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Pattern Completeness

® Non-existence of undefined patterns

> pattern: f(ti,...,t,) with a defined symbol f and constructor terms t1,..., t,

® Usually checked by compilers/interpreters of programming languages

» Guards are not taken into account, while warnings may occur

® Equivalent to quasi-reducibility of many-sorted term rewrite systems (TRS)

» TRS R is quasi-reducible if all ground patterns are redexes of R

® Usually assumed in using Rewriting Induction [Reddy, 1990]

> Also used in proving ground confluence via Rl [Aoto et al., 2017]
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Quasi-reducibility of Rewrite Systems

® Non-existence of undefined patterns f(ty,...,t,)

Example (list of natural numbers)
® S ={nat, list, bool}
e > = {nil : list, cons: natx list = list, 0 : nat, s: nat = nat, true, false : bool, even : list = bool}

» D = {even }: defined symbols C = {0, s, nil, cons, true, false }: constructors

_ even(nil) — true
~ | even(cons(x,cons(y, zs))) — even(zs

) } is not quasi-reducible

Decidable for TRSs [Kapur et al., 1987]

Complement algorithm for left-linear TRSs [Lazrek et al., 1990, Higashiwada and Aoto, 2019]

Well-designed formalized algorithm in co-NP for TRSs
[Thiemann and Yamada, 2024, Thiemann and Yamada, 2025]

No result for decidability of quasi-reducibility of constrained systems
» Some sufficient conditions for Logically Constrained TRSs [Sakata et al., 2009, Kop, 2017] 9
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Logically Constrained Term Rewrite System (LCTRS)  [Kop and Nishida, 2013]

® Computation models of functional and imperative programs [Fuhs et al., 2017]

® Calculation rules are implicitly included, e.g., x +y — z [z =x+ y]

Example (LCTRS with Integer Theory)

® Siheory = { bool, int}: theory sorts

® Val = {true,false : bool} U{n:int|neZ}: values

+,—, X, /,...1int X int = int,
® 3 theory = Val U § =int, Fipes <: <, ... 1 int X int = bool, : theory symbols
A, V,...: bool x bool = bool, = : bool = bool

Y terms = {sum : int = int}: user-defined symbols

[ sum(n) —n [n<0] . ,
R = { () — 4 srma+ 1) [ > 0] [ user-defined rules

sum(3) —»r 3+sum(3+(—1)) >r 3+sum(2) 5r 3+ (2+sum(2+(-1))) = -+ >R 6
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Complement Algorithm for Linear Patterns
[Lazrek et al., 1990, Higashiwada and Aoto, 2019]

® Based on difference operator © over linear patterns

s© t={u1,...,u,} : finite set of linear patterns

s.t. G(s) \ G(t) = UL, G(u;)

> G(s) denotes the set of ground constructor instances

® o is extended to finite sets: {s1,....s} @{t1,...,t;} = {u1,..., uc}

® R is quasi-reducible iff {f(X) | f e D} o{(|{—reR}=10 {f(X) | f € D}

()¢ reR)
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Applications to LCTRSs

® Equivalence verification via Rl for LCTRSs [Fuhs et al., 2017]
» Termination and quasi-reducibility of given LCTRSs are assumed

® Proof system for All-Path Reachability (APR) problems P =" @ [Ciobacs and Lucanu, 2018]
» Difference of constrained terms is computed: Some rule reduces P =" Q to (P \ Q) =" @

Example
® S = {bool, int, list}
e C=ValU{nil: list, cons: int x list = list}
(1) f(nil,y1) =0 [y1 <0]
e Is < (2) f(cons(xa, x52), y2) — f(xs2,y2 — 1) [x2 <OAy, >0] p quasi-reducible?
(3) f(cons(xs, cons(zz,zs3)), y3) — x3 + f(zs3,y3 —2) [x3 > 0 A y3 > 1]

(1) f(nil, y1) [y <0]
{f(xs,y) [true] } @ < (2) f(cons(x2, x52),y2) [x2 <OAy,>0]p = 07
(3) f(cons(xs,cons(zs,zs3)),y3) [x3 >0Ay; > 1]

® Can we decide it?
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Goal and Contributions

Goal
Difference operator and Complement Algorithm for Logically Constrained TRSs
Contributions

® O over constrained patterns and constrained linear patterns
» LHSs of © do not have to be linear, while RHSs are linear

® Complement Algorithm for finite sets of constrained linear patterns
® Quasi-reducibility of left-linear LCTRSs with decidable theories is decidable

LCTRSs in This Talk

® No non-value ground constructor term with a theory sort

» Example: Declaration of s : int = int is not allowed for integer LCTRSs
> All theory sorts are inextensible [Fuhs et al., 2025]

® Finitely many non-theory symbols

® |n practical terms, these are not limitations
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Constrained Patterns and Complements

® Constrained pattern t[¢] is a pair of pattern t and constraint ¢
» Patternis a term f(t,...,tn) st. f €D and t1,...,t, € T(C,V)
> G(t) :={to | o is a ground constructor substitution } and G(U) := U, G(uv)

® G(t[¢]) := {to | o is a ground constructor substitution, Vx € Var(¢). xo € Val, [¢o] =T }

® Complement of constrained pattern f(ty,...,t,)[¢] is a set U of constrained patterns s.t.

G(U) = G(f(x1,...,xn)[true]) \ G(f(t1,...,ta)[0])

f(x1,..., %) [true]

U

f(tr, ..., ta)[¢0]

® Finite complements are expected
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Complement Operator for Linear Constructor Terms
[Lazrek et al., 1990, Higashiwada and Aoto, 2019]

Definition (= for linear constructor terms)
=0

o m:{d(}/1,...7ym) |d:ity X Xim=1EC, c#d}
U{c(ur,...,ui—1, U, Y1, ¥n) | Ui € V, ul € G}
® (C is assumed to be finite for finiteness of T
Example
e S ={nat, bool, list, pair}
® C = {nil: list, cons : natxlist = list, O : nat, s : nat = nat, true, false : bool, p : natx nat = pair }

® nil = { cons(x, xs) }

cons(x, nil) = { nil, cons(x,cons(y, ys)) }

® Linearity is necessary for finite complements of patterns with infinite sorts

» “Complement of p(x,x)" = {p(ti,t2) € T(C) | t1,t2 : nat, t1 > } g
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Complements of Values in LCTRS Setting
® For finite results, complement operator = assumes finiteness of C and linearity of terms
® Val (= Liheory N C) may be infinite, e.g., C of integer LCTRSs includes all integers

e Complements of values may be infinite, e.g., 0 = Z \ {0} is infinite

Make s of s [¢] value-free, e.g., s[0], [¢] is equivalent to s[x], [¢ A x = 0]
C \ Val (C Zierms) should be finite

® Logical Variables in term part can be linearized, e.g, s[x, x|, [¢] is equivalent to s[x, y], [¢ A x = y]
Proposition [Kop, 2017, Kojima and Nishida, 2024]
For any constrained term s [¢], there exists a value-free LV-linear s’ [¢'] s.t. G(s [#]) = G(s' [¢'])

® s[¢] is assumed to be value-free (s € T(X \ Val,V)) and LV-linear (linear w.r.t. Var(¢))
LCTRSs in This Talk (repeat)

® Finitely many non-theory symbols, i.e., ¥/ms is finite 9
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Difference Operator & over Unconstrained Linear Patterns
[Lazrek et al., 1990, Higashiwada and Aoto, 2019]

® Assume w.l.o.g. that s, t of s © t have no shared variables: Var(s) N Var(t) =0
Definition

- { {sp|p€alva(s) } ifs,t are unifiable with mgu o
S =

{s} o/w
where
o ={p| Dom(p) = Dom(c), p # o, Vx € Dom(c). xp € Xo U {xc}} s t
® sOtis a finite set of patterns s.t. G(s © t) = G(s) \ G(t) sp

Example (cont'd)

® even(cons(x, nil)) © even(cons(0, ys)) = { even(cons(s(y), nil) }
» 0 ={x—0, ys+>nil} and thus oy = { x> s(y) }

® Linearity of s and t ensures linearity of xo, but s does not have to be linear [new]

Proposition If t is linear, then xo is linear for any x € Var(s) [new]
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Difference Operator & over Value-free LV-linear Constrained Terms
Definition (repeat)

- {sp|p€olvas) } if st are unifiable with mgu o

S =
{s} o/w

where & = { p | Dom(p) = Dom(o), p # o, Vx € Dom(c). xp € Xxa U {xo} }

® Vx € Var(¢,1). xp = xo € V by our 1st assumption on LCTRSs, and thus ¢p = ¢o and ¢p = o

* G(s[e]) = G(sp[00]) & G(so [60]) sl9] £l
G(so [po A —po]) & G(so [q/)! A o)) sploa]l  so[po A o]
Definition [new]
{sp[60] | p € Tlvars) } if s, t are unifiable with mgu o
s[g] © t[y] = U {so [po A —pa] | po A —tpo is SAT } and ¢o A o is SAT
{ {slo]} o/w
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Example: Difference of Constrained Patterns

Definition (repeat) [new]
{spléa] | p € alvars) } if s, t are unifiable with mgu o
s[g] © t[y] = U {so [¢po A —pa] | po A —tpo is SAT } and ¢o A o is SAT
{slel} o/w

Example (cont'd)
e f(xs,x) [true] & f(nil,y1) [y < 0] = { f(COHS(V%E/:i)ljig E:EE]/\ —=(x <0)] }
» 0 ={xs—nil, y1 — x}

» p={xs— cons(v,vs)}

e f(nil,y1) ya < 0] © f(xs, x) [true] = 0
» 0 ={xs—nil, y1 — x}
- i xy =0

> oo N\ po is x < 0 A —true, which is UNSAT 12
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Extension to Finite Sets of Unconstrained Linear Patterns
[Lazrek et al., 1990, Higashiwada and Aoto, 2019]

Definition
PoQ-— {(FEP \{shu(se)) o (@Q\{thu(tes)) Lf/ilseP,te Q. sot#{s}

® Both P and @ are assumed to be sets of linear patterns

» Not all patterns have to be linear

> Linearity of s is required for linearity of t © s

® Patterns in P are w.l.o.g. assumed to be pairwise disjoint
> s, t are disjoint if G(s) N G(t) =0 (i.e., s, t are not unifiable)
» If s and t are unifiable with mgu o, then we replace {s,t} by (s© t)W {so} W (t S s)

® For extension to constrained patterns, replace patterns by constrained ones
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Extension of @ to Constrained Linear Patterns

Definition [new]

(P\{slol}) U(slgl e t[v])) @ ((Q\{t[4]}) U (t[¥] ©s[e]))
PoQ= i 35[0 € P.t[u] € Q. slo] © t[u] # {s1d])
P o/w

Proposition [new]

® All constrained patterns in ((P\ {s[#]}) U (s[¢] © t[¥])) and ((Q \ {t}) U (t & s)) are linear
® (O is terminating

* G(PoQ)=G(P)\4(Q)

Theorem [new]
Left-linear LCTRS R is quasi-reducible  iff  {f(X)[true] | f € D} @ {l[¢] | L — r[p] € R} =0

Corollary [new]

Quasi-reducibility of left-linear LCTRSs with decidable theories is decidable 14



Example: Quasi-Reducibility of LCTRSs

Example (cont'd)

|

(1) f(nil, y1) — 0 [y1 <0]
(2) f(cons(xa, xs2), y2) — f(xs2,y2 — 1) [x2 <OAy,>0]p is not quasi-reducible as
(3) f(cons(xs, cons(zz, zs3)), y3) — x3 + f(zs3,y3 —2)[x3 > 0 A y3 > 1]

f(nil,y1) [»1 <0] }

f(COnS(XQ,X52),y2) [X2 < 0 /\_)/2 > 0]
f(cons(xs, cons(zs, zs3)),¥3) [x3 > 0Ay3 > 1]

Vo 2o 246
[

_ {(4) "
(5) f(nil, y1
(6) }/1§0/\ﬂ(x§0/\y1>0)]} {
(5)

(7) f(cons(xz,xs2),y2) |[-- ]}
f(cons(x,nil),y1) [y1 S0OA=(x <0Ay; >0)] (

(8)
= {(9) f(cons(x, cons(z,zs)),v1) [y1 SOA=(x<0Ay; >0)A—=(x>0Ay > 1)]} ®{(3C)...
{
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Conclusion

Summary

® O over constrained patterns and constrained linear patterns
» LHSs of © do not have to be linear, while RHSs are linear

® Complement Algorithm for finite sets of constrained linear patterns

® Quasi-reducibility of left-linear LCTRSs with decidable theories is decidable

Future Work
® Extension of co-NP Algorithm [Thiemann and Yamada, 2024] to LCTRSs

® |mplementation
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