The Expressive Power of Description Logics with Numerical
Constraints over Restricted Classes of Models

Franz Baader Filippo De Bortoli

15th International Symposium on Frontiers of Combining Systems (FroCoS 2025)
Reykjavik, Iceland, September 29, 2025

Qi scapsall CPEC

Dresden DRESDEN LEIPZIG CENTER FOR PERSPICUOUS COMPUTING

Description Logics: what are they?

Description Logics: what are they?

Description logics are logic-based knowledge representation languages.

Description Logics: what are they?

el

Description logics are logic-based knowledge representation languages.

/
/
/

motivétes the
design of

A\
i\

used to author

/ provide decision
procedures for

Domain

Knowledge

formalized as

\

v/

A\

~
~

Ontology

v

processed by

|

—

» Reasoner

to infer a

>

—— | Isusedto engineer

—— | Isusedtoactupon |

Description Logics: what are they?

el

Description logics are logic-based knowledge representation languages.

/
/
/

motivates the

\
/ \

provide decision
procedures for

\

v

processed by

design of used to author

|

‘ /

| formalized as A4

Domain
» Ontology
Knowledge
A\ k\\,

War

OWL 2 Web Ontology Language
Document Overview (Second Edition)

» Reasoner

to infer a

—— | Isused to engineer

-| Isused to act upon

>

Description Logics: what are they?

//» Description logics are logic-based knowledge representation languages. |

motivétes the N provide decision

. used to author

design of procedures for \

| \ |

‘ formalized as Y processed by Y to infer a v
Domain o

» Ontology » Reasoner » Decision
Knowledge

Wsc ~—| Is used to act upon

What is

SNOMED CT?

OWL 2 Web Ontology Language
Document Overview (Second Edition)

Basics of Description Logics

Basics of Description Logics

Human

Taxbreak

concept names (Human, TaxBreak), role names (child, eligible)

Basics of Description Logics

Human XConcept descriptionsx [Cux=A|-C|CncC]|3r.C]47 ALC

pon ~

: /[\ /[3\
. [\ [\ . .
[[Human 1 3child.Human C Jeligible.TaxBreak]}7 TBox (concept inclusions)
Taxbreak

concept names (Human, TaxBreak), role names (child, eligible)

Basics of Description Logics

interpretation

ALC

XConcept descriptionsx [C w=A|-C|CnC|3rC]47

P

N

/

> I \ [\
h [[Human 1 3child.Human E Jeligible.TaxBreak
Taxbreak

) /[3\
]}7 TBox (concept inclusions)

TBox consistency is ExpTime-complete for ALC ontologies.

concept names (Human, TaxBreak), role names (child, eligible)

Cardinality constraints in description logics

Cardinality constraints in description logics

Qualified number restriction [ALC+(=nr.Cand(snr. Q)]47

ALCQ

A

V- N\

[Human I‘I/(B 3 chiId.Human)\E Jeligible.TaxBreak]

Cardinality constraints in description logics

Qualified number restriction [ALC+(=nr.Cand(gnr. Q)]47 ALCQ

A

V- N\

[Human I‘I/(B 3 chiId.Human)\E Jeligible.TaxBreak]

Human ® Human
>,
. - 7,

Taxbreak

Taxbreak

Cardinality constraints in description logics

Qualified number restriction [ALC+(=nr.Cand(snr. Q)]47

ALCQ

A

V- N\

[Human I‘I/(B 3 chiId.Human)\E Jeligible.TaxBreak]

Human Human

EHgMﬂe
Taxbreak

Taxbreak

TBox consistency is ExpTime-complete in ALCQ (Tobies ‘00,/01) for unary and binary coding of numbers

Concrete domains

Concrete domains

[Human 1 (= 3 child.Human) N Jsalary.<ie0,000 E Jeligible.TaxBreak]

[Mother C 3age, child age.l]\v\

Feature names

Concrete domains

Concrete domain restrictions [ALC + concrete domain restrictions i<7

ALC(D)

[Human (= 3 chiI%Human) |_|{358|8F)\/.<100,0?)0 C Jeligible.TaxBreak]

[Mother C éage, child age.;\J\v\

Feature names

Concrete domains

Concrete domain restrictions [ALC + concrete domain restrictions]47 ALC(D)
Y
[Humannm (=3 chiliHuman) M'3salary.<i00000 E Jeligible. TaxBreak]

[Mother £ 4age, child age.> \
AQ Human Human, Mother @

Feature names AN
ey @ S
@ 99999.99 @ — -
< Taxbreak
100,000
0
0

Human Human Human

Concrete domains

Concrete domain restrictions [ALC + concrete domain restrictions]47 ALC(D)

[Human (= 3 chiI%Human) I‘I”EIsaIaFy\/.<1oo,oBo C Jeligible.TaxBreak]

[Mother E éage, child age.>\ \
Q Human, Mother (D
VAN Human o A

Feature names

@ 99999.99 @ —

Taxbreak
<100,000

(i

Human Human Human

TBox consistency ExpTime-complete for ALC extended by integers with comparison (Labai, Ortiz & Simkus ‘20) or
rationals with comparisons (Borgwardt, D., Koopmann 24)

Expressive power of concept languages

Jchild.Human = (=1 child.Human) = (x):=3y. (child(x,y) A Human(y))

Expressive power of concept languages

Jchild.Human =— (=1 child.Human) = @(x) := Ay. (child(x,y) A Human(y))

_R[FO-definable]

——

[equivalent

Expressive power of concept languages

Jchild.Human =— (=1 child.Human) = @(x) := Ay. (child(x,y) A Human(y))
[equivalent } FO-definable]

DL’

DL

“DL and DL’ are equivalent”

Expressive power of concept languages

Jchild.Human =— (=1 child.Human) = @(x) := Ay. (child(x,y) A Human(y))
[equivalent } FO-definable]
DL

DL’
DL
DL

“DL and DL’ are equivalent” “DL’ strictly more expressive than DL"

Expressive power of concept languages

Jchild.Human , =, (=1 child.Human) , = (x):= 3y. (child(x,y) A Human(y))

)

[equivalent FO-definable]

DL’ FOL
DL’ T
DL DL

DL

“DL and DL’ are equivalent” “DL’ strictly more expressive than DL" “DL is a first-order fragment”

Expressive power of concept languages

Jchild.Human , =, (=1 child.Human) , = (x):= 3y. (child(x,y) A Human(y))

[equivalent } FO-definable]
DL’ FOL
DL’ T
DL DL
DL
“DL and DL’ are equivalent” “DL’ strictly more expressive than DL" “DL is a first-order fragment”

We assume that DL, DL, FOL use the same sets of names.

Bisimulations, characterization and non-expressivity

Bisimulations, characterization and non-expressivity

...........
"uy
...........

.
.y .
.

............
...........
...............................

/ Bisimulation \

)]

Qack & Forth conditiony

Bisimulations, characterization and non-expressivity

Human .. .
T S > e Bisimulation
.\\(\)
.............................. > d e P e
" H : - o oy .
R e A _ Atomic condition
Human ‘ .. ‘ Human
d 4 ------------------------ > e
r r
@(x) is invariant under bisimulation < @(x) is equivalent to ALC concept i ‘
\ 4
* Van Benthem ‘76: proof w.r.t. all interpretations € >
* Rosen ‘97: proof also w.r.t. finitely branching or finite interpretations

Qack & Forth conditiony

Bisimulations, characterization and non-expressivity

Human Human
d < ... > e
FOL
WS
ALCQ z : E Lty
I .
' Human -
ALC _ 4. “ Human _
Human ‘ ’ Human

@(x) is invariant under bisimulation < @(x) is equivalent to ALC concept

Van Benthem “76: proof w.r.t. all interpretations

Rosen ‘97: proof also w.r.t. finitely branching or finite interpretations

(<1 child. Human) is notinvariant under bisimulation!

/ Bisimulation \

)]

Qack & Forth conditiony

Outline

1) Cardinality constraints

2) Concrete domains

ALCSCC

FOL(D)

A
FOL

i

ALCQt

FO ALCSCC

|

ALCQ

!

ALC

ALC(D)
A

Outline

1) Cardinality constraints

2) Concrete domains

ALCSCC
A

: FOL

ALCQt
FO ALCSCC

FOL(D)

i

ALC(D)
A

Outline

1) Cardinality constraints

2) Concrete domains

ALCSCC

A
FOL

ALCQt

FO ALCSCC

|

ALCQ

!

ALC

ALCSCC

A
FOL

ALCQt

FO ALCSCC

A
Cardinality constraints

ALCQ

ALC

The description logic ALCSCC

The description logic ALCSCC

[ALC + successor restrictions based on QFBAPA] ALCSCC

The description logic ALCSCC

successor restriction [ALC + successor restrictions based on QFBAPA }47 ALCSCC

AN

[Human I‘(succ(lpet N Dog| = |child N Humanl)\]

Successor restrictions evaluated w.r.t.
all role successors of an individual

The description logic ALCSCC

successor restriction [ALC + successor restrictions based on QFBAPA]4* ALCSCC

AN

[Human I‘(succ(lpet N Dog| = |child N Humanl)\]

Successor restrictions evaluated w.r.t.
all role successors of an individual

The description logic ALCSCC

successor restriction [ALC + successor restrictions based on QFBAPA]4*

ALCSCC

AN

[Human I‘(succ(lpet N Dog| = |child N Humanl)\]

Successor restrictions evaluated w.r.t.
all role successors of an individual

* QFBAPA: set and cardinality constraints over finite sets
« Satisfiability for QFBAPA is NP-complete

* Baader &D. ‘19: QFBAPA"~, like QFBAPA but with infinite
sets, we show that it is NP-complete

The description logic ALCSCC

successor restriction [ALC + successor restrictions based on QFBAPA]4* ALCSCC

— S K/‘
[Human '_(SUCC(| pet N Dog| = |child N Human|)] Baader '17: TBox consistency is ExpTime complete;
defined only over finitely branching interpretations!

Baader & D. ‘19

* ALCSCC=:= ALCSCC defined over all interpretations
* TBox consistency remains ExpTime-complete

Successor restrictions evaluated w.r.t.

all role successors of an individual ALCSCC"
* QFBAPA: set and cardinality constraints over finite sets Sepa;atlobr'\ l,JSInlg + _—» T
« Satisfiability for QFBAPA is NP-complete counting bisimutation

ALCQ

* Baader &D. ‘19: QFBAPA"~, like QFBAPA but with infinite
sets, we show that it is NP-complete

Presburger bisimulation

Presburger bisimulation

Safe role types

[t:={r, S}

/ Presburger Bisimulation \

Atomic as before

finite
K Back & Forth conditions /

Presburger bisimulation

Safe role types

[t:={r, s}

/ Presburger Bisimulation \

Atomic as before

For all FOL formulae @(x), the following are equivalent:

d 4. > e
. v'..\._t 1) @(x) is equivalent to some ALCSCC concept.
T T\ ~
< A 2) (x)is invariant under Presburger bisimulation.
< - Dilective_y, 3) @(x) is equivalent to some ALCQt concept.

j * Baader & D. “19: showed for all interpretations

finite
Back & Forth diti
K condaions * FroCoS ‘25: extended to finitely branching/finite

Presburger bisimulation

Safe role types

[t:={r, s}

[ALC+(>nt.C)and(<nt.C)}

/ Presburger Bisimulation
Atomic as before

< - Riective_

finite
\ Back & Forth conditions

~

FoL 4

ALCOQOt

FO ALCSCC

/

For all FOL formulae ¢(x), the following are equivalent:
1) @(x) is equivalent to some ALCSCC concept.
2) @(x)is invariant under Presburger bisimulation.
3) @(x)is equivalent to some ALCQt concept.

* Baader & D. “19: showed for all interpretations

* FroCoS ‘25: extended to finitely branching/finite

Presburger bisimulation

Safe role types <
[ALC+(>nt.C)and(<nt.C) }
FOL 4
[s t ALCQOt
FO ALCSCC T M ALCSCC
/ Presburger Bisimulation \ succ(|r N A] = [r N =A|) is not first-order definable!
Atomic as before
P R > e For all FOL formulae ¢(x), the following are equivalent:
T . 1) @(x) is equivalent to some ALCSCC concept.
T T T '\ .'\.
< A 2) @(x)is invariant under Presburger bisimulation.
< -Riective_y, 3) @(x)is equivalent to some ALCQt concept.

/ * Baader & D. “19: showed for all interpretations

finite
Back & Forth diti
K condaions * FroCoS ‘25: extended to finitely branching/finite

FOL(D)

Concrete Domains
ALC(D)

First-order logics with concrete domains (SAC 24)

Human, Mother

First-order logics with concrete domains (SAC 24)

[Mother E 3age, child <]

[ALC + concrete domain restrictions]47 ALC(D)

First-order logics with concrete domains (SAC 24)

~

[Mother C dage, child <] [FOL + definedness predicates + concrete domain predicates [@—— FOL(D)

L1

{ ALC + concrete domain restrictions |[@—— ALC(D)

J

Human, Mother

First-order logics with concrete domains (SAC 24)

~

[Mother E Jage, child age.<] [FOL + definedness predicates + concrete domain predicates |[@—— FOL(D)
{ ALC + concrete domain restrictions [@4— ALC(D)
| Vxy. Def(id)x) A (x # y > <(id, id)(+,) v <(id,id)(y,x)) | Human, Mother R

“id acts as an injective function”

[ax,y,z. (<(age,age)(x,y) A <(age,age)y,z) A <(age,age)(z,X))]

“there is a <-cicle of age-values” (unsatisfiable)

First-order logics with concrete domains (SAC 24)

[Mother E Jage, child age.<] [FOL + definedness predicates + concrete domain predicates

~

J

Definedness predicate

- I

[Vx,y. Def(id)(x) A (x #y = <(id,id)(+,) v <(id,id)(y,x))]

“id acts as an injective function”

| Concrete domain predicates

~\

47

FOL(D)

{

{ ALC + concrete domain restrictions
J

47

ALC(D)

Human, Mother

[ax,y,z. (<(age,age)(x,y) A <(age,age)y,z) A <(age,age)(z,X))]

“there is a <-cicle of age-values” (unsatisfiable)

Concrete domains and negation

Concrete domains and negation

Conditions on D that enable the expression of negated predicates in ALC(D) or FOL(D):
* Weakly Closed Under Negation (WCUN): complement of a k-ary predicate is a union of k-ary predicates

[(x =y) iff (x <y) V (y <X)]

Bisimulations for concrete domains

Bisimulations for concrete domains

/ ® Bisimulation \

Atomic as before
Back & Forth as before

K Feature conditions /

if (d,e) € p, then there is (v4,...,vi) € PP with v; € p;/(d), ..., vk €

pi(d) iff there is (ws,...,wi) € PP with w; € pi?(e), ..., wk € pid(e).

Bisimulations for concrete domains

-

® Bisimulation \

Atomic as before
Back & Forth as before

Bisimulation and non-expressivity:
* extensions of ALC with different concrete domains

* e.g ALC(Q, +1) and ALC(Q, +) “orthogonal”
 different extensions of ALC w/ same concrete domain

* e.g. ALC(Q, <) cannot express restriction with
constraint systems e.g. Arf, rf, rf.(x <y Ay <2)

Feature conditions /

T

if (d,e) € p, then there is (v4,...,vi) € PP with v; € p;/(d), ..., vk €

pi(d) iff there is (ws,...,wi) € PP with w; € pi?(e), ..., wk € pid(e).

Bisimulations for concrete domains

-

.

® Bisimulation

Atomic as before
Back & Forth as before

Feature conditions

~

Bisimulation and non-expressivity:
* extensions of ALC with different concrete domains

* e.g ALC(Q, +1) and ALC(Q, +) “orthogonal”
 different extensions of ALC w/ same concrete domain

* e.g. ALC(Q, <) cannot express restriction with
constraint systems e.g. Arf, rf, rf.(x <y Ay <2)

/

T

if (d,e) € p, then there is (v4,...,vi) € PP with v; € p;/(d), ..., vk €

pi(d) iff there is (ws,...,wi) € PP with w; € pi?(e), ..., wk € pid(e).

Assume finite sets of names and let be WCUN and have
finitely many relations. For all FOL(®) formulae ¢(x), the
following are equivalent:

1) @(x) is invariant under bisimulation.
2) (x)is equivalent to some ALC(D) concept.

* FroCoS ‘25: showed w.r.t all interpretations as well as
finitely branching/finite ones

Summary: expressive power

/ Presburger Bisimulation
Atomic as before

finite .
K Back & Forth conditions

\

FOL(D)

ALCSCC

ALC(D)

A
FOL

/ ® Bisimulation

Atomic as before
Back & Forth as before

\ Feature conditions

ALCQt

FO ALCSCC

A

ALCQ

ALC

A

From here on...

* Expressive power of ontologies with numerical constraints*
- e.g. ALCSCC” TBoxes using global Presburger bisimulation (Baader, D. ‘20)
* Expresive power when combining cardinality constraints and concrete domains (CADE ‘25)

* Different notion of expressive power, e.g. conservative extensions

From here on...

* Expressive power of ontologies with numerical constraints*
- e.g. ALCSCC” TBoxes using global Presburger bisimulation (Baader, D. ‘20)
* Expresive power when combining cardinality constraints and concrete domains (CADE ‘25)

* Different notion of expressive power, e.g. conservative extensions

Thanks! :-)

ALCSCC(D®) and feature roles (CADE ‘25)

ALCSCC(D®) and feature roles (CADE ‘25)

[ALCSCC + ALC(D) + feature rolesin successor restrictions }4

ALCSCC(D)

ALC(D)

ALCSCC

ALCSCC(D®) and feature roles (CADE ‘25)

[ALCSCC + ALC(D) + feature roles in successor restrictions }4

[succ(|child N (salary < next salary)| > [child N (salary < next salary)¢|)]

“the salary of this individual is smaller
than that of the majority of its children”

ALCSCC(D)

ALC(D)

ALCSCC

ALCSCC(D®) and feature roles (CADE ‘25)

[ALCSCC + ALC(D) + feature roles in successor restrictions]4 ALCSCC(D)
ﬁ Feature roles
— — — i —

[succ(|child N (salary < next salary)| > [child N (salary < next salary)¢|)]

(salary < next salary) Q “the salary of this individual is smaller ALC(D)
AN

than that of the maijority of its children”
S ALCSCC

ALCSCC(D®) and feature roles (CADE ‘25)

[ALCSCC + ALC(D) + feature roles in successor restrictions]4 ALCSCC(D)

f Feature roles i

-~ N ~ N\

[succ(|child N (salary < next salary)| > [child N (salary < next salary)¢|) }

(salary < next salary) Q “the salary of this individual is smaller ALC(D)
AN than that of the maijority of its children”
P ALCSCC

It cannot be expressed without feature roles!

ALCSCC(D®) and feature roles (CADE ‘25)

[ALCSCC + ALC(D) + feature roles in successor restrictions]4

f Feature roles i

-~

—

~ N\

[succ(|child N (salary < next salary)| > [child N (salary < next salary)¢|) }

(salary < next salary)

AQ

“the salary of this individual is smaller

ALCSCC(D)

ALC(D)

than that of the majority of its children”

ALCSCC

It cannot be expressed without feature roles!

[(Isalary, child salary.<) E (succ(|child]| < 0))]

A

Inconsistent, due to the interaction of

cardinality constraints and concrete domain!

	Slide: 1
	Description Logics (1)
	Description Logics (2)
	Description Logics (3)
	Description Logics (4)
	Description Logics (5)
	Basics of Description Logics (1)
	Basics of Description Logics (2)
	Basics of Description Logics (3)
	Basics of Description Logics (4)
	Description Logics with quantitative constructors (1)
	Description Logics with quantitative constructors (2)
	Description Logics with quantitative constructors (3)
	Description Logics with quantitative constructors (4)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 5 (5)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 9
	Description logics meet QFBAPA - ALCSCC (1)
	Description logics meet QFBAPA - ALCSCC (2)
	Description logics meet QFBAPA - ALCSCC (3)
	Description logics meet QFBAPA - ALCSCC (4)
	Description logics meet QFBAPA - ALCSCC (5)
	Description logics meet QFBAPA - ALCSCC (6)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 12
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Concrete domains meet cardinality constraints (1)
	Concrete domains meet cardinality constraints (2)
	Concrete domains meet cardinality constraints (3)
	Concrete domains meet cardinality constraints (4)
	Concrete domains meet cardinality constraints (5)
	Concrete domains meet cardinality constraints (6)

