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When You Stare Into The Code, it Stares Back At You

Figure 1. Book Rocq’s develop-
ers forgot to read.

Unexpectedly:

Not a talk about Rocq’s source code.

One of the big principles:

Don’t repeat yourself.

Guess what? today’s talk: duplications.
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Déjà Vu

Inductive sum (A B : Type) : Type :=
| inl : A → sum A B
| inr : B → sum A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A → or A B
| or_intror : B → or A B.

Inductive sumbool (A B : Prop) : Type :=
| left : A → sumbool A B
| right : B → sumbool A B.

Inductive sumor (A : Type) (B : Prop) :
Type :=

| inleft : A → sumor A B
| inright : B → sumor A B.
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Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:
Inductive sum@{sl sr s ; ul ur}
(A : U@{sl ; ul}) (B : U@{sr ; ur}) : U@{s ; max(ul, ur)} :=

| inl : A → sum A B
| inr : B → sum A B.

I Universe level polymorphism: Sozeau and Tabareau, 2014.

I In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!
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Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:
Definition sum_elim@{sl sr s s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Otherwise, setting s := Prop and s′ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.
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Shackling The Old Rooster

3 goals:

I use bounds to avoid duplication,
I preserve Rocq’s consistency (otherwise the
chicken is angry), and

I remove need of annotations.

This is the job of elimination constraints in SortPoly .
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No Regression

For s, s' two sorts:

s  s' ⇐⇒ values in s' can be produced by ones in s

(via pattern-matching).

Rocq’s system:

Type  Type, Type  Prop, Type  SProp,
Prop  Prop, Prop  SProp, and
SProp  SProp.

Study of the metatheory gives:

I consistency (under small condition), and
I transitivity.
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Everything You Never Wanted To Know About Domination

Definition foo@{s | SProp  s} {A : U@{s}}
(f : B@{SProp} → A) : f true = f false := eq_refl.

Indeed, true ≡ false in SProp, so f true ≡ f false.
If unrestricted, undecidability is close (Exc exceptional sort,
what happens with Exc  s and SProp  s)?
Dominant sort: unique minimal ground sort w.r.t.  op.

initial sort + all sorts dominated =⇒ consistency.

Good news: in Rocq, Type is initial.
=⇒ only need to ensure domination.
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It’s Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type  Prop, Prop  SProp.

2: Catch inadvertently-introduced Prop  Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.
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Good But Not Great

Can write the generic eliminator:
Definition sum_elim@{sl sr s s' | s  s'}
{A : U@{sl}} {B : U@{sr}} {C : U@{s'}} (u : sum@{sl sr s} A B)
(f : A → C) (g : B → C) : C :=
match u in sum@{sl sr s} A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.
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But Here, There is a Catharsis

2 good news:

I SortPoly enjoys principality.
I Have an elaboration procedure yielding the most generic term.

Concretely, for the user:
Set Universe Polymorphism.
Definition sum_elim {A B C : Type}

(u : sum A B) (f : A → C) (g : B → C) : C :=
match u in sum A B return C with
| inl a ⇒ f a
| inr b ⇒ g b
end.

yields the principal term of the previous slide.
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Phew, we won’t have to
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10/13



There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

I reuse of the universe level graph for transitive closure,
I ad-hoc checks for dominant sorts (amortized constant complexity),
I ad-hoc checks to avoid introducing unwanted constraints,
I manual prohibition of SProp  s.

Expect some performance regressions in the monomorphic case:

I eliminability check through a graph,
I bigger structures at elaboration.
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Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

I Develop the constraint graph, and plug it at the right places.
I Parsing with annotations.

Check out the RFC!

Next phase:

I Automatic elaboration if flag Set Universe Polymorphism.
I Relax restriction on primitive records.
I Automatic generation of generic induction scheme.

Near future:

I Make use of dominant sorts in conversion tests.

12/13

https://github.com/rocq-prover/rfcs/pull/111
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This is Goodbye (For Now)

Want to play with elimination constraints? Latest development version:

Real conclusion:

Embrace SortPoly , it is painless for users.*

*Except for mad people annotating stuff.

Any question(s)?

13/13

https://github.com/TDiazT/coq/tree/sort-elaboration
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