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Why should we draw unrelated inferences in automated reasoning?
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U: set of unprocessed clauses P: set of processed clauses

Selection of given clause using heuristics.
Does not take the meaning of symbol names into account.
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Task: proof that hammock — bed follows from the set of clauses
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Idea: Use clauses with symbols similar to the proof task as given clause!
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Symbol Name Heuristics

Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

We use Word Embeddings!
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Meaning of Symbol Names using Word Embeddings

“a word is characterized by the company it keeps” (Firth, 1957)

Word embedding: a function f: Voc — R"
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Word Embeddings: Similar Words

Comparing words to the word bed in the Numberbatch word embedding:
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Comparing words to the word bed in the Numberbatch word embedding:

Cosine Similarity to bed

bed 1.0000
pillow 0.6285
sleep 0.6225

blanket 0.4787
vehicle 0.1025
weapon 0.0201

We use these similarities to select the given clause!
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Representing Symbols and Formulae by Vectors

symbols(F). the set of predicate and function symbols in formula F

f: Voc - R" aword embedding with vocabulary Voc
assume symbols(F') C Voc

The vector representation of a symbol s is
v = f(s)
The vector representation of a formula F is

v = ZsEsymbols(F ) Vs
d | symbols(F) |
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Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

V; the vector representation of goal G
v, the vector representation of symbol s

The weight of symbol s w.r.t goal G is defined as:

weight(s, G) = 1000 — 1000 - cosine_similarity(v,, vs)

Provers use clauses with

symbols with a low weight first. We use default weights

of 1000 for all symbols.
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Clauses:

Symbol weight:
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Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: SubClass(we?pan, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.IT232 ().OT422 0.1T933 O.ITQSZ O.7T261 O.fTS323
Symbol weight: 876.8 957.8 806.7 876.8 2739 667.7

1000 — 1000 - cosine_similarity(Vyypop Veoar)
Given clause = clause with smallest similarity-clause-weight
We interleave the selection of the given clause by similarity-clause-weight with the
selection of the oldest clause.
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Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests
e Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
* We randomly chose two disjoint sets of 1,000 of these proof tasks
* First set: parameter-tuning set to determine interesting values for £ and the pick given ratio
e Second set: evaluation set

* \We use the theorem prover E (timeout 10 sec.)
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Number of Proofs Found

Evaluation Set: Number of Proofs Found
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Evaluation Set: Average Number of Clauses Processed
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Evaluation Set: Comparison of Proof Sizes
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