Extending SortPoly with Elimination Constraints in Rocq

The Rocgshop 2025, Reykjavik, Iceland

Tomas Diaz' Kenji Maillard?> Johann Rosain® Matthieu Sozeau? Nicolas Tabareau?
Eric Tanter' Théo Winterhalter*

September 27, 2025

TPLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile
2Galinette Project Team, LS2N & Inria de 'Université de Rennes, Nantes, France
3Ecole Normale Supérieure de Lyon, Lyon, France

“LMF & Inria Saclay, Saclay, France



When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code

Simple and Practical Techniques for Writing Better Code

O'REILLY*

1/13



When You Stare Into The Code, it Stares Back At You

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

The Art of
Readable Code

Simple and Practical Techniques for Writing Better Code

Dustin Boswell
Trevor Foucher

O'REILLY*
Figure 1. Book Rocq's develop-

ers forgot to read. 113



When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

; Dustin Boswell
OREILLY* e Trevor Foucher

Figure 1. Book Rocq's develop-

ers forgot to read. e



When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

One of the big principles:

N Don’t repeat yourself.

Dustin B\ Guess what?

OREILLY* e Trevor Foucher
Figure 1. Book Rocq's develop-

ers forgot to read. e



When You Stare Into The Code, it Stares Back At You

The Art of
Readable Code Unexpectedly:

Simple and Practical Techniques for Writing Better Code

Not a talk about Rocq’s source code.

One of the big principles:

N Don’t repeat yourself.

Dus..naoswer\ Guess what? today’s talk: duplications.
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Not All Heroes Wear Capes

Poiret et al. saved us from this world of suffering with SortPoly:

Inductive suma{gb

, ; @}
(A = uedsD) ; (uLp) (8 :@%@;@)}) : ues); @ax(ul, uDi} :-
| inl : A — sum A B
| inr : B — sum A B. “Sorts” “Universe Levels”

" n

» Universe level polymorphism: Sozeau and Tabareau, 2014.
» In 2025, Poiret et al. bring sort polymorphism to Rocq.

But this is not enough to avoid duplication!
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Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:

Definition sum_elim@{sl sr s s'}
{A : yo{si}t}t {B : ue{sr}t}t {Cc : ue{s'}t}t (u : sump{sl sr s} A B)
(f: A - C)(g:B — C):C:=
match u in sum@{sl sr s} A B return C with
| inl a = f a
| intr b = g b
end.
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Arguably Worse Situation

With unbounded sort polymorphism: cannot define e.g., a generic eliminator:

Definition sum_elim@{sl sr Prop Type}
{A : Ue{sl}} {B : ue{sr}t} {Cc : ue{Type}t} (u : suma{sl sr Prop} A B)
(f: A - C)(g:B — C):C:=
match u in sum@{sl sr Prop} A B return C with
| inl a = f a
| intr b = g b
end.

Otherwise, setting s := Prop and s’ := Type makes Rocq inconsistent.

Still need to declare the different eliminators “by hand”.

413
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Shackling The Old Rooster

BEWARE

3 goals:
» use bounds to avoid duplication,

» preserve Rocq’s consistency (otherwise the
chicken is angry), and

» remove need of annotations.

This is the job of elimination constraints in SortPoly .

5/13



No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s

(via pattern-matching).

6/13



No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,

6/13



No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and

6/13



No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and
SProp ~» SProp.

6/13



No Regression

For s, s' two sorts:
s ~ s' <= valuesins' can be produced by onesin s
(via pattern-matching). Rocq'’s system:

Type ~» Type, Type ~» Prop, Type ~» SProp,
Prop ~» Prop, Prop ~» SProp, and
SProp ~» SProp.

Study of the metatheory gives:

» consistency (under small condition), and

» transitivity.
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Everything You Never Wanted To Know About Domination

Definition food@{s | SProp ~ s} {A : ue{s}}
(f : BR{SProp} — A) : f true = f false := eq_refl.

Indeed, true = false in SProp,so f true = f false.
If unrestricted, undecidability is close (Exc exceptional sort, ek

what happens with Exc ~ s and SProp ~ s)? NATION
Dominant sort: unique minimal ground sort w.r.t. ~ °P,

initial sort + all sorts dominated = consistency.

Good news: in Rocq, Type is initial.
— only need to ensure domination.
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It's Even Getting User-Friendly

“Transitive encoding” of elimination constraints that preserves typing.

We hard-wire transitivity in the system. Benefits:
1. more concise declaration of elimination constraints,

2. catch more inconsistent stuff.

1: Rocq’s system is refl. closure of Type ~~ Prop, Prop ~ SProp.

2: Catch inadvertently-introduced Prop ~+ Type or non-dominated sort.

Does not catch everything, e.g., inconsistent sort eliminating to Type.
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Good But Not Great

Can write the generic eliminator:

Definition sum_elim@{sl sr s s' | s ~ s'}
{A : ye{si}}t {B : ue{sr}}t {c : ue{s'}}t (u
(f : A - C)(g:B = C):C:=

match u in sum@{sl sr s} A B return C with
| inl a = f a

| intr b = g b
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Good But Not Great

Can write the generic eliminator: [ .

Definition sum_elim@{sl sr s s' | s ~ s'} ; :
{A : yoe{si}tt {B : ue{srtt {Cc : ue{s'}t}t (u : sump{sl sr s} A B) < ;=
(f : A - C)(g:B = C):C:=
match u in sum@{sl sr s} A B return C with
| inl a = f a
| intr b = g b
end.

A
My face after
annotating terms
for 15 minutes

Small problem: this many annotations drive one crazy!

Solution: one elaboration procedure to infer them all.
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Concretely, for the user:

Set Universe Polymorphism.
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2 good news:

» SortPoly’ enjoys principality.
» Have an elaboration procedure yielding the most generic term.

Concretely, for the user:

Set Universe Polymorphism.

Definition sum_elim {A B C : Type} Phew, we won't have to
(u:sumAB) (f:A > C)(g:B > C):C:= go insane over that
match u in sum A B return C with
| inl a = f a
| inr b = g b
end.

yields the principal term of the previous slide.
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There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

» reuse of the universe level graph for transitive closure,
» ad-hoc checks for dominant sorts (amortized constant complexity),
» ad-hoc checks to avoid introducing unwanted constraints,

» manual prohibition of SProp ~ s.
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There is Even Actual Work Done

Implementation of elimination constraints in Rocq:

» reuse of the universe level graph for transitive closure,
» ad-hoc checks for dominant sorts (amortized constant complexity),
» ad-hoc checks to avoid introducing unwanted constraints,

» manual prohibition of SProp ~ s.
Expect some performance regressions in the monomorphic case:

» eliminability check through a graph,
» bigger structures at elaboration.
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Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

» Develop the constraint graph, and plug it at the right places.

» Parsing with annotations.

Check out the RFC!
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Rough Planning (There is a Strange Theme in These Titles, no?)

Current phase:

» Develop the constraint graph, and plug it at the right places.
» Parsing with annotations.

Next phase:

» Automatic elaboration if flag Set Universe Polymorphism.
» Relax restriction on primitive records.
» Automatic generation of generic induction scheme.

Near future:

» Make use of dominant sorts in conversion tests.
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