Friedrich-Alexander-Universität Erlangen-Nürnberg

Can States Be Decidable in Inquisitive Mechanizations?

Implementation of (Bounded) Inquisitive First-Order Logic in Rocq

Max Ole Elliger¹ Tadeusz Litak²

¹Friedrich-Alexander-Universität Erlangen-Nürnberg

²Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, University of Naples Federico II

September 27, 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus

3. Future Work

Inquisitive FOL can be seen as an extension of classical logic by questions.

Inquisitive FOL can be seen as an extension of classical logic by questions.

Example

Natural Language	Formula
Luisa is guilty.	Guilty (Luisa)
If Luisa was there, do we know whether Luisa is guilty?	WasThere (Luisa) \rightarrow ? Guilty (Luisa)
If we knew whether Luisa was there, do we know whether Luisa is guilty?	? WasThere (Luisa) \rightarrow ? Guilty (Luisa)
Is there some person, who is guilty?	$\exists x. \text{ Guilty } (x)$

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

Guilty Not Guilty Was There Consider the following possible worlds regarding Luisa: w_1 w_2 **Was Not There** w_3

 w_4

Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

Consider the following possible worlds regarding Luisa: Was There

		Guilty	Not dunty
:	Was There	w_1	w_2
	Was Not There	w_3	w_4

Guilty Not Guilty

 We get the following properties regarding the single worlds:

```
w_1 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}

w_2 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}

w_3 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}

w_4 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}
```


Formulae shall be supported by sets of possible worlds which refer to FO-Models.

Example

• Consider the following possible worlds regarding Luisa: Was There w_1 w_2 w_3 w_4

 We get the following properties regarding the single worlds:

$$w_1 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$$

 $w_2 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $w_3 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $w_4 \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$

• If we look at information states, we get the following support properties:

$$\{w_1, w_2\} \not\models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$$

 $\{w_1, w_3\} \models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$
 $\{w_1, w_2, w_3\} \not\models \text{WasThere (Luisa)} \rightarrow ? \text{Guilty (Luisa)}$

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, ar_{\Sigma}, rigid_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $rigid_{\Sigma} \subseteq F_{\Sigma}$ indicates whether a function symbol is rigid.

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, ar_{\Sigma}, rigid_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $\operatorname{rigid}_{\Sigma} \subseteq F_{\Sigma}$ indicates whether a function symbol is rigid.

Fix a set Var of variables.

Syntax [Cia22]

Definition

- We call a set $\Sigma := (P_{\Sigma}, F_{\Sigma}, ar_{\Sigma}, rigid_{\Sigma})$ a signature.
- P_{Σ} provides predicate symbols.
- F_{Σ} provides function symbols.
- $\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to \mathbb{N}$ maps symbols to their arity.
- $\operatorname{rigid}_{\Sigma} \subseteq \mathsf{F}_{\Sigma}$ indicates whether a function symbol is rigid.

Fix a set Var of variables.

Definition

Terms and Formulae over a signature Σ are defined as follows:

$$t \in \operatorname{Ter}_{\Sigma} ::= x \mid f\left(t_{1}, \dots, t_{\operatorname{ar}_{\Sigma}(f)}\right)$$

$$\phi, \psi \in \mathcal{F}_{\Sigma} ::= P\left(t_{1}, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) \mid \bot \mid \phi \to \psi \mid \phi \land \psi \mid \phi \lor \psi \mid \forall x. \phi \mid \exists x. \phi$$

$$?\phi := \phi \lor \neg \phi$$

$$f \in \mathsf{F}_{\Sigma}$$

$$P \in \mathsf{P}_{\Sigma}$$

5/24

• Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

 Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

• Use Autosubst [STS] library to implement substitutions.

 Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

- Use Autosubst [STS] library to implement substitutions.
- Use Typeclasses to use signatures implicitly.

 Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

- Use Autosubst [STS] library to implement substitutions.
- Use Typeclasses to use signatures implicitly.

• Ensure decidable equality for predicate and function symbols to distinguish them.

 Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

- Use Autosubst [STS] library to implement substitutions.
- Use Typeclasses to use signatures implicitly.

- Ensure decidable equality for predicate and function symbols to distinguish them.
- Implement arities via arity types:

$$\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to |\mathbf{FinSet}|$$

 Implement variables via De Bruijn indices [dBr72]:

$$Var := \mathbb{N}$$

$$\phi \in \mathcal{F}_{\Sigma} ::= \dots \mid \forall . \phi \mid \exists . \phi$$

- Use Autosubst [STS] library to implement substitutions.
- Use Typeclasses to use signatures implicitly.

- Ensure decidable equality for predicate and function symbols to distinguish them.
- Implement arities via arity types:

$$\operatorname{ar}_{\Sigma} \colon \mathsf{P}_{\Sigma} + \mathsf{F}_{\Sigma} \to |\mathbf{FinSet}|$$

• Implement arguments via argument functions:

$$t ::= \dots \mid f(args) \text{ where } args : \operatorname{ar}_{\Sigma}(f) \to \operatorname{Ter}_{\Sigma}$$

 $\phi ::= P(args) \mid \dots \text{ where } args : \operatorname{ar}_{\Sigma}(P) \to \operatorname{Ter}_{\Sigma}$

Can States Be Decidable in Inquisitive Mechanizations?

FAU

Regarding Rocq (2)

```
1 | Class Signature :=
        PSymb: Type;
        PSymb EqDec :: EqDec (eq setoid PSymb);
        PAri: PSymb \rightarrow Type;
        FSymb: Type;
        FSymb EqDec :: EqDec (eq setoid FSymb);
        FAri: FSymb \rightarrow Type;
        \mathtt{rigid}: \mathtt{FSymb} 	o \mathtt{bool}
        (* ... *)
      }.
11
12
    Inductive form '{Signature} :=
        Pred: forall (p: PSymb), (PAri p \rightarrow term) \rightarrow form
        Bot: var \rightarrow form
15
        \mathtt{Impl}:\mathtt{form}\to\mathtt{form}\to\mathtt{form}
16
        Conj: form \rightarrow form \rightarrow form
        Idisj:form \rightarrow form \rightarrow form
18
        Forall: \{\text{bind term in form}\} \rightarrow \text{form}
19
         Iexists: \{\text{bind term in form}\} \rightarrow \text{form}.
20
```


Regarding Rocq (2)

```
1 | Class Signature :=
        PSymb: Type;
        PSymb EqDec :: EqDec (eq setoid PSymb);
        PAri: PSymb \rightarrow Type;
        FSymb: Type;
        FSymb EqDec :: EqDec (eq setoid FSymb);
        FAri: FSymb \rightarrow Type;
        rigid: FSymb \rightarrow bool
        (* ... *)
11
12
   Inductive form '{Signature} :=
        Pred: forall (p: PSymb), (PAri p \rightarrow term) \rightarrow form
        Bot: var \rightarrow form
        \mathtt{Impl}:\mathtt{form}\to\mathtt{form}\to\mathtt{form}
        Conj: form \rightarrow form \rightarrow form
        Idisj:form \rightarrow form \rightarrow form
        Forall: \{\text{bind term in form}\} \rightarrow \text{form}
19
        Iexists: \{\text{bind term in form}\} \rightarrow \text{form}.
```

 (Decidable) syntactic equality for formulae (and terms) becomes non-trivial because of dependent types.

Regarding Rocq (2)

```
1 | Class Signature :=
        PSymb: Type;
        PSymb EqDec :: EqDec (eq setoid PSymb);
        PAri: PSymb \rightarrow Type;
        FSymb: Type;
        FSymb EqDec :: EqDec (eq setoid FSymb);
        FAri: FSymb \rightarrow Type;
        rigid: FSymb \rightarrow bool
        (* ... *)
11
12
   Inductive form '{Signature} :=
        Pred: forall (p: PSymb), (PAri p \rightarrow term) \rightarrow form
        Bot: var \rightarrow form
        \texttt{Impl}: \texttt{form} \to \texttt{form} \to \texttt{form}
        Conj: form \rightarrow form \rightarrow form
        Idisj:form \rightarrow form \rightarrow form
        Forall: \{\text{bind term in form}\} \rightarrow \text{form}
19
        Iexists: \{\text{bind term in form}\} \rightarrow \text{form}.
```

- (Decidable) syntactic equality for formulae (and terms) becomes non-trivial because of dependent types.
- Solution: Define a setoid equality for terms and formulae.

FAU

Regarding Rocq (3)

```
|Fixpoint term_eq \{S : Signature\} (t : term) : term \rightarrow Prop :=
     match t with
       Var x1 \Rightarrow
          fun t2 \Rightarrow
          match t2 with
            Var x2 \Rightarrow (x1 == x2)\%type
           \Rightarrow False
          end
       Func f1 args1 \Rightarrow
          fun t2 \Rightarrow
          match t2 with
           Func f2 args2 \Rightarrow
              match equiv dec f1 f2 with
                left Heq \Rightarrow
                   term_eq_Func_Func_EqDec term_eq f1 args1 f2 args2 Heq
               \Rightarrow False
               end
              \Rightarrow False
          end
19
     end.
```

```
Definition term eq Func Func EqDec
      '{ S : Signature}
      (rec: relation term)
      (f1: FSymb)
      (args1: FAri f1 \rightarrow term)
      (f2: FSymb)
      (args2 : FAri f2 \rightarrow term)
      (is equal: (f1 == f2)\%type): Prop :=
     eq rect
      f1
11
      (\operatorname{fun} f \Rightarrow (\operatorname{FAri} f \rightarrow \operatorname{term}) \rightarrow \operatorname{Prop})
      (fun args \Rightarrow
13
        forall arg,
           rec (args1 arg) (args arg)
15
16
      f2
17
      is equal
     args2.
```


Models, States

Definition

Let Σ be a signature.

 $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathbf{W}_{\mathfrak{M}}, \mathbf{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.
- $I_{\mathfrak{M}}$ is a (non-empty) set of individuals.
- $\mathfrak{M}_w \llbracket f \rrbracket : \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq \operatorname{I}^{\operatorname{ar}_{\Sigma}(P)}_{\mathfrak{M}}$ is the interpretation of P in a world w.

Models, States

Definition

Let Σ be a signature.

- $\bullet \text{ A tuple } \mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right) \text{ is called a model.}$
- W_M is a set of possible worlds.
- $I_{\mathfrak{M}}$ is a (non-empty) set of individuals.
- $\mathfrak{M}_w[\![f]\!]: \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq I_{\mathfrak{M}}^{\operatorname{ar}_{\Sigma}(P)}$ is the interpretation of P in a world w.
- for every rigid $f \in \mathsf{F}_{\Sigma}$ and for all $w_1, w_2 \in \mathsf{W}_{\mathfrak{M}}$ we have $\mathfrak{M}_{w_1} \llbracket f \rrbracket = \mathfrak{M}_{w_2} \llbracket f \rrbracket$.

Models, States

Definition

Let Σ be a signature.

- A tuple $\mathfrak{M} := \left(\mathrm{W}_{\mathfrak{M}}, \mathrm{I}_{\mathfrak{M}}, (\mathfrak{M}_w \, \llbracket f \rrbracket)_{w \in W, f \in \mathsf{F}_{\varSigma}}, (\mathfrak{M}_w \, \llbracket P \rrbracket)_{w \in W, P \in \mathsf{P}_{\varSigma}} \right)$ is called a model.
- $W_{\mathfrak{M}}$ is a set of possible worlds.
- I_m is a (non-empty) set of individuals.
- $\mathfrak{M}_w \llbracket f \rrbracket : \mathrm{I}^{\mathrm{ar}_{\Sigma}(f)}_{\mathfrak{M}} \to \mathrm{I}_{\mathfrak{M}}$ is the interpretation of f in a world w.
- $\mathfrak{M}_w \llbracket P \rrbracket \subseteq \operatorname{I}^{\operatorname{ar}_{\Sigma}(P)}_{\mathfrak{M}}$ is the interpretation of P in a world w.
- for every rigid $f \in \mathsf{F}_{\Sigma}$ and for all $w_1, w_2 \in \mathsf{W}_{\mathfrak{M}}$ we have $\mathfrak{M}_{w_1} \llbracket f \rrbracket = \mathfrak{M}_{w_2} \llbracket f \rrbracket$.

Definition

Let Σ be a signature, \mathfrak{M} be a model. A subset $s \subseteq W_{\mathfrak{M}}$ is called an (information) state.

What should states be from Coq's point of view?? Boolean predicates of type World \rightarrow bool (decidable by definition), or rather arbitrary functions of type World \rightarrow Prop?

Referent of a Term

Definition

Let Σ be a signature, \mathfrak{M} be a Model, $s \subseteq W_{\mathfrak{M}}$ an information state and $\eta \colon \operatorname{Var} \to \operatorname{I}_{\mathfrak{M}}$ a variable assignment. The referent of a term $t \in \operatorname{Ter}_{\Sigma}$ is defined as follows:

$$\mathfrak{M}_{w,\eta} \llbracket x \rrbracket := \eta \left(x \right)$$

$$\mathfrak{M}_{w,\eta} \llbracket f \left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(f)} \right) \rrbracket := \mathfrak{M}_w \llbracket f \rrbracket \left(\mathfrak{M}_{w,\eta} \llbracket t_1 \rrbracket, \dots, \mathfrak{M}_{w,\eta} \llbracket t_{\operatorname{ar}_{\Sigma}(f)} \rrbracket \right)$$

Referent of a Term

Definition

Let Σ be a signature, \mathfrak{M} be a Model, $s \subseteq W_{\mathfrak{M}}$ an information state and $\eta \colon \operatorname{Var} \to I_{\mathfrak{M}}$ a variable assignment. The referent of a term $t \in \operatorname{Ter}_{\Sigma}$ is defined as follows:

$$\mathfrak{M}_{w,\eta} \llbracket x \rrbracket := \eta (x)$$

$$\mathfrak{M}_{w,\eta} \llbracket f \left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(f)} \right) \rrbracket := \mathfrak{M}_w \llbracket f \rrbracket \left(\mathfrak{M}_{w,\eta} \llbracket t_1 \rrbracket, \dots, \mathfrak{M}_{w,\eta} \llbracket t_{\operatorname{ar}_{\Sigma}(f)} \rrbracket \right)$$

Using the new syntax:

$$\mathfrak{M}_{w,\eta} \left[\!\!\left[f \left(\mathit{args} \right) \right]\!\!\right] := \mathfrak{M}_w \left[\!\!\left[f \right]\!\!\right] \left(\mathfrak{M}_{w,\eta} \left[\!\!\left[- \right]\!\!\right] \circ \mathit{args} \right)$$

Semantics Support

Definition

Support

Definition

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) :\iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_1\right]\!\right], \dots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_w\left[\!\left[P\right]\!\right]$$

Support

Definition

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) :\iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_1\right]\!\right], \dots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_w\left[\!\left[P\right]\!\right]$$
 $\mathfrak{M}, s, \eta \models \bot :\iff s = \emptyset$

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_1, \dots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta} \llbracket t_1 \rrbracket, \dots, \mathfrak{M}_{w,\eta} \llbracket t_{\operatorname{ar}_{\Sigma}(P)} \rrbracket\right) \in \mathfrak{M}_w \llbracket P \rrbracket$$
 $\mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset$
 $\mathfrak{M}, s, \eta \models \phi \to \psi : \iff \text{for all } t \subseteq s, \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi$

Can States Be Decidable in Inquisitive Mechanizations?

Support

Definition

$$\mathfrak{M}, s, \eta \models P\left(t_{1}, \ldots, t_{\operatorname{ar}_{\varSigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_{1}\right]\!\right], \ldots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\varSigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_{w}\left[\!\left[P\right]\!\right] \\ \mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset \\ \mathfrak{M}, s, \eta \models \phi \rightarrow \psi : \iff \text{for all } t \subseteq s, \ \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \land \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ and } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \lor \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ or } \mathfrak{M}, s, \eta \models \psi$$

Support

Definition

The support relation \models is defined as follows:

$$\mathfrak{M}, s, \eta \models P\left(t_{1}, \ldots, t_{\operatorname{ar}_{\Sigma}(P)}\right) : \iff \text{for all } w \in s \text{ we have } \left(\mathfrak{M}_{w,\eta}\left[\!\left[t_{1}\right]\!\right], \ldots, \mathfrak{M}_{w,\eta}\left[\!\left[t_{\operatorname{ar}_{\Sigma}(P)}\right]\!\right]\right) \in \mathfrak{M}_{w}\left[\!\left[P\right]\!\right] \\ \mathfrak{M}, s, \eta \models \bot : \iff s = \emptyset \\ \mathfrak{M}, s, \eta \models \phi \rightarrow \psi : \iff \text{for all } t \subseteq s, \ \mathfrak{M}, t, \eta \models \phi \text{ implies } \mathfrak{M}, t, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \land \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ and } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \phi \lor \psi : \iff \mathfrak{M}, s, \eta \models \phi \text{ or } \mathfrak{M}, s, \eta \models \psi \\ \mathfrak{M}, s, \eta \models \forall x. \phi : \iff \text{for all } i \in I_{\mathfrak{M}}, \ \mathfrak{M}, s, \eta \left[x \mapsto i\right] \models \phi \\ \mathfrak{M}, s, \eta \models \exists x. \phi : \iff \text{there exists } i \in I_{\mathfrak{M}}, \ \mathfrak{M}, s, \eta \left[x \mapsto i\right] \models \phi$$

Using the new syntax:

$$\mathfrak{M}, s, \eta \models P (args) :\iff \text{for all } w \in s \text{ we have } (\mathfrak{M}_{w,\eta} \llbracket - \rrbracket \circ args) \in \mathfrak{M}_w \llbracket P \rrbracket$$

 $\mathfrak{M}, s, \eta \models \forall . \phi :\iff \text{for all } i \in I_{\mathfrak{M}}, \mathfrak{M}, s, i \bullet \eta \models \phi$
 $\mathfrak{M}, s, \eta \models \exists . \phi :\iff \text{there exists } i \in I_{\mathfrak{M}}, \mathfrak{M}, s, i \bullet \eta \models \phi$

Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

Semantics

Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

•
$$\mathfrak{M}|_s := (s \subseteq W_{\mathfrak{M}}, I_{\mathfrak{M}}, \ldots)$$

Locality

$$\mathfrak{M}, s, \eta \models \phi \iff \mathfrak{M}|_{s}, s, \eta \models \phi$$

Semantics

Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

• $\mathfrak{M}|_s := (s \subseteq W_{\mathfrak{M}}, I_{\mathfrak{M}}, \dots)$

Locality

$$\mathfrak{M}, s, \eta \models \phi \iff \mathfrak{M}|_{s}, s, \eta \models \phi$$

- Defining $\mathfrak{M}|_s$ in Rocq needs subtypes.
- Solution: Generalize $W_{\mathfrak{M}}$ to a setoid.

Semantics

Various properties

Persistency

$$t \subseteq s \text{ and } \mathfrak{M}, s, \eta \models \phi \Longrightarrow \mathfrak{M}, t, \eta, \models \phi$$

Empty State Property

$$\mathfrak{M}, \emptyset, \eta \models \phi$$

• $\mathfrak{M}|_s := (s \subseteq W_{\mathfrak{M}}, I_{\mathfrak{M}}, \ldots)$

Locality

$$\mathfrak{M}, s, \eta \models \phi \iff \mathfrak{M}|_{s}, s, \eta \models \phi$$

- Defining $\mathfrak{M}|_s$ in Rocq needs subtypes.
- Solution: Generalize Wm to a setoid.

```
1 | Context '{M : Model}. Context (s : state).
  Program Definition restricted Model: Model:=
      World := {w : World | contains s w};
      World Setoid := sig Setoid (contains Morph s);
      PInterpretation w := PInterpretation (proj1_sig w);
      FInterpretation w := FInterpretation (proj1 sig w);
      (* ... *)
   |}.
10
11
  Program Definition restricted state (t:state):
    @state _ (restricted_Model s) := (* ... *)
14
  Program Definition unrestricted state
    (t: @state (restricted Model s)):state := (* ... *)
16
17
  |Proposition locality '{M: Model}:
    forall phi s a t, substate t s \rightarrow
19
      support phi t a \leftrightarrow support phi (@restricted state Mst) a.
20
```

Semantics InqFOL

Definition

Define Inquisitive First-Order Logic as follows:

$$\mathsf{InqLog}_{\Sigma} := \{ \phi \in \mathcal{F}_{\Sigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq \mathsf{W}_{\mathfrak{M}}, \eta \colon \mathsf{Var} \to \mathsf{I}_{\mathfrak{M}} \}$$

Can States Be Decidable in Inquisitive Mechanizations?

13/24

Semantics InqFOL

Definition

Define Inquisitive First-Order Logic as follows:

$$\mathsf{InqLog}_{\Sigma} := \{ \phi \in \mathcal{F}_{\Sigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq \mathsf{W}_{\mathfrak{M}}, \eta \colon \mathsf{Var} \to \mathsf{I}_{\mathfrak{M}} \}$$

• There exists a ND-System by Ciardelli/Grilletti [CG22] which is sound, but not yet proven to be complete.

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus

3. Future Work

Boundedness

Introduction

Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.

$$\begin{split} & \mathsf{InqLogB}_{\Sigma,\mathsf{n}} := \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M} \text{ with } |\mathcal{W}_{\mathfrak{M}}| < n, s \subseteq \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \\ & \mathsf{InqLogB}_{\Sigma} := \bigcap_{n \in \mathbb{N}} \mathsf{InqLogB}_{\Sigma,\mathsf{n}} \\ & = \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq_{\mathsf{fin}} \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \end{split}$$

Boundedness

Introduction

Restricting the set of worlds to be finite yields Bounded Inquisitive FOL.

$$\begin{split} & \mathsf{InqLogB}_{\Sigma,\mathsf{n}} := \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M} \text{ with } |\mathcal{W}_{\mathfrak{M}}| < n, s \subseteq \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \\ & \mathsf{InqLogB}_{\Sigma} := \bigcap_{n \in \mathbb{N}} \mathsf{InqLogB}_{\Sigma,\mathsf{n}} \\ & = \{ \phi \in \mathcal{F}_{\varSigma} \mid \mathfrak{M}, s, \eta \models \phi \text{ for all models } \mathfrak{M}, s \subseteq_{\mathsf{fin}} \mathcal{W}_{\mathfrak{M}}, \eta \colon \mathcal{V}\mathrm{ar} \to \mathcal{I}_{\mathfrak{M}} \} \end{split}$$

- Ciardelli/Griletti [CG22] extended their ND-System for InqLogB_{Σ,n} and it proved the resulting extensions to be complete (for most signatures).
- Added axiom: Cardinality Formula, which depends on the concrete signature.
- Apart from signature-dependency, such axioms seem to destroy most desirable proof-theoretic properties of a ND system . . .

Split rules of the ND system of Ciardelli & Grilletti

$$\frac{\alpha \to \varphi \vee \psi}{(\alpha \to \varphi) \vee (\alpha \to \psi)}$$

$$\frac{\alpha \to \exists x. \psi \qquad x \notin FV(\alpha)}{\exists x. \alpha \to \varphi}$$

Figure 1: Split rules

Their soundness [Cia15, Proposition 4.4.6] relies on the definition of the state

$$|\alpha|_{\mathfrak{M}} := \{ w \in W_{\mathfrak{M}} \mid \mathfrak{M}, w \models_{\eta} \alpha \}$$

for a classical formula α and a model \mathfrak{M} .

- It is easy to show by a reduction from classical first-order logic that \models is undecidable.
- Therefore, we cannot use boolean predicates to represent states in order to formalize the soundness proof for this natural deduction system as we would not even be able to define $|\alpha|_{\mathfrak{M}}$.

- L./Sano [LS25] provide a sequent calculus for $lnqLogB_{\Sigma}$ which is proved to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity

- L./Sano [LS25] provide a sequent calculus for InqLogB_Σ which is proved to be sound and complete for each InqLogB_{Σ,n} (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.

- L./Sano [LS25] provide a sequent calculus for InqLogB_Σ which is proved to be sound and complete for each InqLogB_{Σ,n} (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.

- L./Sano [LS25] provide a sequent calculus for $lnqLogB_{\Sigma}$ which is proved to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to \mathbb{W}_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

If
$$\mathfrak{M}, f, \eta \models (X, \phi)$$
 for all $(X, \phi) \in \Gamma$, then $\mathfrak{M}, f, \eta \models (X, \psi)$ for some $(Y, \phi) \in \Delta$

Can States Be Decidable in Inquisitive Mechanizations?

- L./Sano [LS25] provide a sequent calculus for $lnqLogB_{\Sigma}$ which is proved to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1,2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to W_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

If
$$\mathfrak{M}, f, \eta \models (X, \phi)$$
 for all $(X, \phi) \in \Gamma$, then $\mathfrak{M}, f, \eta \models (X, \psi)$ for some $(Y, \phi) \in \Delta$

 The TABLEAUX setup for simplicity restricted to purely relational signatures; no function symbols, no complex terms, no discussion of rigidity

- L./Sano [LS25] provide a sequent calculus for $lnqLogB_{\Sigma}$ which is proved to be sound and complete for each $lnqLogB_{\Sigma,n}$ (with a corresponding restriction on labels)
- And the calculus provides at least a sufficient characterization of schematic validity
- Labels: Finite sets of natural numbers.
- Sequents: $\Gamma \Rightarrow \Delta$ where Γ, Δ are finite sets of labelled formulae such as $(\{1, 2\}, \phi)$.
- Semantics of a labelled formula (X, ϕ) are given by a mapping $f : \mathbb{N} \to W_{\mathfrak{M}}$.

• Semantics of a sequent $\Gamma \Rightarrow \Delta$:

If
$$\mathfrak{M}, f, \eta \models (X, \phi)$$
 for all $(X, \phi) \in \Gamma$, then $\mathfrak{M}, f, \eta \models (X, \psi)$ for some $(Y, \phi) \in \Delta$

- The TABLEAUX setup for simplicity restricted to purely relational signatures; no function symbols, no complex terms, no discussion of rigidity
- MO Elliger slightly adapted the sequent calculus of L./Sano to cover, e.g., nontrivial rigid terms.

19/24

Some Rules

$$\frac{(\emptyset,\phi)\in \Delta}{\Gamma\Rightarrow \Delta} \text{(empty)}$$

$$\frac{(X,\bot) \in \Gamma \quad n \in X}{\Gamma \Rightarrow \Delta} (\bot \Rightarrow)$$

$$\frac{(X, \phi \to \psi) \in \Delta \quad \{\Gamma, (Y, \phi) \Rightarrow (Y, \psi), \Delta \mid Y \subseteq X\}}{\Gamma \Rightarrow \Delta} (\Rightarrow \to)$$

$$\frac{(X,\phi \vee \psi) \in \Delta \quad \Gamma \Rightarrow (X,\phi), (X,\psi), \Delta}{\Gamma \Rightarrow \Delta} (\Rightarrow \vee)$$

$$\frac{(X,\phi \vee \psi) \in \Gamma \quad \Gamma, (X,\phi) \Rightarrow \Delta \quad \Gamma, (X,\psi) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} (\vee \Rightarrow)$$

$$\frac{(X, \exists . \phi) \in \Delta \quad t \text{ is rigid} \quad \Gamma \Rightarrow (X, \phi. [t \bullet \text{ids}]), \Delta}{\Gamma \Rightarrow \Delta} (\Rightarrow \exists)$$

$$\frac{(X, \exists . \phi) \in \Gamma \quad \Gamma. [(+1)], (X, \phi) \Rightarrow \Delta. [(+1)]}{\Gamma \Rightarrow \Delta} (\exists \Rightarrow)$$

Can States Be Decidable in Inquisitive Mechanizations?

FAU

Some Notes

- The rule of cut is proven to be admissible by L./Sano.
- Inside our formalization, we hardcoded it without showing admissibility.
- Our implementation of the sequent calculus also comes with a proof of soundness.
- The implementation with its extended syntax and rules currently lacks a (mechanized) proof of completeness.

```
Inductive Seq '{Signature} : relation (list lb form) :=
     (* ... *)
     Seq Iexists r:
        forall ls rs ns phi t,
           InS (pair ns <{iexists phi}>) rs \rightarrow
          term rigid t \rightarrow
          Seq ls ((pair ns phi.|[t/]) :: rs) \rightarrow
          Seq ls rs.
  Theorem soundness '{Signature}:
    forall Phi Psi, Seq Phi Psi \rightarrow
11
       satisfaction conseq Phi Psi.
12
13 Proof.
    induction 1. (* on Seq Phi Psi *)
    all: eauto using
       satisfaction conseq empty,
16
       satisfaction conseq id,
17
      (* ... *).
19 Qed.
```

20/24

Labels are implemented via lists in a suitable way Proof of soundness not only allows, but naturally seems to require a decidable notion of state!

21/24

Friedrich-Alexander-Universität Erlangen-Nürnberg

1. Inquisitive FOL

- 1.1 Intuition
- 1.2 Syntax
- 1.3 Semantics

2. Bounded Inquisitive FOL

- 2.1 Boundedness
- 2.2 A Sequent Calculus

3. Future Work

Conclusions & Future Work

Develop this further! Perhaps so that both ND and sequent system can be handled in an uniform setting?

References

References

- [CG22] I. Ciardelli and G. Grilletti. "Coherence in inquisitive first-order logic". en. In: Annals of Pure and Applied Logic 173.9 (Oct. 2022), p. 103155. DOI: 10.1016/j.apal.2022.103155.
- [Cia15] I. A. Ciardelli. "Questions in Logic". en. doctoral. University of Amsterdam, Dec. 2015.
- [Cia22] I. Ciardelli. Inquisitive Logic: Consequence and Inference in the Realm of Questions. en. Vol. 60. Trends in Logic. Cham: Springer International Publishing, 2022. DOI: 10.1007/978-3-031-09706-5.
- [dBr72] N. G de Bruijn. "Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem". In: Indagationes Mathematicae (Proceedings) 75.5 (Jan. 1972), pp. 381–392. DOI: 10.1016/1385-7258(72)90034-0.
- [LS25] T. Litak and K. Sano. Bounded Inquisitive Logics: Sequent Calculi and Schematic Validity. en. A modified and expanded version of a paper accepted for TABLEAUX 2025. 2025.
- [STS] S. Schäfer, T. Tebbi, and G. Smolka. "Autosubst: Reasoning with de Bruijn Terms and Parallel Substitution". en. In: ().