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Context

Protocol Analysis

Protocol analysis based on the Dolev-Yao intruder model:
successful approach, with a number of tools for checking
various security properties of protocols.

See for example [AC06, AFN17, CCcCK16,cCDK12, DDKS17]

Standard problem to many of these symbolic methods:
determine what a potential “intruder” can learn from the
exchange of messages during the run of a protocol.

That is, analyse the intruder knowledge.
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Two decision problems in modeling intruder knowledge, where
the intruder capabilities is specified by an equational theory E:

Context

@ Deduction Problem: given a sequence of messages M and
a message t, can we deduce/compute t from M?

Is there a recipe s such that sop =g t7
written oy Fg tif this holds

@® Static Equivalence: given two sequences of messages M
and M,, can we distinguish an instance of a protocol
running My from one running M,?

Is there no recipe equation s = t such that sop, = top,

: o
an.d som; #E tom; fo'r i 7.51.
written op < o, if this holds

NB: in recipes, private constants are forbidden
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Knowledge Decidability

The knowledge problems are undecidable in general. However,
for many equational theories modeling various protocols,
decision procedures are known. For example:

¢ Blind signatures
® Trap-door commitments
® Malleable encryption
® Theory of addition
¢ Encryption/decryption
Many of these theories can be modeled via subterm convergent

term rewrite systems (TRSs), where the right-hand side of any
rule is either a constant or a subterm of the left-hand side.

The knowledge problems are decidable for the class of subterm
convergent TRSs, see [AC06].
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Non-subterm Convergent

The decision procedures designed for subterm convergent TRSs
also work for convergent TRSs that are “beyond subterm”.

Example: Blind signatures
Subterm:

open(commit(x,y),y) — x
getpk(host(x)) — x
checksign(sign(x, y), pk(y)) — x
unblind(blind(x,y),y) — x

Non-subterm:

unblind(sign(blind(x,y), z),y) — sign(x, z)
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Beyond Subterm: Borrow From
Graph Theory

Develop a, hopefully simple, definition that extends the
subterm convergent definition and encompasses the “beyond
subterm” examples?

Borrow some ideas from graph theory, such as edge
contraction, to introduce a rule schema, Rgemp :

Forany f € &

(1) Fxa, ..y Xn) = X

(2) F(x1y--ny Xim1, Xiy Xig1 ooy Xn) = F(X1y- 00y Xic1, Xifly «--y Xn)
Forany f,g e &

(3) flxy. s Xim1,8(2), Xit1, -y Xm) = &(X1y- .oy Xim1, Z, Xit1y -« 5 Xm)
(4) f(X17 - ,X,'_1,g(2),X,'+1, - 7X,T,) — f(X1, ey Xie1y Zy Xigly - - 7Xm)
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Graph-embedded TRS

A term t' is graph-embedded in a term t if t —>*,‘?gemb st
where

/

® 5 is well-formed,

® s~ t’ represents equality modulo an appropriate form of
permutation (extending leaf permutation)

A TRS R is graph-embedded if for any | - r € R, r is
graph-embedded in /, or r is a constant.

Example: Blind signatures

unblind(sign(blind(x,y),z),y)
—() sign(blind(x, y), z)
—® sign(x, y, )

—® sign(x, z)
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Contributions Theorem ( [S E M R23] )

There exists a graph-embedded convergent TRS where
deduction is undecidable.

Theorem ([SEMR23])

There exists a subclass of graph-embedded convergent systems,
called contracting convergent systems, for which any system
in that subclass has decidable deduction and static equivalence.

Proof idea: In a contracting TRS, it is possible to get a
property called local stability [AC06] implying decidability of
both deduction and static equivalence.

In a contracting TRS, the right-hand sides are of depth at
most 2, and it includes projecting rules, where a projecting rule
is a rule of the form /[x] — x.
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New Undecidability Results: Static
Equivalence

What happens beyond contracting?

Theorem

Static equivalence becomes undecidable for contracting TRSs
without the depth restriction on the right-hand sides.

Proof idea:

® Adapt a TRS encoding of LBA initiated to show

undecidability of static equivalence in permutative
theories [EMNR24],

® consider additional projecting rules to get an encoding
based now on a TRS which is almost contracting, except
the depth restriction.
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New Undecidability Results:

Deduction
What happens beyond contracting?

Theorem
Deduction is undecidable for rule (4) graph-embedded TRSs.

Proof idea: reuse a TRS encoding of a modified PCP initially
used to show the undecidability of deduction in
homeomorphic-embedded TRSs [SEMR23, BSE*24].

Theorem
Deduction is undecidable for rule (3) graph-embedded TRSs.

Proof idea: Encoding a modified PCP as a deduction problem
modulo a rule (3) graph-embedded TRS, using a binary symbol
f to represent strings, e.g., f(a, f(b, c)) represents abc.
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New Combination Results

Initial result:

Theorem ([ACO06])

Deduction and Static Equivalence are decidable in any subterm
convergent TRS.

New combination result:
Theorem
Deduction and Static Equivalence are decidable in an

equational theory R U E where (R, E) is any equational TRS
such that

® R is contracting E-convergent,

e F js a permutative theory closed by paramodulation

Proof idea: Same reduction approach as in [EMR20] where R
is assumed to be subterm E-convergent.
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Reduction for Deduction

Lemma (Deduction)
Let E be any syntactic permutative theory and R any
contracting E-convergent TRS such that |R| is defined. For
any normalized substitution ¢ and any normalized term t, we
have that

¢Frue tifand only if g, Fg t

where ¢, denotes the (computable) completion of ¢.

Remark: the computation of ¢, requires the guessing of terms
of size at most |R|, where |R] is defined if E is a permutative
theory closed by paramodulation.
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Lemma (Static Equivalence)
Contributions

Let E be any syntactic permutative theory and R be any
contracting E-convergent TRS such that |R| is defined. For
any normalized substitutions ¢ and v, we have

¢ ~ruE ¥ iff Y Erue Eq(¢) and ¢ l=rue Eq(¥) and ¢ ~g ¥
where
* ¢ (resp., 1) is the (computable) recipe-based completion

of & (resp., 1)

® Eq(¢) (resp., Eq(y })) is a (computable) finite set of recipe
equations for ¢ (resp., 1)) obtained by guessing terms of
size at most |R|

® 0 E=rue Eq denotes that for any t = t' € Eq, t0 =gyue t'0
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Concluding Remarks

Undecidability results: going beyond contracting TRSs is
difficult.

Decidability results: combinations of contracting TRSs and
(simple) permutative theories.

Open problem: How to consider Associativity-Commutativity
(AC) and rewriting modulo AC?
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