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EMDASH
A DEPENDENTLY TYPED LOGICAL FRAMEWORK FOR
COMPUTATIONAL SYNTHETIC CATEGORY THEORY

Based on the paper by Author
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Inspired by Kosta Dosen [1, 2]

"The core entities of a mathematical domain—such as
categories and functors—are not merely encoded but

are themselves the primitive building blocks of the
formal language."

Proofs of structural integrity should be computations, not separate objects.
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A novel dependently typed logical framework that implements these

functorial principles.

Synthetic: Categorical notions (`Cat`, `Obj`, `Functor`) are
primitives.
Computational: Coherence laws are checked via definitional equality
(βδι-reduction).
Specification-Driven: Implemented in TypeScript, formally specified in
Lambdapi.
Practical: The formal engine for hotdocX, an AI-assisted formalization
platform.



CORE ARCHITECTURE
TYPE THEORY CORE

λΠ-Calculus Modulo Theory
HOAS for binders
Bidirectional Type Checker
Unification & Hole Solving

SYNTHETIC PRIMITIVES

`Cat`, `Obj`, `Hom`
`Functor`, `Transf`
Yoneda (`hom_cov`)
User-defined rewrite rules



CORE ARCHITECTURE
TYPE THEORY CORE

λΠ-Calculus Modulo Theory
HOAS for binders
Bidirectional Type Checker
Unification & Hole Solving

SYNTHETIC PRIMITIVES

`Cat`, `Obj`, `Hom`
`Functor`, `Transf`
Yoneda (`hom_cov`)
User-defined rewrite rules

The system is designed to be extensible, allowing users to add their own
definitions, rewrite rules, and unification hints.
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In Coq/Agda/Lean, you define a functor by providing:

1. Data: An object map `F₀` and a morphism map `F₁`.
2. Proof: A separate proof term `F_preserves_comp` demonstrating that

`F₁(g ∘ f) = F₁(g) ∘ F₁(f)`.

The structure and its laws are separate entities.
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In Emdash, defining a functor uses a single primitive:

The elaboration engine itself definitionally verifies the coherence laws
during type checking.

MkFunctorTerm(C, D, fmap0, fmap1)

Coherence is a check, not a proof.
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HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.
2. Stage the Law: Create a hypothetical context with generic morphisms

`f` and `g`.
3. Construct Terms:

`LHS := fmap1 (g ∘ f)`
`RHS := (fmap1 g) ∘ (fmap1 f)`

4. Compute & Compare:
Normalize `LHS` and `RHS`.
Check if `normalize(LHS) ≡ normalize(RHS)`.

5. The Verdict:
✅ **Success:** Elaboration succeeds. The term is accepted.
❌ **Failure:** Throw a `CoherenceError` with the non-equal
normal forms.



BLUEPRINT FOR SYNTHESIS: THE LAMBDAPI
SPECIFICATION

The implementation is not ad-hoc; it's guided by a formal, executable
specification.

constant symbol Cat : TYPE;
injective symbol Obj : Cat → TYPE;
injective symbol Hom : Π [A : Cat] (X: Obj A) (Y: Obj A), TYPE;

// ...

constant symbol Functor_cat : Π(A : Cat), Π(B : Cat), Cat;

// Morphisms in the functor category ARE natural transformations
rule @Hom (Functor_cat _ _) $F $G ↪ Transf $F $G;

// Functoriality is a computational rule
rule compose_morph (@fapp1 _ _ $F _ _ $a) (@fapp1 _ _ $F _ _ $a')
  ↪ fapp1 $F (compose_morph $a $a');
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The implementation is not ad-hoc; it's guided by a formal, executable
specification.

constant symbol Cat : TYPE;
injective symbol Obj : Cat → TYPE;
injective symbol Hom : Π [A : Cat] (X: Obj A) (Y: Obj A), TYPE;

// ...

constant symbol Functor_cat : Π(A : Cat), Π(B : Cat), Cat;

// Morphisms in the functor category ARE natural transformations
rule @Hom (Functor_cat _ _) $F $G ↪ Transf $F $G;

// Functoriality is a computational rule
rule compose_morph (@fapp1 _ _ $F _ _ $a) (@fapp1 _ _ $F _ _ $a')
  ↪ fapp1 $F (compose_morph $a $a');
    

This declarative style makes coherence laws part of the system's core
computational behavior.



INTERACTIVE THEOREM PROVING
Emdash isn't just for defining; it's for proving.

A proof-in-progress is a term with unsolved goals, called Holes (`?h0`).

Users construct proofs by refining these holes using tactics.

Goal ?g0: ⊢ Π (n : Nat). Nat
        



EXAMPLE PROOF SESSION
Goal: Prove `id : Nat -> Nat`

// 1. State Goal
defineGlobal("id_nat_proof", Pi("n", Expl, Nat, _ => Nat), Hole("?g0"))
// > Goal ?g0: ⊢ Π (n : Nat). Nat

// 2. Introduce hypothesis
intro(Var("id_nat_proof"), "?g0", "n")
// > Hole ?g0 solved with `λ n. ?g1`
// > New Goal ?g1: n : Nat ⊢ Nat

// 3. Solve goal with exact term
exact(Var("id_nat_proof"), "?g1", Var("n"))
// > Hole ?g1 solved with `n`

// 4. Proof Complete!
// Final term: λ (n : Nat). n
        



VALIDATION & TESTING
Emdash is a working TypeScript implementation, verified by a

comprehensive test suite.

✅ Inductive types (Nat, List, Vec) & dependent functions.
✅ Higher-order unification & pattern matching.
✅ **Crucially:** Tests confirm that `MkFunctorTerm` accepts valid
functors and throws `CoherenceError` for invalid ones.
✅ Full interactive proof sessions are tested from start to finish.
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✅ Inductive types (Nat, List, Vec) & dependent functions.
✅ Higher-order unification & pattern matching.
✅ **Crucially:** Tests confirm that `MkFunctorTerm` accepts valid
functors and throws `CoherenceError` for invalid ones.
✅ Full interactive proof sessions are tested from start to finish.

The system behaves as specified.
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Emdash's interactive proof mode and clear error reporting are designed for
human-AI collaboration.



CONCLUSION
Emdash demonstrates a practical pathway for "functorial programming":

A synthetic approach to category theory in a dependently typed
framework.
A novel functorial elaboration mechanism that makes coherence a
definitional check.
A robust implementation guided by a formal specification.
A practical tool with interactive proving, serving as the kernel for the
hotdocX platform.



FUTURE WORK
DEEPEN THE SYNTHESIS

ω-Categories via
`Total_cat`
Limits, Adjunctions
Univalence

ENHANCE THE
FRAMEWORK

Universe
Hierarchy
Performance
Tuning
Richer Tactic
Language

HOTDOCX & AI

AI-driven proof
suggestions
Document parsing
(LaTeX)
Visualization tools



THANK YOU

QUESTIONS?

Project Repository: 

hotdocX Platform: 

Continue: 

github.com/hotdocx/emdash

hotdocx.github.io

./slides-part-2-hotdocx.html

https://github.com/hotdocx/emdash
https://hotdocx.github.io/
https://1337777.github.io/hotdocx_slides/slides-part-2-hotdocx.html


PART 2/2

HOTDOCX & JSCOQ
AN INTERACTIVE, AI-AUGMENTED, AND MONETIZABLE

PLATFORM FOR COQ
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Coq is a cornerstone of formal methods, but sharing its rich, interactive
proofs is hard.

CURRENT STATE
Static PDFs (Flattened)
Code Repositories

THE COMMUNITY'S
DESIRE
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Platforms
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non-experts

➔
Initiatives like "Coq
Exchange" & "Coq Platform
Docs" showed the need.

THE CORE PROBLEM: A MISSING PLATFORM THAT IS
BOTH INTERACTIVE AND SUSTAINABLE.
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An AI-powered social marketplace that transforms documents into live,

interactive web applications.

We're moving from "papers-with-code" to "papers-as-apps".



CORE CONCEPT: AI TEMPLATES
A user provides a document (PDF, LaTeX, etc.) and a prompt. Our AI pipeline

uses a template to generate a runnable application.

Arrowgram Template

Renders commutative diagrams from natural language.

Emdash Template

Provides a live environment for our logical framework.



CORE CONCEPT: AI TEMPLATES
A user provides a document (PDF, LaTeX, etc.) and a prompt. Our AI pipeline

uses a template to generate a runnable application.

Arrowgram Template

Renders commutative diagrams from natural language.

Emdash Template

Provides a live environment for our logical framework.

The platform is flexible and context-aware. Now, let's add Coq to the mix.
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MAKING COQ A FIRST-CLASS CITIZEN
We created a `jsCoq` template for the hotdocX ecosystem.

Any Coq script can become a first-class, interactive, and shareable hotdocX
event.

LIVE DEMO 1: INTERACTIVE COQ SESSION



An interactive jsCoq session embedded within a hotdocX event.
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Create tutorials from lectures +
Coq files.
Students solve exercises in-
browser.

RESEARCH

Publish an arXiv paper and a
companion hotdocX event.
Readers can experiment with
lemmas directly.

Monetize solutions behind a
pay-to-view wall.

Bridge the gap between paper
and formalization.
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BUSINESS MODEL

Previous platforms were often excellent academic projects but lacked a
model for long-term sustainability.

hotdocX is built from the ground up on a creator economy.

Monetize Your Content: Creators define a "Purchase Menu" for events
(e.g., view source, remix rights, access solutions).
Virtual Currency: Users purchase "Coins" via Stripe to access premium
content.
Subscription Tiers: Free, Premium, and VIP tiers unlock platform
features like content mirroring and advanced API access.
THIS ISN'T JUST A TOOL; IT'S A SELF-SUSTAINING ECOSYSTEM.
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KERNEL

The co-location of `jsCoq` and our native framework, `Emdash`, opens a
unique research opportunity.

A HYBRID EMDASH/COQ-LIGHT KERNEL
We can systematically augment the Emdash (λΠ-calculus) kernel with the

features of CIC, all within a native TypeScript environment.

EDUCATION

A "hackable" kernel for
teaching CIC without a
complex build setup.

RESEARCH

Rapidly prototype new
tactics and language

features in TypeScript.

AI INTEGRATION

A native JS kernel is easier
for AI agents to interact with

than a compiled binary.
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JOIN US IN BUILDING THE FUTURE OF COQ
We have a working platform, a clear vision, and a sustainable model

(dynamic fee percentage on transactions, applied to new authors referred by
white-labelled multi-tenant publishers-hosted instances of hotdocx; i.e.
`professor1.github.io/hotdocx` with `publisher2.github.io/hotdocx`).

To move from a developer preview to a robust product for the community,
we need your support.

BECOME A SPONSOR
Your contribution, whether individual or institutional, directly funds

development, infrastructure, and community growth.

Sponsoring provides premium and VIP tiers on the hotdocX platform.

GITHUB.COM/SPONSORS/HOTDOCX

https://github.com/sponsors/hotdocx
https://github.com/sponsors/hotdocx
https://github.com/sponsors/hotdocx


THANK YOU

QUESTIONS & DISCUSSION

Platform: 

Sponsor: 

hotdocx.github.io

github.com/sponsors/hotdocx

https://hotdocx.github.io/
https://github.com/sponsors/hotdocx

