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Automated Reasoning

2

Reasoner

Goal: 
Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

∀x(instance(x, hammock) →
(material(x, fabric) ∧ …

Knowledge Base

. . .

∀x, y, z
((subclass(x, y) ∧ subclass(y, z)) →

subclass(x, z))

subclass(weapon, device)
subclass(device, artifact)

subclass(bed, furniture)
subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)
…
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Reasoner

Goal: 
 

∀x(in(x, h) → in(x, b))

∀x(in(x, h) →
(m(x, fa) ∧ …

Knowledge Base

. . .

∀x, y, z
((s(x, y) ∧ s(y, z)) →

s(x, z))

s(w, de)
s(de, a)

s(b, f )
s(db, b)
s(p, a)
s(bl, fa)
…

Computes inferences!

Does not take the meaning of symbols into account!

For the prover, the proof task looks like this: 
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Why should we draw unrelated inferences in automated reasoning?
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Clause set S

Task: proof that  follows from clause set  h → b S

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b
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Task: proof that  follows from clause set  h → b S

: set of unprocessed clausesU : set of processed clausesP

¬w ∨ d
¬d ∨ a
¬h ∨ f
¬h ∨ s…
h
¬b

¬w ∨ d
¬d ∨ aSelect a given-clause

¬d ∨ a
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Selection of given clause using heuristics.  
Does not take the meaning of symbol names into account.
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Idea: Use clauses with symbols similar to the proof task as given clause!
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Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

We use Word Embeddings!
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 “a word is characterized by the company it keeps” (Firth, 1957)

Meaning of Symbol Names using Word Embeddings

Word embedding: a function   f : Voc → ℝn
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ϕ

cos(ϕ) = 0.9ϕ = 25

u and v are similar

= cosine_similarity(u, v)
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14

Word Cosine Similarity to bed

bed 1.0000

pillow 0.6285

sleep 0.6225

blanket 0.4787

vehicle 0.1025

weapon 0.0201

Comparing words to the word bed in the Numberbatch word embedding:

We use these similarities to select the given clause!
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vector transformationword embedding

goal G

weight(s,G) for all s  symols(KB)∈

symbol weight 
computation

vector representation  
for all s  symols(KB)

vs
∈

prover output

proverKB
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Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f : Voc → ℝn a word embedding with vocabulary Voc

vF =
∑s∈symbols(F) vs

|symbols(F) |

The vector representation of a formula F is

assume symbols(F) ⊆ Voc

vs = f(s)

The vector representation of a symbol s is
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Symbol Weight Computation

symbols(F): the set of predicate and function symbols in formula F

 the vector representation of goal G 
 the vector representation of symbol s

vG
vs

The weight of symbol s w.r.t goal G is defined as:

symbols(KB): the set of predicate and function symbols occurring in KB

We use default weights 
of 1000 for all symbols.

Provers use clauses with 
symbols with a low weight first.

weight(s, G) = 1000 − 1000 ⋅ cosine_similarity(vs, vG)
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Are hammocks beds?

∀x(instance(x, hammock) → instance(x, bed))

Given clause = clause with smallest similarity-clause-weight 

957.8 806.7876.8 876.8 273.9 667.7

 1000 − 1000 ⋅ cosine_similarity(vsymbol, vgoal)

We interleave the selection of the given clause by similarity-clause-weight with the 
selection of the oldest clause.
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k is a parameter
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• Adimen SUMO WhiteBoxTruthTests:
• Collection of automatically generated tests
• Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
• We randomly chose two disjoint sets of 1,000 of these proof tasks

• First set: parameter-tuning set to determine interesting values for k and  the pick given ratio
• Second set: evaluation set

• We use the theorem prover E (timeout 10 sec.)

Experimental Results

20
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