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Why Interpolation Matters

Craig interpolation: if A |= B, then ∃I s.t.

A |= I and I |= B,

with I using only the common vocabulary.
Intuition: The interpolant acts as a bridge between premises and conclusion.
Restricting inference: Interpolation guarantees that only the relevant parts are affected
by contradiction.
Philosophically, it resonates with the principle of relevance: arguments should not rely on
symbols or concepts alien to both premises and conclusion. Only what is shared with the
goal matters for deriving the goal.
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Applications: Keeping Inconsistencies Local

database reasoning: local errors stay local; queries only see shared vocabulary.
In verification/modular reasoning: components communicate via their interfaces (the
shared symbols).
Resolution with Set of Support (SoS): In resolution theorem proving, interpolation is
connected with set of support strategies, which restrict proofs to relevant clauses and
avoid unnecessary explosion of contradictions.
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Algebraic View: connect syntactic logic with algebraic structure

In propositional logic, interpolants often correspond to natural algebraic constructions
(e.g., lattice-theoretic factorization ( joins and meets) through the shared subalgebra).
In propositional logic, interpolation properties can often be determined and classified using
the foundational work of Maksimova.
algebrization of the first-order logic fails as it is impossible to determine what first-order
logics interpolate.
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Beth Definability: Implicit ⇒ Explicit

Beth Definability (Classical FOL)
If a predicate P is implicitly definable from a theory T (its extension is fixed in all models of
T ), then there exists a formula φ(x⃗) (in the language of T without P ) such that P (x⃗) ↔ φ(x⃗)
is entailed by T .

Interpolation is closely tied to Beth Definability.
Beth’s Theorem (FOL): implicit (semantic) ⇐⇒ explicit(syntactic).
Outside FOL: Beth may fail (e.g. modal logics, quantified S5).
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Motivation

1 interpolation holds in classical FOL and propositional logic, but fails in many other logics
(modal, intuitionistic, arithmetic). This motivates research.

2 establishing interpolation in first-order logics is significantly more challenging, even in
systems where the propositional case is well understood.

3 A particularly intriguing example of the failure of interpolation (and of Beth’s definability
theorem) arises in quantified S5.

1 p ⊃ ♢∀x(F (x) ⊃ □(p ⊃ ¬F (x))),
2 ¬p ⊃ □∃(F (x) ∧□(¬p ⊃ F (x))).

4 It is shown by Kit Fine that p is implicitly definable in T , but not explicitly definable.
5 propositional S5: Craig Interpolation + decidable ( easy to show).
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Quantified S5 basics

QML language of quantified S5; No functions or individual constants.
Kripke models M = (W,R,D, V ) with R an equivalence relation (S5) and constant
domain D.
All worlds in an equivalence class are mutually accessible, a formula true in one world is
true in all worlds of the class. Read □ and ♢ as ∀/∃ quantification over worlds.
rigid variables: each variable designates the same object across all possible worlds.
However, while terms refer rigidly, predicate interpretations may vary from world to world,
their extensions are world-dependent.
S5 validities: □□A ↔ □A, ♢□A ↔ □A.
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S5 as Equivalence Classes (Kripke Semantics)

w1

w2 w3

Equivalence class C1

p false here

v1

v2 v3

Equivalence class C2

Accessibility R is an equivalence
(no cross-class arrows)

□p is false at any world in C1

because p is false at w2.

A countermodel needs only one equivalence class:
if p is false at some world of the class, then □p fails
everywhere in that class.

In S5, each equivalence class behaves like a “cluster” of mutually accessible worlds. Countermodels live
inside a single cluster.
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S5: Interpolation & Definability

Quantified S5
Neither interpolation nor Beth definability hold in general.
Why?

No analytic sequent calculus with cut elimination.
Proof-theoretic obstacle: no syntactic route to interpolants.

Only fragments recover good properties
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General Interpolation Strategy

embed S5 into a richer two-sorted first-order logic SL
World sort: variables for worlds (restricted).
Object sort: quantifiers over individuals.

Separated terms: no mixing of sorts, no world-function symbols; single world variable in
the fragment.
use proof theory there: two-sorted sequent calculus with cut elimination, a mid-sequent
theorem and a Maehara-style lemma yield interpolants in the two-sorted logic.
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what formulas correspond to the modal formulas in SL

Sorts
World variables: u, v, w, . . .

Object variables: x, y, z, . . .

Predicates
Each modal n-ary predicate P becomes
P ′(w, x1, . . . , xn) (world first).
Formulas: with arbitrary object quantifiers but
with one variable class of world quantfiers.

Models
SL-model (W,D, V ) with V (P ′) ⊆ W ×Dn.
Validity is preserved by the translation (under the
obvious correspondence of models).

World sort W

Object sort D

P ′(w,x)
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Standard Translation STv

Fix a distinguished world variable v.

STv(P (x̄)) := P ′(v, x̄)

STv(¬φ) := ¬STv(φ) (and similarly for ∧,∨,→)
STv(∀xφ) := ∀x STv(φ)

STv(□φ) := ∀w STw(φ) (w fresh world)
STv(♢φ) := ∃w STw(φ)

Key fact: As all worlds are connected to all worlds and we work with constant domains, it

consequently does not matter from which world variable v we start the translation STv if every
subformula is in the scope of some modal operator.
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Example

Translate □(∀xA(x) → ♢∃y A(y)).

STv

(
□(∀xA(x) → ♢∃y A(y))

)
= □(∀xA(x) ⊃ ∃w∃yA′(w, y))

= ∀v(∀xA′(v, x) ⊃ ∃w∃yA′(w, y)).

□/♢ become first-order quantifiers over the world sort.

In translations of modal formulas, each subformula is always bound by the innermost world
quantifier that it is in the scope of.
Thus, formulas in SL in which world-quantifiers cross-bind express relations between worlds
which cannot be expressed in modal logic.
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One-world-variable fragment SLv

Define: SLv contains the formulas in the two-sorted logic SL in which every subformula
is only bound by the innermost world quantifier. The only free world variable that might
appear in a subformula is v, in which case the subformula is not in the scope of any other
world-quantifier.
lemma: For every quantified modal S5-formula φ, its translation STv(φ) belongs to SLv

that can be expressed with a single bound world variable. In contrast, every formula in
SLv is the translation STv(φ) of some formula φ in QML.
Characterization: Rev : SLv −→ QML for every formula φ in SLv, -
φ = STv(Rev(φ)) and thus it is the translation of the formula Rev(φ) in QML.
A modal formula φ is valid in (constant domain) S5 if and only if its translation φ′ is valid
in the two-sorted first-order logic.

15 / 32



Proof-theoretic Properties of SL

Two-sorted sequent calculus; rules are the usual first-order ones, respecting sorts.
Cut elimination holds for SL.

Extended Mid-Sequent Theorem (EMST)
For a cut-free SL proof of a sequent with prenex world quantifiers, there is a mid-sequent such
that:

above it: only world-quantifier rules and propositional rules;
below it: only object-quantifier rules and structural rules.

Intuition
The two sorts (world vs. object) can be permuted so that modal reasoning is stratified from
object-level quantification.
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Proof Sketch

1 Cut elimination for the two-sorted calculus (standard modal structural steps; separation
ensures admissibility).

2 Permutation of rules: show modal and object quantifier inferences permute; prove no
cross-sort dependency.

3 Prenexing within sorts: use invertibility/admissibility to float object quantifiers to one
side, world quantifiers to the other.

4 Extract mid-sequent: the split yields a middle line from which an interpolant (in the
shared signature) can be read.
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Maehara-Style Lemma (Two-Sorted Version)

Setup / Definitions
Given a cut-free derivation of Γ ⇒ ∆, fix a partition (Γ1 | Γ2 ⇒ ∆1 | ∆2). Construct I
should satisfy:

1 Γ1 ⊢ I and I,Γ2 ⊢ ∆ (or symmetrically with ∆2),
2 Language condition: non-logical symbols of I lie in the intersection of those on both

sides, sortwise
3 Sort-respecting: I is well-sorted (no mixed terms; separation guarantees this).
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What We Get

By Maehara’s lemma, Craig interpolation holds in SL.
Craig Interpolation for the separated, prenex object-quantifier fragment Fpren

obj .

By duality, Craig Interpolation for the prenex world-quantifier fragment Fpren
wld .

Caveat: interpolants obtained in SL may fall outside the image fragment SLv → they
may not retranslate to S5.

Maehara gives an SL interpolant I for A → B.
I may require cross-binding of world quantifiers or other constructions outside SLv.
Such I has no equivalent formula in standard S5 syntax (echoing Fine’s phenomenon).
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Example
□A(c) → ∃x□A(x) is valid, but ∃x□A(x) → □∃xA(x) is not.

Sketch.
This is a standard failure of modal quantifier shifts in constant domain semantics. While

□A(c) ⊃ ∃x□A(x)

holds due to domain constancy,
∃x□A(x) ⊃ □∃xA(x)

does not, because the witness for the existential quantifier in the accessible world may not be
fixed across all worlds. A countermodel can be given with two worlds where the existential is
satisfied in one, but the boxed existential fails globally.

Note that therefore Craig’s interpolation theorem holds for all valid implications, however the
interpolant is not always re-translatable in the language of quantified S5.
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Interpolation Results
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Proposition
Any interpolant obtained in SL for Kit Fine’s counterexample is not equivalent to any formula
in the syntax of quantified S5.

Proof.
From the cut-free proof in SL, Maehara’s lemma yields an interpolant I. But this formula
contains quantifier structures or term dependencies (from the two-sorted framework) that
cannot be translated back into any formula of quantified S5. Thus, while I exists in SL, there
is no I ′ in the syntax of S5 such that I = I ′.
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General Strategy

In the two-sorted setting (world sort + object sort), interpolation always holds
(mid-sequent theorem + Maehara lemma).
But: interpolants are guaranteed only in the two-sorted logic, not necessarily in the modal
fragment.
To obtain interpolation for the modal fragment:

1 Translate modal formulas to the two-sorted logic.
2 Derive an interpolant there.
3 Retranslate the interpolant back into the modal language.

Success depends on whether retranslation is possible.
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Case 1: Propositional S5

Fact: Propositional S5 has interpolation.
Why show it? Serves as a simple example of the method.
Translation: Each modal propositional formula φ becomes a monadic first-order
formula over the world sort.
Result: The interpolant is also monadic.

Translation of propositional modal formulas yields monadic formulas in the world sort.
Confinement of innermost quantifiers produces monadic interpolants that translate back to
propositional S5 interpolants.
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Normal Form Trick

Existential quantifiers may arise in the translation.
Strategy: rewrite formulas so that existentials are confined to atomic world predicates.
Achieved by transforming into a disjunction of conjunctions (DNF-like step).
Existentials then only bind atomic predicates, keeping the interpolant monadic.
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Case 2: Weak-modal fragments

Two-sorted interpolant without adding quantifiers; normalize to a single free w; close modally.

Object quantifiers arbitrary, modal quantifiers weak.
Weak □: occurs only in negative (antitone) contexts.
Weak ♢: occurs only in positive (monotone) contexts.
Under these restrictions, the SL interpolant can be held within SLv and therefore
retranslates to S5.
By mid-sequent theorem, interpolants need at most one free world variable.
Closing the free variable with modality gives a modal interpolant.
World arity is bounded by 1.
If both quantifiers and modalities are weak, the interpolant can be purely propositional.
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Case 3: The prennex Fragment

Object quantifiers: prenex. Modal quantifiers: arbitrary.
Mid-sequent is purely propositional (world-sort only).
object quantifiers disappear at mid, leaving propositional structure
Propositional interpolant obtained, then re-prefixed with object quantifiers.
Proof-theoretic consequences:

Herbrand theorem (object sort).
Skolemization admissible (object-only Skolem functions).
Second ε-theorem (object sort).
Decidability of the fragment.

Mid is object-quantifier free ⇒ propositional interpolant.
Duality: world-prenex + arbitrary objects also interpolates.
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Consequences of EMST

Corollary (Herbrand disjunctions)
For every valid prenex formula in S5 of the form ∃x1 . . . ∃xn φ, where φ is quantifier-free and
may contain modalities, there exists a Herbrand disjunction equivalent (in SL) to the original
formula

∃x̄ φ(x̄) ≡
m∨
j=1

φ(t̄j).

Corollary (Skolemization)
existential object quantifiers can be Skolemized with terms that do not need to depend on
world variables.
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Consequences of EMST

Corollary (Second ε-Theorem)
Every ε-proof of a quantifier-free consequence in the prenex fragment reduces to a Herbrand
disjunction (object-side). Thus the second ε-theorem holds for prenex S5.

Limits: classic quantifier-shift failures persist outside the prenex fragment.
The main novelty is that we only reorganize the proof with respect to object quantifier
rules, leaving modal ones untouched.
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summery

embed S5 into a richer two-sorted first-order logic SL
Separate world & object terms; ban mixed functions f(w, x).
Two-sorted separation + cut elimination ⇒ mid-sequent theorem.
Mid-Sequent Theorem: middle of a cut-free proof is propositional in the world sort.
Maehara on the mid: get propositional interpolant.
This does not automatically give an interpolant in the original modal fragment.
ask: can interpolants be retranslated back into modal fragment?
Retranslate to the modal fragment; add back only needed (object) prefixes.
Therefore: interpolation in two-sorted + successful retranslation ⇒ interpolation
in modal S5.
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Conclusion

We developed a proof-theoretic account of interpolation for S5 via the two-sorted calculus
SL.
Mid-sequent theorems and cut-elimination yield explicit interpolants.
Retranslation into modal syntax is possible only in restricted cases (often with exponential
cost).
For constant-domain intuitionistic two-sorted systems the same mid-sequent and Herbrand
arguments apply. For non-constant domains, separation fails and the argument breaks.
Open question: Are SL interpolants smaller than modal ones?

Acknowledgement: We thank Charlotte Jergitsch and our colleagues for their contributions.
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Thank you!

Questions?
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