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TBox consistency is ExpTime-complete for ALC ontologies.

concept names (Human, TaxBreak), role names (child, eligible)
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Cardinality constraints in description logics

Qualified number restriction [ ALC+(=nr.Cand(snr. Q) ]47

ALCQ

A

V- N\

[ Human I‘I/(B 3 chiId.Human)\E Jeligible.TaxBreak ]

Human Human

EHgMﬂe
Taxbreak

Taxbreak

TBox consistency is ExpTime-complete in ALCQ (Tobies ‘00,/01) for unary and binary coding of numbers
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Concrete domains

Concrete domain restrictions [ ALC + concrete domain restrictions ]47 ALC(D)

[ Human (= 3 chiI%Human) I‘I”EIsaIaFy\/.<1oo,oBo C Jeligible.TaxBreak ]

[ Mother E éage, child age.>\ \
Q Human, Mother (D
VAN Human o A

Feature names
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Taxbreak
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Human Human Human

TBox consistency ExpTime-complete for ALC extended by integers with comparison (Labai, Ortiz & Simkus ‘20) or
rationals with comparisons (Borgwardt, D., Koopmann 24)
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Expressive power of concept languages

Jchild.Human , =, (=1 child.Human) , = (x):= 3y. (child(x,y) A Human(y))

[ equivalent } FO-definable ]
DL’ FOL
DL’ T
DL DL
DL
“DL and DL’ are equivalent” “DL’ strictly more expressive than DL" “DL is a first-order fragment”

We assume that DL, DL, FOL use the same sets of names.
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@(x) is invariant under bisimulation < @(x) is equivalent to ALC concept

Van Benthem “76: proof w.r.t. all interpretations

Rosen ‘97: proof also w.r.t. finitely branching or finite interpretations

(<1 child. Human) is notinvariant under bisimulation!
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*  QFBAPA: set and cardinality constraints over finite sets
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* Baader &D. ‘19: QFBAPA"~, like QFBAPA but with infinite
sets, we show that it is NP-complete




The description logic ALCSCC

successor restriction [ ALC + successor restrictions based on QFBAPA ]4* ALCSCC

— S K/‘
[ Human '_(SUCC(| pet N Dog| = |child N Human|) ] Baader '17: TBox consistency is ExpTime complete;
defined only over finitely branching interpretations!

Baader & D. ‘19

* ALCSCC=:= ALCSCC defined over all interpretations
* TBox consistency remains ExpTime-complete

Successor restrictions evaluated w.r.t.

all role successors of an individual ALCSCC"
*  QFBAPA: set and cardinality constraints over finite sets Sepa;atlobr'\ l,JSInlg + _—» T
«  Satisfiability for QFBAPA is NP-complete counting bisimutation

ALCQ

* Baader &D. ‘19: QFBAPA"~, like QFBAPA but with infinite
sets, we show that it is NP-complete
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Safe role types

[t:={r, s}

[ALC+(>nt.C)and(<nt.C)}
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For all FOL formulae ¢(x), the following are equivalent:
1) @(x) is equivalent to some ALCSCC concept.
2) @(x)is invariant under Presburger bisimulation.
3) @(x)is equivalent to some ALCQt concept.

* Baader & D. “19: showed for all interpretations

* FroCoS ‘25: extended to finitely branching/finite




Presburger bisimulation

Safe role types <
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FOL 4
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/ Presburger Bisimulation \ succ(|r N A] = [r N =A|) is not first-order definable!
Atomic as before
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T T T '\ .'\. .. . . . .
< A 2) @(x)is invariant under Presburger bisimulation.
< -Riective_y, 3) @(x)is equivalent to some ALCQt concept.

/ * Baader & D. “19: showed for all interpretations

finite
Back & Forth diti
K condaions * FroCoS ‘25: extended to finitely branching/finite




FOL(D)

Concrete Domains
ALC(D)



First-order logics with concrete domains (SAC 24)

Human, Mother




First-order logics with concrete domains (SAC 24)

[ Mother E 3age, child < ]

[ ALC + concrete domain restrictions ]47 ALC(D)




First-order logics with concrete domains (SAC 24)

~

[ Mother C dage, child < ] [ FOL + definedness predicates + concrete domain predicates [ @—— FOL(D)

L1

{ ALC + concrete domain restrictions  |[@—— ALC(D)

J

Human, Mother




First-order logics with concrete domains (SAC 24)

~

[ Mother E Jage, child age.< ] [ FOL + definedness predicates + concrete domain predicates |[@—— FOL(D)
{ ALC + concrete domain restrictions [ @4— ALC(D)
| Vxy. Def(id)x) A (x # y > <(id, id)(+,) v <(id,id)(y,x)) | Human, Mother R

“id acts as an injective function”

[ ax,y,z. (<(age,age)(x,y) A <(age,age)y,z) A <(age,age)(z,X)) ]

“there is a <-cicle of age-values” (unsatisfiable)
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[ Mother E Jage, child age.< ] [ FOL + definedness predicates + concrete domain predicates

~

J

Definedness predicate

- I

[ Vx,y. Def(id)(x) A (x #y = <(id,id)(+, ) v <(id,id)(y,x)) ]

“id acts as an injective function”

| Concrete domain predicates

~\

47
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{

{ ALC + concrete domain restrictions
J

47

ALC(D)

Human, Mother

[ ax,y,z. (<(age,age)(x,y) A <(age,age)y,z) A <(age,age)(z,X)) ]

“there is a <-cicle of age-values” (unsatisfiable)
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Conditions on D that enable the expression of negated predicates in ALC(D) or FOL(D):
* Weakly Closed Under Negation (WCUN): complement of a k-ary predicate is a union of k-ary predicates

[ (x =y) iff (x <y) V (y <X) ]
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Back & Forth as before

Bisimulation and non-expressivity:
* extensions of ALC with different concrete domains

* e.g ALC(Q, +1) and ALC(Q, +) “orthogonal”
 different extensions of ALC w/ same concrete domain

* e.g. ALC(Q, <) cannot express restriction with
constraint systems e.g. Arf, rf, rf.(x <y Ay <2)
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T

if (d,e) € p, then there is (v4,...,vi) € PP with v; € p;/(d), ..., vk €

pi(d) iff there is (ws,...,wi) € PP with w; € pi?(e), ..., wk € pid(e).




Bisimulations for concrete domains

-

.

® Bisimulation

Atomic as before
Back & Forth as before

Feature conditions

~

Bisimulation and non-expressivity:
* extensions of ALC with different concrete domains

* e.g ALC(Q, +1) and ALC(Q, +) “orthogonal”
 different extensions of ALC w/ same concrete domain

* e.g. ALC(Q, <) cannot express restriction with
constraint systems e.g. Arf, rf, rf.(x <y Ay <2)

/

T

if (d,e) € p, then there is (v4,...,vi) € PP with v; € p;/(d), ..., vk €

pi(d) iff there is (ws,...,wi) € PP with w; € pi?(e), ..., wk € pid(e).

Assume finite sets of names and let be WCUN and have
finitely many relations. For all FOL(®) formulae ¢(x), the
following are equivalent:

1) @(x) is invariant under bisimulation.
2) (x)is equivalent to some ALC(D) concept.

* FroCoS ‘25: showed w.r.t all interpretations as well as
finitely branching/finite ones
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* Expressive power of ontologies with numerical constraints*
- e.g. ALCSCC” TBoxes using global Presburger bisimulation (Baader, D. ‘20)
* Expresive power when combining cardinality constraints and concrete domains (CADE ‘25)

* Different notion of expressive power, e.g. conservative extensions



From here on...

* Expressive power of ontologies with numerical constraints*
- e.g. ALCSCC” TBoxes using global Presburger bisimulation (Baader, D. ‘20)
* Expresive power when combining cardinality constraints and concrete domains (CADE ‘25)

* Different notion of expressive power, e.g. conservative extensions

Thanks! :-)
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ALCSCC(D®) and feature roles (CADE ‘25)

[ ALCSCC + ALC(D) + feature roles in successor restrictions ]4

f Feature roles i

-~

—

~ N\

[ succ(|child N (salary < next salary)| > [child N (salary < next salary)¢|) }

(salary < next salary)

AQ

“the salary of this individual is smaller

ALCSCC(D)

ALC(D)

than that of the majority of its children”

ALCSCC

It cannot be expressed without feature roles!

[ (Isalary, child salary.<) E (succ(|child]| < 0)) ]

A

Inconsistent, due to the interaction of

cardinality constraints and concrete domain!
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