
MiniF2F in Rocq
Automatic Translation Between Proof Assistants —

 A Case Study
Jules Viennot, Guillaume Baudart, Emilio Jesùs Gallego Arias, Marc Lelarge

IRIF, Université Paris Cité, Inria, CNRS
DI ENS, PSL University, Inria

2025-04-07



Introduction



Large Language Models and Reasoning Introduction
Use Large Language Models (LLMs) to generate reasoning in natural language or
proof assistants (Rocq, Lean or Isabelle)

DeepSeek-R1-Zero reasoning

Lemma ffx_eq_x_inj{A}:
  forall f:A->A,
  (forall x:A, f (f x) = x) ->
  forall x y:A, f x = f y -> x = y.
Proof.
  { intros f H1 x y H2.
    rewrite <- (H1 x).
    rewrite <- (H1 y).
    rewrite H2.
    reflexivity. }
Qed.

NLIR Rocq proof generation



Large Language Models and Reasoning Introduction
Use Large Language Models (LLMs) to generate reasoning in natural language or
proof assistants (Rocq, Lean or Isabelle)

DeepSeek-R1-Zero reasoning

Lemma ffx_eq_x_inj{A}:
  forall f:A->A,
  (forall x:A, f (f x) = x) ->
  forall x y:A, f x = f y -> x = y.
Proof.
  { intros f H1 x y H2.
    rewrite <- (H1 x).
    rewrite <- (H1 y).
    rewrite H2.
    reflexivity. }
Qed.

NLIR Rocq proof generation

How to evaluate code generation methods? 



Large Language Models and Reasoning Introduction
Use Large Language Models (LLMs) to generate reasoning in natural language or
proof assistants (Rocq, Lean or Isabelle)

DeepSeek-R1-Zero reasoning

Lemma ffx_eq_x_inj{A}:
  forall f:A->A,
  (forall x:A, f (f x) = x) ->
  forall x y:A, f x = f y -> x = y.
Proof.
  { intros f H1 x y H2.
    rewrite <- (H1 x).
    rewrite <- (H1 y).
    rewrite H2.
    reflexivity. }
Qed.

NLIR Rocq proof generation

How to evaluate code generation methods? ⇒ benchmark datasets



MiniF2F Introduction

What is it?
Popular benchmark for ML based code generation in
proof assistants



MiniF2F Introduction

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of?
488 exercises from olympiads (AMC, AIME, IMO) + high-school & undergraduate
maths classes

mathd_numbertheory_227: Angela's problem
{
  "problem_name": "mathd_numbertheory_227",
  "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of
coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How
many people are in the family? Show that it is 5.",
  "informal_proof": "..."
}



MiniF2F Introduction

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of? 488 high-school level maths exercises

What languages are supported?
Lean, Isabelle and Metamath ⇒ not Rocq

Angela's problem in Isabelle
theorem mathd_numbertheory_227:
  fixes x y n ::nat
  assumes "x / 4 + y / 6 = (x + y) / n"
    and "n\<noteq>0"
    and "x\<noteq>0"
    and "y\<noteq>0"
  shows "n = 5"
  sorry
end

Angela's problem in Lean
theorem mathd_numbertheory_227
  (x y n : ℕ+)
  (h₀ : ↑x / (4:ℝ) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end



Our Goal Introduction

Informal description
… + Isabelle version

… + Lean version
…



Our Goal Introduction

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs



Our Goal Introduction

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…



Methodology



Models Methodology
Which models?

providers models open weights chain of thought
GPT-4o mini x x

o1-mini x o
OpenAI

o1 x o
Anthropic Claude 3.5 Sonnet x x

GPT-4o mini < Claude 3.5 Sonnet < o1-mini < o1



Models Methodology
Which models?

providers models open weights chain of thought
GPT-4o mini x x

o1-mini x o
OpenAI

o1 x o
Anthropic Claude 3.5 Sonnet x x

GPT-4o mini < Claude 3.5 Sonnet < o1-mini < o1

No open weights models ⇒ use them as black boxes



Strategy Methodology

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…



Strategy Methodology

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…

black box



Strategy Methodology

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…

black box

= only lever for translation



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a human ensures all translated theorems are correct

Rocq example 1
Require Import Coq.Reals.Reals.
Require Import Coq.ZArith.ZArith.
Open Scope R_scope.
Open Scope Z_scope.

Parameter Rfloor : R -> Z.
Parameter big_sum : forall (m n : nat) (f : nat -> Z), Z.

Theorem aime_1991_p6 : forall (r : R),
    (big_sum 19 91 (fun k => Rfloor (r + (IZR (Z.of_nat k) / 100)))) = 546%Z ->
    Rfloor (100 * r) = 743%Z.
Proof.
Admitted.



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a human ensures all translated theorems are correct

Rocq example 1
Require Import Coq.Reals.Reals.
Require Import Coq.ZArith.ZArith.
Open Scope R_scope.
Open Scope Z_scope.

Parameter Rfloor : R -> Z.
Parameter big_sum : forall (m n : nat) (f : nat -> Z), Z.

Theorem aime_1991_p6 : forall (r : R),
    (big_sum 19 91 (fun k => Rfloor (r + (IZR (Z.of_nat k) / 100)))) = 546%Z ->
    Rfloor (100 * r) = 743%Z.
Proof.
Admitted.



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a human ensures all translated theorems are correct

If a theorem is considered incorrect, it is put back with the untranslated theorems



Stage 1: one-shot prompting



Pipeline Stage 1: one-shot prompting
Prompt

Informal description
Isabelle version

Lean version

LLMs



Pipeline Stage 1: one-shot prompting
Prompt

Informal description
Isabelle version

Lean version

LLMs
Rocq version



Pipeline Stage 1: one-shot prompting
Prompt

Informal description
Isabelle version

Lean version

LLMs
Rocq version

YES

Human
checking



Example Stage 1: one-shot prompting

Informal description
{
  "problem_name": "mathd_numbertheory_227",
  "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of
coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How
many people are in the family? Show that it is 5.",
  "informal_proof": "..."
}

Isabelle version
theorem mathd_numbertheory_227:
  fixes x y n ::nat
  assumes "x / 4 + y / 6 = (x + y) / n"
    and "n\<noteq>0"
    and "x\<noteq>0"
    and "y\<noteq>0"
  shows "n = 5"
  sorry
end

Lean version
theorem mathd_numbertheory_227
  (x y n : ℕ+)
  (h₀ : ↑x / (4:ℝ) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end



Example Stage 1: one-shot prompting

Informal description
…

Isabelle version
…

Lean version
…

Rocq version
Require Import Coq.Reals.Reals.

Open Scope R_scope.

Theorem mathd_numbertheory_227:
  forall (x y n : nat), x <> 0%nat -> y <> 0%nat -> n <> 0%nat ->
    (INR x / 4 + INR y / 6 = (INR x + INR y) / INR n) -> n = 5%nat.
Proof.
Admitted.



Results Stage 1: one-shot prompting

193

273 287
332

S1
488

4o
 m

ini

cla
ud

e

o1
 m

ini o1

100

200

300

400

500



Stage 2: multi-turn with errors



Pipeline Stage 2: multi-turn with errors
Prompt

Informal description
Isabelle version

Lean version

LLMs
Rocq version

YES

Human
checking



Pipeline Stage 2: multi-turn with errors
Prompt

Informal description
Isabelle version

Lean version

LLMs
Rocq version

YES

Human
checking

Prompt
Informal description

Isabelle version
Lean version

+
Error feedback

NO



Pipeline Stage 2: multi-turn with errors
Prompt

Informal description
Isabelle version

Lean version

LLMs
Rocq version

YES

Human
checking

Prompt
Informal description

Isabelle version
Lean version

+
Error feedback

NO

x 3



Example Stage 2: multi-turn with errors
Rocq example 2 : first attempt unsuccessful

Require Import Arith.

Theorem imo_1964_p1_1 :
  forall n : nat,
    (7 | (2^n - 1)%nat) -> (3 | n).
Proof.
Admitted.

Errors :
Syntax error: ',' or ')' expected after [term

level 200] (in [term]).

Rocq example 2 : second attempt successful
Require Import Arith.

Theorem imo_1964_p1_1 :
  forall n : nat,
    (Nat.divide 7 (2^n - 1)) -> (Nat.divide 3 n).
Proof.
Admitted.



Results Stage 2: multi-turn with errors

193

273 287
332

380 394

S1 S2
488

4o
 m

ini

cla
ud

e

o1
 m

ini o1

cla
ud

e (
3)

o1
 m

ini 
(3)

100

200

300

400

500



Stage 3: refined prompt



Introduction Stage 3: refined prompt

Rocq example 3 : before stage 3
Require Import Coq.Complex.Reals.

Theorem mathd_algebra_302 :
  (Caux.I / 2)^2 = -(1 / 4).
Proof.
Admitted.

Errors :
Cannot find a physical path bound to

logical path Stdlib.Complex.Reals.



Introduction Stage 3: refined prompt
Rocq example 4 : before stage 3

Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.

Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q) (S : list R),
  (forall x : R, In x S <->
    (IZR (floor x) * (x - IZR (floor x))
      = (Q2R a) * (x ^ 2)))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.

Errors :
In environment

a : Q

S : list R

x : R

The term "x" has type "R" while it is

expected to have type "positive".



Pipeline Stage 3: refined prompt
Prompt

Informal description
Isabelle version

Lean version
+

Error feedback

LLMs
Rocq version

YES

Human
checking

NO

x 3



Pipeline Stage 3: refined prompt
Prompt

Informal description
Isabelle version

Lean version
+

Error feedback

LLMs
Rocq version

YES

Human
checking

NO

x 3

Prompt
Informal description

Isabelle version
Lean version

+
Rocq tutorial, advices

+
Error feedback

NO



Pipeline Stage 3: refined prompt
Prompt

Informal description
Isabelle version

Lean version
+

Error feedback

LLMs
Rocq version

YES

Human
checking

NO

x 3

Prompt
Informal description

Isabelle version
Lean version

+
Rocq tutorial, advices

+
Error feedback

NO

x ≥6



Examples Stage 3: refined prompt

Rocq example 3 : before stage 3
Require Import Coq.Complex.Reals.

Theorem mathd_algebra_302 :
  (Caux.I / 2)^2 = -(1 / 4).
Proof.
Admitted.

Errors :
Cannot find a physical path bound to

logical path Stdlib.Complex.Reals.



Examples Stage 3: refined prompt

Rocq example 3 : after stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.

Open Scope C_scope.

Theorem mathd_algebra_302 :
  (Ci / 2)^2 = - (1 / 4).
Proof.
Admitted.



Examples Stage 3: refined prompt

Rocq example 4 : before stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (floor x) * (x - IZR (floor x))
          = (Q2R a) * (x ^ 2)))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.

Errors :
In environment

a : Q

S : list R

x : R

The term "x" has type "R" while it is

expected to have type "positive".



Examples Stage 3: refined prompt

Rocq example 4 : after stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x))
          = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.



Results Stage 3: refined prompt

193

273 287
332

380 394

465 478
S1 S2 S3

488

4o
 m

ini

cla
ud

e

o1
 m

ini o1

cla
ud

e (
3)

o1
 m

ini 
(3)

cla
ud

e (
6)

cla
ud

e (
24

)

100

200

300

400

500



Evaluation



Questions Evaluation

RQ1 Does a better model really performs better?

RQ2 Does changing the amount of information on a theorem changes the
performance of the model?

RQ3 Does the translated statement of the theorem make the proof harder to write?



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Select 100 theorems, 50 of which GPT-4o mini translated at stage 1



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Comparison: pass@1 = one one-shot prompting (stage 1) on the 100 theorems

o1-mini success o1-mini fail Total
GPT-4o mini success 28 22 50
GPT-4o mini fail 10 40 50
Total 38 62 100

⇒ GPT-4o mini > o1-mini?



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Comparison: pass@3 = three one-shot prompting (stage 1) on the 100 theorems

o1-mini success o1-mini fail Total
GPT-4o mini success 58 7 65
GPT-4o mini fail 6 29 35
Total 64 36 100

⇒ GPT-4o mini ≈ o1-mini

⇒ notion of easy and hard translations



RQ2 - Ablation study Evaluation

RQ2: Does changing the amount of information on a theorem changes the
performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini



RQ2 - Ablation study Evaluation

RQ2: Does changing the amount of information on a theorem changes the
performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini

Information in the prompt Pass@1 Pass@3
informal description + isabelle version + lean version 38% 64%
informal description 51% 75%

isabelle version + lean version 41% 62%
lean version 42% 60%

⇒ only informal description > rest

⇒ all information ≈ only code versions ≈ only lean version



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

Method: ask Rocq users to review batch of 25 translated theorems



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems

⇒ relying on their judgement: from no badly written theorems for some to half the
badly written theorems for others



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

Rocq example 4 : before the audit
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x)) = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

Rocq example 4 : after the audit
Require Import Reals.

Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (p q : nat), Nat.gcd p q = 1%nat ->
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x)) = INR p / INR q * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (p + q = 929)%nat.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

Informal description
{ "informal_statement": "What is the maximum value of (2^t - 3t) * t / 4^t  for real values of t?
Show that it is 1 / 12." }

Rocq example 6 : before the audit
Require Import Coq.Reals.Reals.
Open Scope R_scope.

Theorem amc12b_2020_p22 : forall t : R,
  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12.

Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

Informal description
{ "informal_statement": "What is the maximum value of (2^t - 3t) * t / 4^t  for real values of t?
Show that it is 1 / 12." }

Rocq example 6 : after the audit
Require Import Coq.Reals.Reals.
Open Scope R_scope.

Theorem amc12b_2020_p22 : forall t : R,
  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12 /\
  exists t,  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) = 1 / 12.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

• Removing useless content or write better syntax (e.g. currying)

Rocq example 7 : before the audit
Require Import PeanoNat.

Theorem aime_1991_p1 :
  forall (x y : nat), (0 < x)%nat -> (0 < y)%nat ->
    (x * y + x + y = 71) ->
    (x^2 * y + x * y^2 = 880) ->
    (x^2 + y^2 = 146).
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

• Removing useless content or write better syntax (e.g. currying)

Rocq example 7 : after the audit

Theorem aime_1991_p1 :
  forall (x y : nat),
    (x * y + x + y = 71) ->
    (x*x * y + x * y*y = 880) ->
    (x*x + y*y = 146).
Proof.
Admitted.



RQ3 - Audit: results Evaluation
Audit so far: 150 problems ≈ 31% of the dataset

Results so far:

Answers Percentages
Error 2%
Reformulation 4%
Syntax 17.3%
Valid 76.7%
Proof 18.7%



Conclusion



Main Lessons Conclusion
• Feedback importance:

‣ big improvement by adding previous failed attempts

‣ final errors are often due to the incapacity to correctly use previous attempts

Rocq example 5 : unproven
Require Import Reals.

Theorem aime_1988_p8 :
  forall (f : nat -> nat -> R),
  (forall x, (0 < x)%nat -> f x x = INR x) ->
  (forall x y, (0 < x)%nat /\ (0 < y)%nat -> f x y = f y x) ->

  (forall x y, (0 < x)%nat /\ (0 < y)%nat ->
    (INR (Nat.add x y)) * (f x y) = (INR y) * (f x (Nat.add x y))) ->

  f 14 52 = INR 364.
Proof.
Admitted.

Errors :
In environment

f : nat -> nat -> R

x : nat

y : nat

The term "INR (x + y)"

has type "R" while it

is expected to have

type "nat".



Main Lessons Conclusion
• Feedback importance:

‣ big improvement by adding previous failed attempts

‣ final errors are often due to the incapacity to correctly use previous attempts

• Indications importance:

‣ the fewer the examples on internet, the worst the LLMs
→ scraping on github:
Domains Number of files
nat ~ 80k
reals ~ 8k
complex numbers ~ 500

‣ LLMs struggle with types and scopes



The end Conclusion

Thank you!

Help us by participating to the theorems audit!

Contact us at llm4coq@gmail.com

The dataset is available at https://github.com/LLM4Rocq/miniF2F-rocq and on
HuggingFace 🤗 at https://huggingface.co/datasets/LLM4Rocq/miniF2F-rocq

https://github.com/LLM4Rocq/miniF2F-rocq
https://huggingface.co/datasets/LLM4Rocq/miniF2F-rocq

	Introduction
	Large Language Models and Reasoning
	MiniF2F
	Our Goal

	Methodology
	Models
	Strategy
	3 Stages and human checking

	Stage 1: one-shot prompting
	Pipeline
	Example
	Results

	Stage 2: multi-turn with errors
	Pipeline
	Example
	Results

	Stage 3: refined prompt
	Introduction
	Pipeline
	Examples
	Results

	Evaluation
	Questions
	RQ1 - Models comparison
	RQ2 - Ablation study
	RQ3 - Audit: introduction
	RQ3 - Audit: other goals
	RQ3 - Audit: results

	Conclusion
	Main Lessons
	The end


