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Introduction



Large Language Models and Reasoning Introduction
Use Large Language Models (LLMs) to generate reasoning in natural language or
proof assistants (Rocq, Lean or Isabelle)

DeepSeek-R1-Zero reasoning

Lemma ffx_eq_x_inj{A}:
  forall f:A->A,
  (forall x:A, f (f x) = x) ->
  forall x y:A, f x = f y -> x = y.
Proof.
  { intros f H1 x y H2.
    rewrite <- (H1 x).
    rewrite <- (H1 y).
    rewrite H2.
    reflexivity. }
Qed.

NLIR Rocq proof generation
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Large Language Models and Reasoning Introduction
Use Large Language Models (LLMs) to generate reasoning in natural language or
proof assistants (Rocq, Lean or Isabelle)

DeepSeek-R1-Zero reasoning

Lemma ffx_eq_x_inj{A}:
  forall f:A->A,
  (forall x:A, f (f x) = x) ->
  forall x y:A, f x = f y -> x = y.
Proof.
  { intros f H1 x y H2.
    rewrite <- (H1 x).
    rewrite <- (H1 y).
    rewrite H2.
    reflexivity. }
Qed.

NLIR Rocq proof generation

How to evaluate code generation methods? ⇒ benchmark datasets
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proof assistants



MiniF2F Introduction

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of?
488 exercises from olympiads (AMC, AIME, IMO) + high-school & undergraduate
maths classes

mathd_numbertheory_227: Angela's problem
{
  "problem_name": "mathd_numbertheory_227",
  "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of
coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How
many people are in the family? Show that it is 5.",
  "informal_proof": "..."
}



MiniF2F Introduction

What is it? Popular benchmark for ML based code generation in proof assistants

What is it made of? 488 high-school level maths exercises

What languages are supported?
Lean, Isabelle and Metamath ⇒ not Rocq

Angela's problem in Isabelle
theorem mathd_numbertheory_227:
  fixes x y n ::nat
  assumes "x / 4 + y / 6 = (x + y) / n"
    and "n\<noteq>0"
    and "x\<noteq>0"
    and "y\<noteq>0"
  shows "n = 5"
  sorry
end

Angela's problem in Lean
theorem mathd_numbertheory_227
  (x y n : ℕ+)
  (h₀ : ↑x / (4:ℝ) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end
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Informal description
… + Isabelle version

… + Lean version
…
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Our Goal Introduction

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…
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Models Methodology
Which models?

providers models open weights chain of thought
GPT-4o mini x x

o1-mini x o
OpenAI

o1 x o
Anthropic Claude 3.5 Sonnet x x

GPT-4o mini < Claude 3.5 Sonnet < o1-mini < o1



Models Methodology
Which models?

providers models open weights chain of thought
GPT-4o mini x x

o1-mini x o
OpenAI

o1 x o
Anthropic Claude 3.5 Sonnet x x

GPT-4o mini < Claude 3.5 Sonnet < o1-mini < o1

No open weights models ⇒ use them as black boxes
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… + Lean version
…

prompt

LLMs
=

Rocq version
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Strategy Methodology

Informal description
… + Isabelle version

… + Lean version
…

prompt

LLMs
=

Rocq version
…

black box

= only lever for translation



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far



3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a human ensures all translated theorems are correct

Rocq example 1
Require Import Coq.Reals.Reals.
Require Import Coq.ZArith.ZArith.
Open Scope R_scope.
Open Scope Z_scope.

Parameter Rfloor : R -> Z.
Parameter big_sum : forall (m n : nat) (f : nat -> Z), Z.

Theorem aime_1991_p6 : forall (r : R),
    (big_sum 19 91 (fun k => Rfloor (r + (IZR (Z.of_nat k) / 100)))) = 546%Z ->
    Rfloor (100 * r) = 743%Z.
Proof.
Admitted.
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3 Stages and human checking Methodology

3 stages, each stage is comprised of several steps

step: a model attempts to translate all theorems untranslated so far

At the end of each step, a human ensures all translated theorems are correct

If a theorem is considered incorrect, it is put back with the untranslated theorems
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checking



Example Stage 1: one-shot prompting

Informal description
{
  "problem_name": "mathd_numbertheory_227",
  "informal_statement": "One morning each member of Angela's family drank an 8-ounce mixture of
coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero.
Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How
many people are in the family? Show that it is 5.",
  "informal_proof": "..."
}

Isabelle version
theorem mathd_numbertheory_227:
  fixes x y n ::nat
  assumes "x / 4 + y / 6 = (x + y) / n"
    and "n\<noteq>0"
    and "x\<noteq>0"
    and "y\<noteq>0"
  shows "n = 5"
  sorry
end

Lean version
theorem mathd_numbertheory_227
  (x y n : ℕ+)
  (h₀ : ↑x / (4:ℝ) + y / 6 = (x + y) / n) :
  n = 5 :=
begin
  sorry
end



Example Stage 1: one-shot prompting

Informal description
…

Isabelle version
…

Lean version
…

Rocq version
Require Import Coq.Reals.Reals.

Open Scope R_scope.

Theorem mathd_numbertheory_227:
  forall (x y n : nat), x <> 0%nat -> y <> 0%nat -> n <> 0%nat ->
    (INR x / 4 + INR y / 6 = (INR x + INR y) / INR n) -> n = 5%nat.
Proof.
Admitted.



Results Stage 1: one-shot prompting
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Stage 2: multi-turn with errors
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Lean version

+
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Example Stage 2: multi-turn with errors
Rocq example 2 : first attempt unsuccessful

Require Import Arith.

Theorem imo_1964_p1_1 :
  forall n : nat,
    (7 | (2^n - 1)%nat) -> (3 | n).
Proof.
Admitted.

Errors :
Syntax error: ',' or ')' expected after [term

level 200] (in [term]).

Rocq example 2 : second attempt successful
Require Import Arith.

Theorem imo_1964_p1_1 :
  forall n : nat,
    (Nat.divide 7 (2^n - 1)) -> (Nat.divide 3 n).
Proof.
Admitted.



Results Stage 2: multi-turn with errors
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Introduction Stage 3: refined prompt

Rocq example 3 : before stage 3
Require Import Coq.Complex.Reals.

Theorem mathd_algebra_302 :
  (Caux.I / 2)^2 = -(1 / 4).
Proof.
Admitted.

Errors :
Cannot find a physical path bound to

logical path Stdlib.Complex.Reals.



Introduction Stage 3: refined prompt
Rocq example 4 : before stage 3

Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.

Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q) (S : list R),
  (forall x : R, In x S <->
    (IZR (floor x) * (x - IZR (floor x))
      = (Q2R a) * (x ^ 2)))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.

Errors :
In environment

a : Q

S : list R

x : R

The term "x" has type "R" while it is

expected to have type "positive".



Pipeline Stage 3: refined prompt
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Pipeline Stage 3: refined prompt
Prompt

Informal description
Isabelle version

Lean version
+

Error feedback

LLMs
Rocq version

YES

Human
checking

NO

x 3

Prompt
Informal description

Isabelle version
Lean version

+
Rocq tutorial, advices

+
Error feedback

NO

x ≥6



Examples Stage 3: refined prompt

Rocq example 3 : before stage 3
Require Import Coq.Complex.Reals.

Theorem mathd_algebra_302 :
  (Caux.I / 2)^2 = -(1 / 4).
Proof.
Admitted.

Errors :
Cannot find a physical path bound to

logical path Stdlib.Complex.Reals.



Examples Stage 3: refined prompt

Rocq example 3 : after stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.

Open Scope C_scope.

Theorem mathd_algebra_302 :
  (Ci / 2)^2 = - (1 / 4).
Proof.
Admitted.



Examples Stage 3: refined prompt

Rocq example 4 : before stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (floor x) * (x - IZR (floor x))
          = (Q2R a) * (x ^ 2)))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Qnum a + Qden a)%Z = 929.
Proof.
Admitted.

Errors :
In environment

a : Q

S : list R

x : R

The term "x" has type "R" while it is

expected to have type "positive".



Examples Stage 3: refined prompt

Rocq example 4 : after stage 3
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x))
          = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.



Results Stage 3: refined prompt
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Evaluation



Questions Evaluation

RQ1 Does a better model really performs better?

RQ2 Does changing the amount of information on a theorem changes the
performance of the model?

RQ3 Does the translated statement of the theorem make the proof harder to write?



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Select 100 theorems, 50 of which GPT-4o mini translated at stage 1



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Comparison: pass@1 = one one-shot prompting (stage 1) on the 100 theorems

o1-mini success o1-mini fail Total
GPT-4o mini success 28 22 50
GPT-4o mini fail 10 40 50
Total 38 62 100

⇒ GPT-4o mini > o1-mini?



RQ1 - Models comparison Evaluation

RQ1: Does a better model really performs better?
→ GPT-4o mini vs o1-mini

Comparison: pass@3 = three one-shot prompting (stage 1) on the 100 theorems

o1-mini success o1-mini fail Total
GPT-4o mini success 58 7 65
GPT-4o mini fail 6 29 35
Total 64 36 100

⇒ GPT-4o mini ≈ o1-mini

⇒ notion of easy and hard translations



RQ2 - Ablation study Evaluation

RQ2: Does changing the amount of information on a theorem changes the
performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini



RQ2 - Ablation study Evaluation

RQ2: Does changing the amount of information on a theorem changes the
performance of the model?

Comparison: one and three one-shot prompting on the 100 theorems with o1-mini

Information in the prompt Pass@1 Pass@3
informal description + isabelle version + lean version 38% 64%
informal description 51% 75%

isabelle version + lean version 41% 62%
lean version 42% 60%

⇒ only informal description > rest

⇒ all information ≈ only code versions ≈ only lean version



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

Method: ask Rocq users to review batch of 25 translated theorems



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems



RQ3 - Audit: introduction Evaluation

RQ3: Does the translated statement of the theorem make the proof harder to write?

⇒ hard question: what does it really mean?

Method: ask Rocq users to review batch of 25 translated theorems

⇒ relying on their judgement: from no badly written theorems for some to half the
badly written theorems for others



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

Rocq example 4 : before the audit
Require Import Reals.
Require Import Coquelicot.Coquelicot.
Require Import QArith.
Require Import ZArith.
Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (a : Q),
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x)) = Q2R a * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (Z.pos (Qden a) + Qnum a = 929)%Z.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

Rocq example 4 : after the audit
Require Import Reals.

Require Import List.
Open Scope R_scope.

Theorem amc12a_2020_p25 :
  forall (p q : nat), Nat.gcd p q = 1%nat ->
    forall (S : list R),
      (forall x : R, In x S <->
        (IZR (Int_part x) * (x - IZR (Int_part x)) = INR p / INR q * Rpower x 2))
    -> NoDup S
    -> fold_left Rplus S 0 = 420
    -> (p + q = 929)%nat.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

Informal description
{ "informal_statement": "What is the maximum value of (2^t - 3t) * t / 4^t  for real values of t?
Show that it is 1 / 12." }

Rocq example 6 : before the audit
Require Import Coq.Reals.Reals.
Open Scope R_scope.

Theorem amc12b_2020_p22 : forall t : R,
  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12.

Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

Informal description
{ "informal_statement": "What is the maximum value of (2^t - 3t) * t / 4^t  for real values of t?
Show that it is 1 / 12." }

Rocq example 6 : after the audit
Require Import Coq.Reals.Reals.
Open Scope R_scope.

Theorem amc12b_2020_p22 : forall t : R,
  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) <= 1 / 12 /\
  exists t,  ((exp (t * ln 2) - 3 * t) * t) / (exp (t * ln 4)) = 1 / 12.
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

• Removing useless content or write better syntax (e.g. currying)

Rocq example 7 : before the audit
Require Import PeanoNat.

Theorem aime_1991_p1 :
  forall (x y : nat), (0 < x)%nat -> (0 < y)%nat ->
    (x * y + x + y = 71) ->
    (x^2 * y + x * y^2 = 880) ->
    (x^2 + y^2 = 146).
Proof.
Admitted.



RQ3 - Audit: other goals Evaluation
• Finding unnoticed errors

• Better alignment with the informal description

• Removing useless content or write better syntax (e.g. currying)

Rocq example 7 : after the audit

Theorem aime_1991_p1 :
  forall (x y : nat),
    (x * y + x + y = 71) ->
    (x*x * y + x * y*y = 880) ->
    (x*x + y*y = 146).
Proof.
Admitted.



RQ3 - Audit: results Evaluation
Audit so far: 150 problems ≈ 31% of the dataset

Results so far:

Answers Percentages
Error 2%
Reformulation 4%
Syntax 17.3%
Valid 76.7%
Proof 18.7%



Conclusion



Main Lessons Conclusion
• Feedback importance:

‣ big improvement by adding previous failed attempts

‣ final errors are often due to the incapacity to correctly use previous attempts

Rocq example 5 : unproven
Require Import Reals.

Theorem aime_1988_p8 :
  forall (f : nat -> nat -> R),
  (forall x, (0 < x)%nat -> f x x = INR x) ->
  (forall x y, (0 < x)%nat /\ (0 < y)%nat -> f x y = f y x) ->

  (forall x y, (0 < x)%nat /\ (0 < y)%nat ->
    (INR (Nat.add x y)) * (f x y) = (INR y) * (f x (Nat.add x y))) ->

  f 14 52 = INR 364.
Proof.
Admitted.

Errors :
In environment

f : nat -> nat -> R

x : nat

y : nat

The term "INR (x + y)"

has type "R" while it

is expected to have

type "nat".



Main Lessons Conclusion
• Feedback importance:

‣ big improvement by adding previous failed attempts

‣ final errors are often due to the incapacity to correctly use previous attempts

• Indications importance:

‣ the fewer the examples on internet, the worst the LLMs
→ scraping on github:
Domains Number of files
nat ~ 80k
reals ~ 8k
complex numbers ~ 500

‣ LLMs struggle with types and scopes



The end Conclusion

Thank you!

Help us by participating to the theorems audit!

Contact us at llm4coq@gmail.com

The dataset is available at https://github.com/LLM4Rocq/miniF2F-rocq and on
HuggingFace 🤗 at https://huggingface.co/datasets/LLM4Rocq/miniF2F-rocq

https://github.com/LLM4Rocq/miniF2F-rocq
https://huggingface.co/datasets/LLM4Rocq/miniF2F-rocq
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