
PART 1/2

EMDASH
A DEPENDENTLY TYPED LOGICAL FRAMEWORK FOR
COMPUTATIONAL SYNTHETIC CATEGORY THEORY

Based on the paper by Author

THE PROBLEM: A CHASM

INFORMAL MATHEMATICS
Fluid & Intuitive
Structural Reasoning

FORMAL SYSTEMS
Rigid & Explicit
Foundational Encoding⇄

THE PROBLEM: A CHASM

INFORMAL MATHEMATICS
Fluid & Intuitive
Structural Reasoning

FORMAL SYSTEMS
Rigid & Explicit
Foundational Encoding

Thrives on Abstraction
⇄

THE PROBLEM: A CHASM

INFORMAL MATHEMATICS
Fluid & Intuitive
Structural Reasoning

FORMAL SYSTEMS
Rigid & Explicit
Foundational Encoding

Thrives on Abstraction
⇄ Structure is a *proven

property*, not an *intrinsic
quality*

THE PROBLEM: A CHASM

INFORMAL MATHEMATICS
Fluid & Intuitive
Structural Reasoning

FORMAL SYSTEMS
Rigid & Explicit
Foundational Encoding

Thrives on Abstraction
⇄ Structure is a *proven

property*, not an *intrinsic
quality*

CAN WE BRIDGE THIS GAP?

A DIFFERENT VISION: FUNCTORIAL
PROGRAMMING

Inspired by Kosta Dosen [1, 2]

"The core entities of a mathematical domain—such as
categories and functors—are not merely encoded but

are themselves the primitive building blocks of the
formal language."

A DIFFERENT VISION: FUNCTORIAL
PROGRAMMING

Inspired by Kosta Dosen [1, 2]

"The core entities of a mathematical domain—such as
categories and functors—are not merely encoded but

are themselves the primitive building blocks of the
formal language."

Proofs of structural integrity should be computations, not separate objects.

INTRODUCING: EMDASH
A novel dependently typed logical framework that implements these

functorial principles.

INTRODUCING: EMDASH
A novel dependently typed logical framework that implements these

functorial principles.

Synthetic: Categorical notions (`Cat`, `Obj`, `Functor`) are
primitives.

INTRODUCING: EMDASH
A novel dependently typed logical framework that implements these

functorial principles.

Synthetic: Categorical notions (`Cat`, `Obj`, `Functor`) are
primitives.
Computational: Coherence laws are checked via definitional equality
(βδι-reduction).

INTRODUCING: EMDASH
A novel dependently typed logical framework that implements these

functorial principles.

Synthetic: Categorical notions (`Cat`, `Obj`, `Functor`) are
primitives.
Computational: Coherence laws are checked via definitional equality
(βδι-reduction).
Specification-Driven: Implemented in TypeScript, formally specified in
Lambdapi.

INTRODUCING: EMDASH
A novel dependently typed logical framework that implements these

functorial principles.

Synthetic: Categorical notions (`Cat`, `Obj`, `Functor`) are
primitives.
Computational: Coherence laws are checked via definitional equality
(βδι-reduction).
Specification-Driven: Implemented in TypeScript, formally specified in
Lambdapi.
Practical: The formal engine for hotdocX, an AI-assisted formalization
platform.

CORE ARCHITECTURE
TYPE THEORY CORE

λΠ-Calculus Modulo Theory
HOAS for binders
Bidirectional Type Checker
Unification & Hole Solving

SYNTHETIC PRIMITIVES

`Cat`, `Obj`, `Hom`
`Functor`, `Transf`
Yoneda (`hom_cov`)
User-defined rewrite rules

CORE ARCHITECTURE
TYPE THEORY CORE

λΠ-Calculus Modulo Theory
HOAS for binders
Bidirectional Type Checker
Unification & Hole Solving

SYNTHETIC PRIMITIVES

`Cat`, `Obj`, `Hom`
`Functor`, `Transf`
Yoneda (`hom_cov`)
User-defined rewrite rules

The system is designed to be extensible, allowing users to add their own
definitions, rewrite rules, and unification hints.

THE KILLER FEATURE: FUNCTORIAL
ELABORATION

THE TRADITIONAL WAY: DATA + PROOF

In Coq/Agda/Lean, you define a functor by providing:

1. Data: An object map `F₀` and a morphism map `F₁`.
2. Proof: A separate proof term `F_preserves_comp` demonstrating that

`F₁(g ∘ f) = F₁(g) ∘ F₁(f)`.

THE KILLER FEATURE: FUNCTORIAL
ELABORATION

THE TRADITIONAL WAY: DATA + PROOF

In Coq/Agda/Lean, you define a functor by providing:

1. Data: An object map `F₀` and a morphism map `F₁`.
2. Proof: A separate proof term `F_preserves_comp` demonstrating that

`F₁(g ∘ f) = F₁(g) ∘ F₁(f)`.

The structure and its laws are separate entities.

THE EMDASH WAY: DEFINITIONAL CHECK
In Emdash, defining a functor uses a single primitive:

The elaboration engine itself definitionally verifies the coherence laws
during type checking.

MkFunctorTerm(C, D, fmap0, fmap1)

THE EMDASH WAY: DEFINITIONAL CHECK
In Emdash, defining a functor uses a single primitive:

The elaboration engine itself definitionally verifies the coherence laws
during type checking.

MkFunctorTerm(C, D, fmap0, fmap1)

Coherence is a check, not a proof.

HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.

HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.
2. Stage the Law: Create a hypothetical context with generic morphisms

`f` and `g`.

HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.
2. Stage the Law: Create a hypothetical context with generic morphisms

`f` and `g`.
3. Construct Terms:

`LHS := fmap1 (g ∘ f)`
`RHS := (fmap1 g) ∘ (fmap1 f)`

HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.
2. Stage the Law: Create a hypothetical context with generic morphisms

`f` and `g`.
3. Construct Terms:

`LHS := fmap1 (g ∘ f)`
`RHS := (fmap1 g) ∘ (fmap1 f)`

4. Compute & Compare:
Normalize `LHS` and `RHS`.
Check if `normalize(LHS) ≡ normalize(RHS)`.

HOW IT WORKS: THE `MKFUNCTORTERM`
PRIMITIVE

1. Check Components: Verify types of `C`, `D`, `fmap0`, `fmap1`.
2. Stage the Law: Create a hypothetical context with generic morphisms

`f` and `g`.
3. Construct Terms:

`LHS := fmap1 (g ∘ f)`
`RHS := (fmap1 g) ∘ (fmap1 f)`

4. Compute & Compare:
Normalize `LHS` and `RHS`.
Check if `normalize(LHS) ≡ normalize(RHS)`.

5. The Verdict:
✅ **Success:** Elaboration succeeds. The term is accepted.
❌ **Failure:** Throw a `CoherenceError` with the non-equal
normal forms.

BLUEPRINT FOR SYNTHESIS: THE LAMBDAPI
SPECIFICATION

The implementation is not ad-hoc; it's guided by a formal, executable
specification.

constant symbol Cat : TYPE;
injective symbol Obj : Cat → TYPE;
injective symbol Hom : Π [A : Cat] (X: Obj A) (Y: Obj A), TYPE;

// ...

constant symbol Functor_cat : Π(A : Cat), Π(B : Cat), Cat;

// Morphisms in the functor category ARE natural transformations
rule @Hom (Functor_cat _ _) $F $G ↪ Transf $F $G;

// Functoriality is a computational rule
rule compose_morph (@fapp1 _ _ $F _ _ $a) (@fapp1 _ _ $F _ _ $a')
 ↪ fapp1 $F (compose_morph $a $a');

BLUEPRINT FOR SYNTHESIS: THE LAMBDAPI
SPECIFICATION

The implementation is not ad-hoc; it's guided by a formal, executable
specification.

constant symbol Cat : TYPE;
injective symbol Obj : Cat → TYPE;
injective symbol Hom : Π [A : Cat] (X: Obj A) (Y: Obj A), TYPE;

// ...

constant symbol Functor_cat : Π(A : Cat), Π(B : Cat), Cat;

// Morphisms in the functor category ARE natural transformations
rule @Hom (Functor_cat _ _) $F $G ↪ Transf $F $G;

// Functoriality is a computational rule
rule compose_morph (@fapp1 _ _ $F _ _ $a) (@fapp1 _ _ $F _ _ $a')
 ↪ fapp1 $F (compose_morph $a $a');

This declarative style makes coherence laws part of the system's core
computational behavior.

INTERACTIVE THEOREM PROVING
Emdash isn't just for defining; it's for proving.

A proof-in-progress is a term with unsolved goals, called Holes (`?h0`).

Users construct proofs by refining these holes using tactics.

Goal ?g0: ⊢ Π (n : Nat). Nat

EXAMPLE PROOF SESSION
Goal: Prove `id : Nat -> Nat`

// 1. State Goal
defineGlobal("id_nat_proof", Pi("n", Expl, Nat, _ => Nat), Hole("?g0"))
// > Goal ?g0: ⊢ Π (n : Nat). Nat

// 2. Introduce hypothesis
intro(Var("id_nat_proof"), "?g0", "n")
// > Hole ?g0 solved with `λ n. ?g1`
// > New Goal ?g1: n : Nat ⊢ Nat

// 3. Solve goal with exact term
exact(Var("id_nat_proof"), "?g1", Var("n"))
// > Hole ?g1 solved with `n`

// 4. Proof Complete!
// Final term: λ (n : Nat). n

VALIDATION & TESTING
Emdash is a working TypeScript implementation, verified by a

comprehensive test suite.

✅ Inductive types (Nat, List, Vec) & dependent functions.
✅ Higher-order unification & pattern matching.
✅ **Crucially:** Tests confirm that `MkFunctorTerm` accepts valid
functors and throws `CoherenceError` for invalid ones.
✅ Full interactive proof sessions are tested from start to finish.

VALIDATION & TESTING
Emdash is a working TypeScript implementation, verified by a

comprehensive test suite.

✅ Inductive types (Nat, List, Vec) & dependent functions.
✅ Higher-order unification & pattern matching.
✅ **Crucially:** Tests confirm that `MkFunctorTerm` accepts valid
functors and throws `CoherenceError` for invalid ones.
✅ Full interactive proof sessions are tested from start to finish.

The system behaves as specified.

THE GRAND VISION: HOTDOCX
Emdash is the formal engine for hotdocX, a web platform for AI-assisted

formalization.

Goal: Transform mathematical documents into executable, verifiable, and
interactive formal content.

THE GRAND VISION: HOTDOCX
Emdash is the formal engine for hotdocX, a web platform for AI-assisted

formalization.

Goal: Transform mathematical documents into executable, verifiable, and
interactive formal content.

Emdash's interactive proof mode and clear error reporting are designed for
human-AI collaboration.

CONCLUSION
Emdash demonstrates a practical pathway for "functorial programming":

A synthetic approach to category theory in a dependently typed
framework.
A novel functorial elaboration mechanism that makes coherence a
definitional check.
A robust implementation guided by a formal specification.
A practical tool with interactive proving, serving as the kernel for the
hotdocX platform.

FUTURE WORK
DEEPEN THE SYNTHESIS

ω-Categories via
`Total_cat`
Limits, Adjunctions
Univalence

ENHANCE THE
FRAMEWORK

Universe
Hierarchy
Performance
Tuning
Richer Tactic
Language

HOTDOCX & AI

AI-driven proof
suggestions
Document parsing
(LaTeX)
Visualization tools

THANK YOU

QUESTIONS?

Project Repository:

hotdocX Platform:

Continue:

github.com/hotdocx/emdash

hotdocx.github.io

./slides-part-2-hotdocx.html

https://github.com/hotdocx/emdash
https://hotdocx.github.io/
https://1337777.github.io/hotdocx_slides/slides-part-2-hotdocx.html

PART 2/2

HOTDOCX & JSCOQ
AN INTERACTIVE, AI-AUGMENTED, AND MONETIZABLE

PLATFORM FOR COQ

THE CHALLENGE: SHARING COQ
DEVELOPMENTS

Coq is a cornerstone of formal methods, but sharing its rich, interactive
proofs is hard.

CURRENT STATE
Static PDFs (Flattened)
Code Repositories

THE COMMUNITY'S
DESIRE

Dynamic & Accessible
Platforms➔

THE CHALLENGE: SHARING COQ
DEVELOPMENTS

Coq is a cornerstone of formal methods, but sharing its rich, interactive
proofs is hard.

CURRENT STATE
Static PDFs (Flattened)
Code Repositories

THE COMMUNITY'S
DESIRE

Dynamic & Accessible
Platforms

High barrier to entry for
non-experts

➔

THE CHALLENGE: SHARING COQ
DEVELOPMENTS

Coq is a cornerstone of formal methods, but sharing its rich, interactive
proofs is hard.

CURRENT STATE
Static PDFs (Flattened)
Code Repositories

THE COMMUNITY'S
DESIRE

Dynamic & Accessible
Platforms

High barrier to entry for
non-experts

➔
Initiatives like "Coq
Exchange" & "Coq Platform
Docs" showed the need.

THE CHALLENGE: SHARING COQ
DEVELOPMENTS

Coq is a cornerstone of formal methods, but sharing its rich, interactive
proofs is hard.

CURRENT STATE
Static PDFs (Flattened)
Code Repositories

THE COMMUNITY'S
DESIRE

Dynamic & Accessible
Platforms

High barrier to entry for
non-experts

➔
Initiatives like "Coq
Exchange" & "Coq Platform
Docs" showed the need.

THE CORE PROBLEM: A MISSING PLATFORM THAT IS
BOTH INTERACTIVE AND SUSTAINABLE.

OUR SOLUTION: THE HOTDOCX PLATFORM
An AI-powered social marketplace that transforms documents into live,

interactive web applications.

OUR SOLUTION: THE HOTDOCX PLATFORM
An AI-powered social marketplace that transforms documents into live,

interactive web applications.

We're moving from "papers-with-code" to "papers-as-apps".

CORE CONCEPT: AI TEMPLATES
A user provides a document (PDF, LaTeX, etc.) and a prompt. Our AI pipeline

uses a template to generate a runnable application.

Arrowgram Template

Renders commutative diagrams from natural language.

Emdash Template

Provides a live environment for our logical framework.

CORE CONCEPT: AI TEMPLATES
A user provides a document (PDF, LaTeX, etc.) and a prompt. Our AI pipeline

uses a template to generate a runnable application.

Arrowgram Template

Renders commutative diagrams from natural language.

Emdash Template

Provides a live environment for our logical framework.

The platform is flexible and context-aware. Now, let's add Coq to the mix.

MAKING COQ A FIRST-CLASS CITIZEN
We created a `jsCoq` template for the hotdocX ecosystem.

Any Coq script can become a first-class, interactive, and shareable hotdocX
event.

MAKING COQ A FIRST-CLASS CITIZEN
We created a `jsCoq` template for the hotdocX ecosystem.

Any Coq script can become a first-class, interactive, and shareable hotdocX
event.

LIVE DEMO 1: INTERACTIVE COQ SESSION

An interactive jsCoq session embedded within a hotdocX event.

UNLOCKING POWERFUL NEW WORKFLOWS
EDUCATION

Create tutorials from lectures +
Coq files.
Students solve exercises in-
browser.

RESEARCH

Publish an arXiv paper and a
companion hotdocX event.
Readers can experiment with
lemmas directly.

UNLOCKING POWERFUL NEW WORKFLOWS
EDUCATION

Create tutorials from lectures +
Coq files.
Students solve exercises in-
browser.

RESEARCH

Publish an arXiv paper and a
companion hotdocX event.
Readers can experiment with
lemmas directly.

Monetize solutions behind a
pay-to-view wall.

UNLOCKING POWERFUL NEW WORKFLOWS
EDUCATION

Create tutorials from lectures +
Coq files.
Students solve exercises in-
browser.

RESEARCH

Publish an arXiv paper and a
companion hotdocX event.
Readers can experiment with
lemmas directly.

Monetize solutions behind a
pay-to-view wall.

Bridge the gap between paper
and formalization.

WHY IS THIS DIFFERENT? A SUSTAINABLE
BUSINESS MODEL

Previous platforms were often excellent academic projects but lacked a
model for long-term sustainability.

WHY IS THIS DIFFERENT? A SUSTAINABLE
BUSINESS MODEL

Previous platforms were often excellent academic projects but lacked a
model for long-term sustainability.

hotdocX is built from the ground up on a creator economy.

WHY IS THIS DIFFERENT? A SUSTAINABLE
BUSINESS MODEL

Previous platforms were often excellent academic projects but lacked a
model for long-term sustainability.

hotdocX is built from the ground up on a creator economy.

Monetize Your Content: Creators define a "Purchase Menu" for events
(e.g., view source, remix rights, access solutions).
Virtual Currency: Users purchase "Coins" via Stripe to access premium
content.
Subscription Tiers: Free, Premium, and VIP tiers unlock platform
features like content mirroring and advanced API access.

WHY IS THIS DIFFERENT? A SUSTAINABLE
BUSINESS MODEL

Previous platforms were often excellent academic projects but lacked a
model for long-term sustainability.

hotdocX is built from the ground up on a creator economy.

Monetize Your Content: Creators define a "Purchase Menu" for events
(e.g., view source, remix rights, access solutions).
Virtual Currency: Users purchase "Coins" via Stripe to access premium
content.
Subscription Tiers: Free, Premium, and VIP tiers unlock platform
features like content mirroring and advanced API access.
THIS ISN'T JUST A TOOL; IT'S A SELF-SUSTAINING ECOSYSTEM.

THE GRAND VISION: A BROWSER-NATIVE COQ
KERNEL

The co-location of `jsCoq` and our native framework, `Emdash`, opens a
unique research opportunity.

A HYBRID EMDASH/COQ-LIGHT KERNEL
We can systematically augment the Emdash (λΠ-calculus) kernel with the

features of CIC, all within a native TypeScript environment.

THE GRAND VISION: A BROWSER-NATIVE COQ
KERNEL

The co-location of `jsCoq` and our native framework, `Emdash`, opens a
unique research opportunity.

A HYBRID EMDASH/COQ-LIGHT KERNEL
We can systematically augment the Emdash (λΠ-calculus) kernel with the

features of CIC, all within a native TypeScript environment.

EDUCATION

A "hackable" kernel for
teaching CIC without a
complex build setup.

RESEARCH

Rapidly prototype new
tactics and language

features in TypeScript.

AI INTEGRATION

A native JS kernel is easier
for AI agents to interact with

than a compiled binary.

JOIN US IN BUILDING THE FUTURE OF COQ
We have a working platform, a clear vision, and a sustainable model

(dynamic fee percentage on transactions, applied to new authors referred by
white-labelled multi-tenant publishers-hosted instances of hotdocx; i.e.
`professor1.github.io/hotdocx` with `publisher2.github.io/hotdocx`).

JOIN US IN BUILDING THE FUTURE OF COQ
We have a working platform, a clear vision, and a sustainable model

(dynamic fee percentage on transactions, applied to new authors referred by
white-labelled multi-tenant publishers-hosted instances of hotdocx; i.e.
`professor1.github.io/hotdocx` with `publisher2.github.io/hotdocx`).

To move from a developer preview to a robust product for the community,
we need your support.

JOIN US IN BUILDING THE FUTURE OF COQ
We have a working platform, a clear vision, and a sustainable model

(dynamic fee percentage on transactions, applied to new authors referred by
white-labelled multi-tenant publishers-hosted instances of hotdocx; i.e.
`professor1.github.io/hotdocx` with `publisher2.github.io/hotdocx`).

To move from a developer preview to a robust product for the community,
we need your support.

BECOME A SPONSOR

JOIN US IN BUILDING THE FUTURE OF COQ
We have a working platform, a clear vision, and a sustainable model

(dynamic fee percentage on transactions, applied to new authors referred by
white-labelled multi-tenant publishers-hosted instances of hotdocx; i.e.
`professor1.github.io/hotdocx` with `publisher2.github.io/hotdocx`).

To move from a developer preview to a robust product for the community,
we need your support.

BECOME A SPONSOR
Your contribution, whether individual or institutional, directly funds

development, infrastructure, and community growth.

Sponsoring provides premium and VIP tiers on the hotdocX platform.

GITHUB.COM/SPONSORS/HOTDOCX

https://github.com/sponsors/hotdocx
https://github.com/sponsors/hotdocx
https://github.com/sponsors/hotdocx

THANK YOU

QUESTIONS & DISCUSSION

Platform:

Sponsor:

hotdocx.github.io

github.com/sponsors/hotdocx

https://hotdocx.github.io/
https://github.com/sponsors/hotdocx

