
Context-Aware Clause Selection Using
Symbol Name Meanings in Theorem

Proving

Claudia Schon
Hochschule Trier

c.schon@hochschule-trier.de

mailto:c.schon@hochschule-trier.de

Automated Reasoning

2

Reasoner

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

∀x(instance(x, hammock) →
(material(x, fabric) ∧ …

Knowledge Base

. . .

∀x, y, z
((subclass(x, y) ∧ subclass(y, z)) →

subclass(x, z))

subclass(weapon, device)
subclass(device, artifact)

subclass(bed, furniture)
subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)
…

Automated Reasoning

2

Reasoner

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

∀x(instance(x, hammock) →
(material(x, fabric) ∧ …

Knowledge Base

. . .

∀x, y, z
((subclass(x, y) ∧ subclass(y, z)) →

subclass(x, z))

subclass(weapon, device)
subclass(device, artifact)

subclass(bed, furniture)
subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)
…

Computes inferences!

Automated Reasoning

2

Reasoner

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

∀x(instance(x, hammock) →
(material(x, fabric) ∧ …

Knowledge Base

. . .

∀x, y, z
((subclass(x, y) ∧ subclass(y, z)) →

subclass(x, z))

subclass(weapon, device)
subclass(device, artifact)

subclass(bed, furniture)
subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)
…

Computes inferences!

Does not take the meaning of symbols into account!

Automated Reasoning

3

Reasoner

Goal:

∀x(in(x, h) → in(x, b))

∀x(in(x, h) →
(m(x, fa) ∧ …

Knowledge Base

. . .

∀x, y, z
((s(x, y) ∧ s(y, z)) →

s(x, z))

s(w, de)
s(de, a)

s(b, f)
s(db, b)
s(p, a)
s(bl, fa)
…

Computes inferences!

Does not take the meaning of symbols into account!

For the prover, the proof task looks like this:

Automated Reasoning: Are Hammocks Beds?

4Reasoner: PyRes
Wortwolken.com. (2024). Word cloud generator. Available at:

https://www.wortwolken.com [Accessed: 2024-08-29].

https://www.wortwolken.com/

Automated Reasoning: Are Hammocks Beds?

4Reasoner: PyRes

PyRes computes 538 resolvents!

Wortwolken.com. (2024). Word cloud generator. Available at:
https://www.wortwolken.com [Accessed: 2024-08-29].

https://www.wortwolken.com/

Automated Reasoning: Are Hammocks Beds?

4Reasoner: PyRes

PyRes computes 538 resolvents!

Wortwolken.com. (2024). Word cloud generator. Available at:
https://www.wortwolken.com [Accessed: 2024-08-29].

https://www.wortwolken.com/

5

6

Automated Reasoning: Are Hammocks Beds?

7Reasoner: PyRes

PyRes computes 538 resolvents!

Wortwolken.com. (2025). Word cloud generator. Available at:
https://www.wortwolken.com [Accessed: 2024-08-29].

https://www.wortwolken.com/

Why should we draw unrelated inferences in automated reasoning?

8

Given-Clause Algorithmus

9

Clause set S

Task: proof that follows from clause set h → b S

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Given-Clause Algorithmus

9

Clause set S

Task: proof that follows from clause set h → b S

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause
¬w ∨ d

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause
¬w ∨ d

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause ¬w ∨ d
¬d ∨ a

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

Select a given-clause ¬w ∨ d
¬d ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

Add all inferences of the given
clause and clauses in P to U.

¬w ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

¬w ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

¬w ∨ a

Given-Clause Algorithmus

9

Task: proof that follows from clause set h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a

¬w ∨ a

Selection of given clause using heuristics.
Does not take the meaning of symbol names into account.

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause
¬weapon ∨ device

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause
¬weapon ∨ device

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause ¬weapon ∨ device
¬device ∨ artifact

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

Select a given-clause ¬weapon ∨ device
¬device ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

Add all inferences of the given
clause and clauses in P to U.

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

Add all inferences of the given
clause and clauses in P to U.¬weapon ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

¬weapon ∨ artifact

Given-Clause Algorithmus

10

Task: proof that follows from the set of clauseshammock → bed

: set of unprocessed clausesU : set of processed clausesP

¬weapon ∨ device
¬device ∨ artifact
¬hammock ∨ fabric
¬hammock ∨ sleep
…
hammock
¬bed

¬weapon ∨ device
¬device ∨ artifactSelect a given-clause

¬device ∨ artifact

¬weapon ∨ artifact

Idea: Use clauses with symbols similar to the proof task as given clause!

Symbol Name Heuristics

11

Idea: Use clauses with symbols similar to the proof goal as given clause!

Symbol Name Heuristics

11

Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

Symbol Name Heuristics

11

Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

We use Word Embeddings!

12

 “a word is characterized by the company it keeps” (Firth, 1957)

Meaning of Symbol Names using Word Embeddings

Word embedding: a function f : Voc → ℝn

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

=
∑n

i=1 ui ⋅ vi

∑n
i=1 (ui)2 ⋅ ∑n

i=1 (vi)2
= cos(ϕ)

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

=
∑n

i=1 ui ⋅ vi

∑n
i=1 (ui)2 ⋅ ∑n

i=1 (vi)2
= cos(ϕ)

ϕ

cos(ϕ) = 0

u and v are very different

= cosine_similarity(u, v)

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

=
∑n

i=1 ui ⋅ vi

∑n
i=1 (ui)2 ⋅ ∑n

i=1 (vi)2
= cos(ϕ)

ϕ

cos(ϕ) = 0

u and v are very different

= cosine_similarity(u, v)

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

=
∑n

i=1 ui ⋅ vi

∑n
i=1 (ui)2 ⋅ ∑n

i=1 (vi)2
= cos(ϕ)

ϕ

cos(ϕ) = 0

ϕ

cos(ϕ) = 0.9ϕ = 25

u and v are very different

= cosine_similarity(u, v)

Measuring Similarities

13

cosine_similarity(u, v) =
u ⋅ v

| |u | | | |v | |

Let . The cosine similarity of u and v is defined asu, v ∈ ℝn

assuming that both u and v are non-zero.

=
∑n

i=1 ui ⋅ vi

∑n
i=1 (ui)2 ⋅ ∑n

i=1 (vi)2
= cos(ϕ)

ϕ

cos(ϕ) = 0

ϕ

cos(ϕ) = 0.9ϕ = 25

u and v are similar

= cosine_similarity(u, v)

Word Embeddings: Similar Words

14

Word Cosine Similarity to bed

bed 1.0000

pillow 0.6285

sleep 0.6225

blanket 0.4787

vehicle 0.1025

weapon 0.0201

Comparing words to the word bed in the Numberbatch word embedding:

Word Embeddings: Similar Words

14

Word Cosine Similarity to bed

bed 1.0000

pillow 0.6285

sleep 0.6225

blanket 0.4787

vehicle 0.1025

weapon 0.0201

Comparing words to the word bed in the Numberbatch word embedding:

We use these similarities to select the given clause!

Symbol Name Heuristic

15

goal G

Symbol Name Heuristic

15

vector representation of G

vector transformationword embedding

goal G

Symbol Name Heuristic

15

vector representation of G

vector transformationword embedding

goal G

weight(s,G) for all s symols(KB)∈

symbol weight
computation

vector representation
for all s symols(KB)

vs
∈

Symbol Name Heuristic

15

vector representation of G

vector transformationword embedding

goal G

weight(s,G) for all s symols(KB)∈

symbol weight
computation

vector representation
for all s symols(KB)

vs
∈

prover output

proverKB

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f : Voc → ℝn a word embedding with vocabulary Voc

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f : Voc → ℝn a word embedding with vocabulary Voc
assume symbols(F) ⊆ Voc

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f : Voc → ℝn a word embedding with vocabulary Voc
assume symbols(F) ⊆ Voc

vs = f(s)

The vector representation of a symbol s is

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f : Voc → ℝn a word embedding with vocabulary Voc

vF =
∑s∈symbols(F) vs

|symbols(F) |

The vector representation of a formula F is

assume symbols(F) ⊆ Voc

vs = f(s)

The vector representation of a symbol s is

Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F

 the vector representation of goal G
 the vector representation of symbol s

vG
vs

symbols(KB): the set of predicate and function symbols occurring in KB

Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F

 the vector representation of goal G
 the vector representation of symbol s

vG
vs

The weight of symbol s w.r.t goal G is defined as:

symbols(KB): the set of predicate and function symbols occurring in KB

weight(s, G) = 1000 − 1000 ⋅ cosine_similarity(vs, vG)

Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F

 the vector representation of goal G
 the vector representation of symbol s

vG
vs

The weight of symbol s w.r.t goal G is defined as:

symbols(KB): the set of predicate and function symbols occurring in KB

Provers use clauses with
symbols with a low weight first.

weight(s, G) = 1000 − 1000 ⋅ cosine_similarity(vs, vG)

Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F

 the vector representation of goal G
 the vector representation of symbol s

vG
vs

The weight of symbol s w.r.t goal G is defined as:

symbols(KB): the set of predicate and function symbols occurring in KB

We use default weights
of 1000 for all symbols.

Provers use clauses with
symbols with a low weight first.

weight(s, G) = 1000 − 1000 ⋅ cosine_similarity(vs, vG)

Selection of Given-Clause

18

Selection of Given-Clause

18

subClass(weapon, device)Clauses:
 subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal:

subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.1232

subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.04220.1232

subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232

subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

subClass(bed, furniture)

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

subClass(bed, furniture)

0.7261

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

876.8

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

957.8876.8

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

957.8 806.7876.8

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

957.8 806.7876.8 876.8

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

957.8 806.7876.8 876.8 273.9

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

957.8 806.7876.8 876.8 273.9 667.7

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Given clause = clause with smallest similarity-clause-weight

957.8 806.7876.8 876.8 273.9 667.7

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

Selection of Given-Clause

18

subClass(weapon, device)Clauses:

Cosine similarity to the goal: 0.0422 0.19330.1232 0.1232

Symbol weight:

subClass(bed, furniture)

0.7261 0.3323

Goal:
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Given clause = clause with smallest similarity-clause-weight

957.8 806.7876.8 876.8 273.9 667.7

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

We interleave the selection of the given clause by similarity-clause-weight with the
selection of the oldest clause.

Symbol Name Heuristic

19

vector representation of G

vector transformationword embedding

goal G

weight(s,G) for the k symbols
most similar to G

symbol weight
computation

vector representation
for all s symols(KB)

vs
∈

prover output

proverKB

Symbol Name Heuristic

19

vector representation of G

vector transformationword embedding

goal G

weight(s,G) for the k symbols
most similar to G

symbol weight
computation

vector representation
for all s symols(KB)

vs
∈

prover output

proverKB

k is a parameter

• Adimen SUMO WhiteBoxTruthTests:

Experimental Results

20

• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests

Experimental Results

20

• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests
• Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology

Experimental Results

20

• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests
• Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
• We randomly chose two disjoint sets of 1,000 of these proof tasks

Experimental Results

20

• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests
• Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
• We randomly chose two disjoint sets of 1,000 of these proof tasks

• First set: parameter-tuning set to determine interesting values for k and the pick given ratio

Experimental Results

20

• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests
• Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
• We randomly chose two disjoint sets of 1,000 of these proof tasks

• First set: parameter-tuning set to determine interesting values for k and the pick given ratio
• Second set: evaluation set

• We use the theorem prover E (timeout 10 sec.)

Experimental Results

20

Evaluation Set: Number of Proofs Found

21

no auto

parameter

with auto

parameter

k = 1000

PG5

no auto

parameter

k = 1500

PG5

no auto

parameter

k = 1500

PG8

no auto

parameter

Evaluation Set: Average Number of Clauses Processed

22

no auto

parameter

with auto

parameter

k = 1000

PG5

no auto

parameter

k = 1500

PG5

no auto

parameter

k = 1500

PG8

no auto

parameter

Evaluation Set: Comparison of Proof Sizes

23

Conclusion and Future Work

24

Symbol names carry important information which:
• can be used to make the proof process more goal directed and

Image AI generated (DALL·E, OpenAI)

Conclusion and Future Work

24

Symbol names carry important information which:
• can be used to make the proof process more goal directed and
• helps to find more proofs.

Image AI generated (DALL·E, OpenAI)

Conclusion and Future Work

24

Symbol names carry important information which:
• can be used to make the proof process more goal directed and
• helps to find more proofs.

Ongoing and Future work:
• Investigate the difference of proofs found with our without the guidance

by symbol names.
• Use the approach in other domains.

Image AI generated (DALL·E, OpenAI)

Conclusion and Future Work

24

Symbol names carry important information which:
• can be used to make the proof process more goal directed and
• helps to find more proofs.

Ongoing and Future work:
• Investigate the difference of proofs found with our without the guidance

by symbol names.
• Use the approach in other domains.

Image AI generated (DALL·E, OpenAI)

