - C)(g:B = C):C:=

match u in sum@{sl sr s} A B return C with
| inl a = f a

| intr b = g b

end.

: suma{sl sr s} A B)

9/13

Good But Not Great

Can write the generic eliminator: {

Definition sum_elim@{sl sr s s' | s ~ s'}
{A : yoe{si}t}t {B : ue{srt}t {c : ue{s't}t (u : suma{sl sr s} A B)
(f : A - C)(g:B = C):C:=
match u in sum@{sl sr s} A B return C with
| inl a = f a
| intr b = g b
end.

A
My face after
annotating terms
for 15 minutes

Small problem: this many annotations drive one crazy!

9/13

Good But Not Great

Can write the generic eliminator: [.

Definition sum_elim@{sl sr s s' | s ~ s'} ; :
{A : yoe{si}tt {B : ue{srtt {Cc : ue{s'}t}t (u : sump{sl sr s} A B) < ;=
(f : A - C)(g:B = C):C:=
match u in sum@{sl sr s} A B return C with
| inl a = f a
| intr b = g b
end.

A
My face after
annotating terms
for 15 minutes

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.

9/13

But Here, There is a Catharsis

2 good news:

» SortPoly’ enjoys principality.
» Have an elaboration procedure yielding the most generic term.

10/13

But Here, There is a Catharsis

2 good news:

» SortPoly’ enjoys principality.
» Have an elaboration procedure yielding the most generic term.

Concretely, for the user:

Set Universe Polymorphism.

Definition sum_elim {A B C : Type}
(u:sumAB) (f: A—=C)(g:B — C):C:=
match u in sum A B return C with
| inl a = f a
| inr b = g b
end.

yields the principal term of the previous slide.
10/13

But Here, There is a Catharsis

2 good news:

» SortPoly’ enjoys principality.
» Have an elaboration procedure yielding the most generic term.

Concretely, for the user:

Set Universe Polymorphism.

Definition sum_elim {A B C : Type} Phew, we won't have to
(u:sumAB) (f:A > C)(g:B > C):C:= go insane over that
match u in sum A B return C with
| inl a = f a
| inr b = g b
end.

yields the principal term of the previous slide.

10/13

There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

» reuse of the universe level graph for transitive closure,
» ad-hoc checks for dominant sorts (amortized constant complexity),
» ad-hoc checks to avoid introducing unwanted constraints,

» manual prohibition of SProp ~ s.

11/13

There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

» reuse of the universe level graph for transitive closure,
» ad-hoc checks for dominant sorts (amortized constant complexity),
» ad-hoc checks to avoid introducing unwanted constraints,

» manual prohibition of SProp ~ s.
Expect some performance regressions in the monomorphic case:

» eliminability check through a graph,
» bigger structures at elaboration.

11/13

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

» Develop the constraint graph, and plug it at the right places.

» Parsing with annotations.

Check out the RFC!

12/13

https://github.com/rocq-prover/rfcs/pull/111

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

» Develop the constraint graph, and plug it at the right places.
» Parsing with annotations.

Next phase: -
Check out the RFC!
» Automatic elaboration if flag Set Universe Polymorphism.

» Relax restriction on primitive records.
» Automatic generation of generic induction scheme.

12/13

https://github.com/rocq-prover/rfcs/pull/111

Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

» Develop the constraint graph, and plug it at the right places.
» Parsing with annotations.

Next phase:

» Automatic elaboration if flag Set Universe Polymorphism.
» Relax restriction on primitive records.
» Automatic generation of generic induction scheme.

Near future:

» Make use of dominant sorts in conversion tests.

12/13

https://github.com/rocq-prover/rfcs/pull/111

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoli, it is painless for users.”

"Except for mad people annotating stuff.

13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoli, it is painless for users.”

"Except for mad people annotating stuff.

Any question(s)? 13/13

https://github.com/TDiazT/coq/tree/sort-elaboration

