Context-Aware Clause Selection Using
Symbol Name Meanings in Theorem
Proving

Claudia Schon
Hochschule Trier
c.schon@hochschule-trier.de

Trier University 5C H UL E
of Applied Sciences T R lE R

mailto:c.schon@hochschule-trier.de

Automated Reasoning

subclass(bed, furniture)

subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)

Vx(instance(x, hammock) —
(material(x, fabric) A ...

Vx, v,z
((subclass(x,y) A subclass(y, z)) —
subclass(x, 7))

subclass(weapon, device)
subclass(device, artifact)

Knowledge Base

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

v

Reasoner

Automated Reasoning

subclass(bed, furniture)

subclass(doublebed, bed)
subclass(pillow, artifact)
subclass(blanket, fabric)

Vx(instance(x, hammock) —
(material(x, fabric) A ...

Vx, v,z
((subclass(x,y) A subclass(y, z)) —
subclass(x, 7))

subclass(weapon, device)
subclass(device, artifact)

Knowledge Base

—

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

v

Reasoner

Computes inferences!

Automated Reasoning

subclass(bed, furniture)
subclass(doublebed, bed)
subclass(pillow, artifact)

subclass(blanket, fabric) Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Vx(instance(x, hammock) —

(material(x, fabric) A ... *

_> Reasoner

VX, ¥,2 Computes inferences!

((subclass(x,y) A subclass(y, z)) —
subclass(x, 7))

subclass(weapon, device)

: _ :
subclass(device, artifact) Does not take the meaning of symbols into account!

Knowledge Base

Automated Reasoning

s.f) For the prover, the proof task looks like this:
s(db, b)

s(p,a)

s(bl. fa) Goal:

Vx(in(x, h) — in(x, b))
Vx(in(x, h) —

(m(x, fa) A ... *

_> Reasoner

Vx, v,z

((s(x,y) As(y,2)) —
s(x,2))

s(w, de)
s(de, a)

Computes inferences!

Does not take the meaning of symbols into account!

Knowledge Base

Automated Reasoning: Are Hammocks Beds?

Reasoner: PyRes

https://www.wortwolken.com/

Automated Reasoning: Are Hammocks Beds?

- PyRes computes 538 resolvents!

Reasoner: PyRes

https://www.wortwolken.com/

Automated Reasoning: Are Hammocks Beds?

auditoriumseat

capabilit
hgmmogk

sittingareaM
e e- W
conveyance a?ene

E We a in pationt [l clothing
E
Dok d @)
= O i motion o

transportationdevice, C

o, pameegisjoint ¢

6 engmeermgcomponent

e Q
AN
% EMMKW moves

- PyRes computes 538 resolvents!

Reasoner: PyRes

https://www.wortwolken.com/

--projectile

organis

MOV¢

=weapon >

y e Www
road licl
selfconnectedobject
&
B b«v@
mMaking patient clothing

\
....... @Vehlde motion

,bﬁ\odBJomt

; engmeermgcompcﬂe

driving

Automated Reasoning: Are Hammocks Beds?

auditoriumseat

capabilit
hgmmogk

sittingareaM
e e- W
conveyance a?ene

E We a in pationt [l clothing
E
Dok d @)
= O i motion o

transportationdevice, C

o, pameegisjoint ¢

6 engmeermgcomponent

e Q
AN
% EMMKW moves

- PyRes computes 538 resolvents!

Reasoner: PyRes

https://www.wortwolken.com/

Why should we draw unrelated inferences in automated reasoning?

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

WV d
—d V a
—hVf

“hVs

Clause set S

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

WV d
—d V a
—hVf

“hVs

h
—b

Clause set S

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

WV d
—d V a
—hVf

“hVs

h
—b

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

CwvVvd e
—dV a

—hVf
Vs
h

=b

U: set of unprocessed clauses

Select a given-clause

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

““wVd
Select a given-clause
dVa
—hVf
—“hVs
h
—b

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

“wVd
Select a given-clause
dVa
—hVf
—“hVs
h Add all inferences of the given
ml/ clause and clauses in P to U.

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

U: set of unprocessed clauses

Select a given-clause

—dV a
-hVf
- hV s
h Add all inferences of the given
—b clause and clauses in P to U.

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

U: set of unprocessed clauses

Select a given-clause “wVd
dVa
-hVf
—“hVs
h Add all inferences of the given
—b clause and clauses in P to U.

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

—dV a
—hVf
- hV s

U: set of unprocessed clauses

Select a given-clause

wVd

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

"wVd
—dV a

—hVf
Vs

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

CdVa)<
—hVf

“hVs

U: set of unprocessed clauses

Select a given-clause

wVd

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

-dV a “wvd
Select a given-clause
—hVf
—“hVs
h
—b

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

-dV a “wvd
Select a given-clause
—hVf
—“hVs
h
—b

Add all inferences of the given
clause and clauses in P to U.

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

Select a given-clause
-hVf
—hVs
h
—b
WV da Add all inferences of the given

clause and clauses in P to U.

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

-dV a “wvd
Select a given-clause
—hVf
—“hVs
h
—b
WwWVda

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

-dV a “wVvd
Select a given-clause -d V a
—hVf
—“hVs
h
—b
WV da

U: set of unprocessed clauses P: set of processed clauses

Given-Clause Algorithmus

Task: proof that i — b follows from clause set S

-dV a “wVvd

Select a given-clause -d V a
—hVf
—“hVs
h
—b
WV da

U: set of unprocessed clauses P: set of processed clauses

Selection of given clause using heuristics.
Does not take the meaning of symbol names into account.

9

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—weapon V device
—device V artifact
—~hammock V fabric

—hammock V sleep

hammock

= bed

U set of unprocessed clauses P: set of processed clauses

10

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

(oweapon V device

—device V artifact
—hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

Select a given-clause

10

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—weapon V device
Select a given-clause

—device V artifact
—~hammock V fabric

—hammock V sleep

hammock

= bed

U set of unprocessed clauses P: set of processed clauses

10

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—weapon V device
Select a given-clause

—device V artifact
—hammock V fabric
—hammock V sleep

hammock Add all inferences of the given
—bed clause and clauses in P to U.

U set of unprocessed clauses P: set of processed clauses

10

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

Select a given-clause

—device V artifact
—hammock V fabric
—hammock V sleep

hammock Add all inferences of the given
—bed clause and clauses in P to U.

U set of unprocessed clauses P: set of processed clauses

10

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—device V artifact
—hammock V fabric

—hammock V sleep

hammock Add all inferences of the given
—bed clause and clauses in P to U.

U: set of unprocessed clauses

Select a given-clause

10

—weapon V device

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—device V artifact
—~hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

Select a given-clause

10

—weapon V device

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—weapon V device
—device V artifact
—~hammock V fabric

—hammock V sleep

hammock

= bed

U set of unprocessed clauses P: set of processed clauses

10

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

(device V artifacy

—hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

Select a given-clause

10

—weapon V device

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—~hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

—device V artifact
Select a given-clause

10

—weapon V device

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—~hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

—device V artifact
Select a given-clause

10

—weapon V device

—device V artifact

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

—device V artifact
Select a given-clause

Add all inferences of the given
clause and clauses in P to U.

10

—weapon V device

—device V artifact

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—hammock V fabric

—hammock V sleep

hammock

= bed

U: set of unprocessed clauses

—device V artifact
Select a given-clause

Add all inferences of the given
—weapon V artifact| clause and clauses in P to U.

10

—weapon V device

—device V artifact

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—hammock V fabric

—hammock V sleep

hammock

= bed

—‘weapon V artifact

U: set of unprocessed clauses

—device V artifact
Select a given-clause

10

—weapon V device

—device V artifact

P: set of processed clauses

Given-Clause Algorithmus

Task: proof that hammock — bed follows from the set of clauses

—hammock V fabric

—hammock V sleep

hammock

= bed

—‘weapon V artifact

U: set of unprocessed clauses

—device V artifact
Select a given-clause

—weapon V device

—device V artifact

P: set of processed clauses

Idea: Use clauses with symbols similar to the proof task as given clause!

10

Symbol Name Heuristics

Idea: Use clauses with symbols similar to the proof goal as given clause!

11

Symbol Name Heuristics

Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

11

Symbol Name Heuristics

Idea: Use clauses with symbols similar to the proof goal as given clause!

How to determine similarity?

We use Word Embeddings!

11

Meaning of Symbol Names using Word Embeddings

“a word is characterized by the company it keeps” (Firth, 1957)

Word embedding: a function f: Voc — R"

12

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

u-v

[Tull [1v]]

cosine_similarity(u,v) =

assuming that both » and v are non-zero.

13

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

n
u-v Zizlui'vi

[ul | []v]] \/2211(”1)2\/27:1(‘)1)2

cosine_similarity(u,v) =

= cos(¢)

assuming that both » and v are non-zero.

13

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

n
u-v Zizlui'vi

[ul | []v]] \/Z;’lzl(ul)z\/zle(vl)z

cosine_similarity(u,v) =

= cos(¢)

assuming that both » and v are non-zero.

A

AN

cos(¢) =0

13

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

n
u-v Zizlui'vi

[ul | []v]] \/z;’lzl(ul)z\/z;;l(vl)z

cosine_similarity(u,v) =

= cos(¢)

assuming that both » and v are non-zero.

A

AN

cos(¢) = 0 = cosine_similarity(u, v)

u and v are very different

13

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

n
u-v Zizlui'vi

[ul | []v]] \/Z;’lzl(ul)z\/zle(vl)z

cosine_similarity(u,v) =

= cos(¢)

assuming that both » and v are non-zero.

A

I i

>
cos(¢p) = 0 = cosine_similarity(u, v) ¢=25 cos(¢)=09

u and v are very different

13

Measuring Similarities

Let u,v € R" The cosine similarity of u and v is defined as

n
u-v Zizlui'vi

el 1T T 3L, o

cosine_similarity(u,v) =

= cos(¢)

assuming that both » and v are non-zero.

A

N i

>
cos(¢) = 0 = cosine_similarity(u, v)

b =25 cos(¢p) = 0.9 = cosine_similarity(u, v)

u and v are very different u and v are similar

13

Word Embeddings: Similar Words

Comparing words to the word bed in the Numberbatch word embedding:

Cosine Similarity to bed

bed 1.0000
pillow 0.6285
sleep 0.6225

blanket 0.4787
vehicle 0.1025

weapon 0.0201

14

Word Embeddings: Similar Words

Comparing words to the word bed in the Numberbatch word embedding:

Cosine Similarity to bed

bed 1.0000
pillow 0.6285
sleep 0.6225

blanket 0.4787
vehicle 0.1025
weapon 0.0201

We use these similarities to select the given clause!
14

Symbol Name Heuristic

goal G

15

Symbol Name Heuristic

goal G

word embedding vector transformation

vector representation of G

15

Symbol Name Heuristic

goal G

word embedding vector transformation

vector representation of G

vector representation v symbol weight
for all s € symols(KB) computation

weight(s,G) for all s € symols(KB)

15

Symbol Name Heuristic

word embedding

vector representation
for all s € symols(KB)

Vs

KB

goal G

vector transformation

vector representation of G

symbol weight
computation

weight(s,G) for all s € symols(KB)

prover

prover output

15

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f: Voc - R" aword embedding with vocabulary Voc

Representing Symbols and Formulae by Vectors

symbols(F): the set of predicate and function symbols in formula F

f: Voc - R" aword embedding with vocabulary Voc
assume symbols(F') C Voc

Representing Symbols and Formulae by Vectors

symbols(F). the set of predicate and function symbols in formula F

f: Voc - R" aword embedding with vocabulary Voc
assume symbols(F') C Voc

The vector representation of a symbol s is

vs =f(S)

Representing Symbols and Formulae by Vectors

symbols(F). the set of predicate and function symbols in formula F

f: Voc - R" aword embedding with vocabulary Voc
assume symbols(F') C Voc

The vector representation of a symbol s is
v = f(s)
The vector representation of a formula F is

v = ZsEsymbols(F) Vs
d | symbols(F) |

Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

V; the vector representation of goal G
v, the vector representation of symbol s

Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

V; the vector representation of goal G
v, the vector representation of symbol s

The weight of symbol s w.r.t goal G is defined as:

weight(s, G) = 1000 — 1000 - cosine_similarity(v,, vs)

Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

V; the vector representation of goal G
v, the vector representation of symbol s

The weight of symbol s w.r.t goal G is defined as:

weight(s, G) = 1000 — 1000 - cosine_similarity(v,, vs)

Provers use clauses with
symbols with a low weight first.

Symbol Weight Computation

symbols(F). the set of predicate and function symbols in formula F
symbols(KB): the set of predicate and function symbols occurring in KB

V; the vector representation of goal G
v, the vector representation of symbol s

The weight of symbol s w.r.t goal G is defined as:

weight(s, G) = 1000 — 1000 - cosine_similarity(v,, vs)

Provers use clauses with

symbols with a low weight first. We use default weights

of 1000 for all symbols.

Selection of Given-Clause

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

Cosine similarity to the goal:

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

Cosine similarity to the goal: 0.1232

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

T

Cosine similarity to the goal: 0.1232 0.0422

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

U

Cosine similarity to the goal: 0.1232 0.0422 0.1933

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

U T

Cosine similarity to the goal: 0.1232 0.0422 0.1933 0.1232

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

U 1

Cosine similarity to the goal: 0.1232 0.0422 0.1933 0.1232 0.7261

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) subClass(bed, furniture)

U 1

Cosine similarity to the goal: 0.1232 0.0422 0.1933 0.1232 0.7261 0.3323

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: 0.1232 0.0422 0.1933 0.1232 0.7261 0.3323

Symbol weight:

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: 0.1232 0.0422 0.1933 0.1232 0.7261 0.3323

Symbol weight:

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 0.0422 0.1933 0.1232 0.7261 0.3323
Symbol weight: 376.8

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 ().OT422 0.1933 0.1232 0.7261 0.3323
Symbol weight: 876.8 957.8

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 ().OT422 0.1T933 0.1232 0.7261 0.3323

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Clauses:

Symbol weight:

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

subClass(weapon, device)

U

Cosine similarity to the goal: 0.1232 0.0422 0.1933

[

876.8 957.8 806.7

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

subClass(bed, furniture)

1]

0.1232 0.7261 0.3323

T

876.8

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 ().OT422 0.1T933 O.1T232 O.7T261 0.3323
Symbol weight: 876.8 957.8 806.7 876.8 2739

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: subClass(weapon, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 ().OT422 0.1T933 O.1T232 O.7T261 O?323
Symbol weight: 876.8 957.8 806.7 876.8 2739 667.7

1000 — 1000 - cosine_similarity(Vyypop Veoar)

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: SubClass(wefzpan, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.1T232 ().OT422 0.1T933 O.ITQBZ O.7T261 O.fTS323
Symbol weight: 876.8 957.8 806.7 876.8 2739 667.7

1000 — 1000 - cosine_similarity(Vyypop Veoar)

Given clause = clause with smallest similarity-clause-weight

18

Selection of Given-Clause

Goal:
Are hammocks beds?

Vx(instance(x, hammock) — instance(x, bed))

Clauses: SubClass(we?pan, device) SubTClaSS(be% furniiure)
Cosine similarity to the goal: O.IT232 ().OT422 0.1T933 O.ITQSZ O.7T261 O.fTS323
Symbol weight: 876.8 957.8 806.7 876.8 2739 667.7

1000 — 1000 - cosine_similarity(Vyypop Veoar)
Given clause = clause with smallest similarity-clause-weight
We interleave the selection of the given clause by similarity-clause-weight with the
selection of the oldest clause.

18

Symbol Name Heuristic

word embedding

vector representation
for all s € symols(KB)

Vs

KB

goal G

vector transformation

vector representation of G

symbol weight
computation

weight(s,G) for the k symbols
most similar to G

prover

prover output

19

Symbol Name Heuristic

word embedding

vector representation
for all s € symols(KB)

Vs

KB

goal G

vector transformation

vector representation of G

symbol weight
computation

weight(s,G) for the k symbols
most similar to G

prover

prover output

19

k is a parameter

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:

20

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests

20

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests
e Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology

20

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests
e Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
* We randomly chose two disjoint sets of 1,000 of these proof tasks

20

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests
e Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
* We randomly chose two disjoint sets of 1,000 of these proof tasks
* First set: parameter-tuning set to determine interesting values for £ and the pick given ratio

20

Experimental Results

e Adimen SUMO WhiteBoxTruthTests:
* Collection of automatically generated tests
e Each task: Goal for which it must be proved that it follows form the Adimen SUMO ontology
* We randomly chose two disjoint sets of 1,000 of these proof tasks
* First set: parameter-tuning set to determine interesting values for £ and the pick given ratio
e Second set: evaluation set

* \We use the theorem prover E (timeout 10 sec.)

20

Number of Proofs Found

Evaluation Set: Number of Proofs Found

500 -

400 -

300 A

200 -

100 ~

k = 1000 k =1500 k =1500
no auto with auto PG5 PG5 PG8
parameter parameter no auto no auto no auto
parameter parameter parameter

2

Evaluation Set: Average Number of Clauses Processed

17500 A

15000 -

12500 A

10000 A

7500 -

5000 A

avg. number of processed clauses for the
197 proof tasks solved by all

2500 +

k = 1000 k =1500 k =1500
no auto with auto PG5 PG5 PG8
parameter parameter no auto no auto no auto
parameter parameter parameter

22

Evaluation Set: Comparison of Proof Sizes

/’
80 - -
e
JRe
70 1 7
§ - /,
/,,

60 ¥ >
:-'_; x xx x ::/:,’
— 50 A = CTR 1
g - - = x!‘z t
.a i *) xl * "
5 40 2y 1 P
o . x |® ,i X o
Q. a ’:‘z x* “! " xx ¥

x x
30 ?,3" Y
x® Xy %
x : :# 2 xsoe Xadoe |
20 - " /// g = L
" o " -
10 - /!
10 20 30 40 50 60 70 80

proof size (k1500 PG8 aF)

23

Conclusion and Future Work

Symbol names carry important information which:
e can be used to make the proof process more goal directed and

24

Conclusion and Future Work

Symbol names carry important information which:
e can be used to make the proof process more goal directed and
* helps to find more proofs.

24

Conclusion and Future Work

Symbol names carry important information which:
e can be used to make the proof process more goal directed and
* helps to find more proofs.

Ongoing and Future work:

* |nvestigate the difference of proofs found with our without the guidance
by symbol names.

 Use the approach in other domains.

24

Conclusion and Future Work

Symbol nhames carry important information which:
e can be used to make the proof process more goal directed and
* helps to find more proofs.

Ongoing and Future work:

* |nvestigate the difference of proofs found with our without the guidance
by symbol names.

 Use the approach in other domains.

24

